
Formal Aspects of Computing (1994) 6: 643-658
© 1994 BCS Formal Aspects

of Computing

Specification, Verification and Prototyping of
an Optimized Compiler

He Jifeng 1 and Jonathan Bowen 2

Oxford University Computing Laboratory, Programming Research Group, UK

Keywords: Program compilation; Code optimization; Formal verification; Refine
ment algebra; Logic programming

Abstract. This paper generalizes an algebraic method for the design of a correct
compiler to tackle specification and verification of an optimized compiler. The
main optimization issues of concern here include the use of existing contents
of registers where possible and the identification of common expressions. A
register table is introduced in the compiling specification predicates to map each
register to an expression whose value is held by it. We define different kinds
of predicates to specify compilation of programs, expressions and Boolean tests.
A set of theorems relating to these predicates, acting as a correct compiling
specification, are presented and an example proof within the refinement algebra
of the programming language is given. Based on these theorems, a prototype
compiler in Prolog is produced.

1. Introduction

The development of computer-based systems can benefit from a formal approach
at all levels of abstraction from requirements through to design, compilation
and hardware. Two related collaborative research projects, the ProCoS [Bj092,
Bow93b] and safemos [Bow94] projects, have investigated formal techniques
to handle these various levels of abstraction, and crucially how they relate to

Correspondence and offprint requests to: J. P. Bowen, Oxford University Computing Laboratory,
Programming Research Group, Wolfson Building, Parks Road, Oxford OX1 3QD, UK. Email:
J onathan.Bowen@comlab.ox.ac.uk
1 Funded by ESPRIT Basic Research ProCoS project (nos 3104 & 7071).
2 Funded by UK Engineering and Physical Sciences Research Council (SAFEMOS project
IED3/1/1036 and grant no. GR/J15186).

644 1. He and 1. P. Bowen

one another [BF093]. This paper concentrates on the automatic compilation of
a high-level executable source program to a low-level machine code based on the
ideas in [BHP90, Hoa91, HoH92, HHB90]. Previously this has been extended to
handle a real-time language [HeB92]. Here we investigate how code optimizations
can be included in the process.

A compiler takes as input a source program and produces as output an
equivalent (or better) sequence of machine instructions wrt. some refinement
ordering. Additionally, target program sequences that are frequently executed
should be fast and small. Since this process is so complex, it is customary to
partition the compilation process into a series of subprocesses called phases.
Certain compilers have within them a phase that tries to apply transformations
to the source code or the output of the intermediate code generator, in an attempt
to produce a faster or smaller machine code. This phase is popularly called the
optimization phase. Since code optimization is intertwined with code generation,
it does not make sense to do a good job of code generation without also doing a
good job of code optimization.

As is widely known, one of the richest sources of optimization is in the
efficient utilization of the registers and instruction set of a machine [ASU86].
This aspect of optimization is closely connected with code generation, and many
issues in this area are highly machine dependent. An additional important source
of optimization is the identification of common expressions and the replacement
of run-time computations by compile-time computations.

The formalization and verification of code generation optimization does not
seem to be well advanced. It has been noted that no proof techniques are
available for code generation techniques that are actually used in practice [GiG92].
Realistic optimized compiling schemes have been formally specified but not
verified [Bun82]. Where formal development has been undertaken, it has normally
been for un optimized code [Cur93, Ste93, SWC91]. Optimization has often been
avoided in safety-critical and other high integrity systems since it can be an
extra source of error, although the use of formal methods could help [BoS93].
This paper will take these issues into account in the design of a correct compiler.
Other related work in this area has been undertaken in parallel but independently
[Lev92].

As advocated by Hoare [Hoa91], a compiler can be specified as a set of theo
rems, each describing how a construct in the programming language is translated
into a sequence of machine instructions. Central to that approach is a predicate
C€ q sf m 'P n stating that the machine code stored in the memory m with s as
the start address and f as the finish address is a correct translation of the source
program q where 'P is the symbol table mapping each global variable of q to a
location in the machine memory where its value is being stored, and n is the free
storage which can be used to store the value of local variables and the temporary
results during the execution of expressions. The compiling specification is given
as a set of theorems about the predicate C€ q sf m 'P n stating how each construct
can be compiled. To verify the correctness of compiling specification, a mathe
matical theory of program refinement is developed to establish an improvement
relation [;;; between programs p and q which states that q is better than p in all
circumstances.

Following such an approach, this paper defines a new predicate

Specification, Verification and Prototyping of an Optimized Compiler 645

with two new parameters <l> and <i> mapping each register to the expressions whose
value is held by it before and after execution respectively, to replace the predicate
~ q sf m \f n. Another predicate

~@"esfm\fn<l><i>

stating that m contains a correct implementation of expression e, is present to
support common expression optimization. Finally, we propose a predicate

~.?4@"bsfm\fn<l><i>{true ~ tl,false ~ ji}

to compile a Boolean test b (in both conditional and iteration constructs) into an
optimized target code by assigning exit addresses tl and ji in advance.

This paper will present a set of theorems relating predicates ~f!/', ~@" and
~.?4@" and provide some examples of verification of these theorems with the
help of a refinement algebra developed to specify an algebraic semantics of the
programming language. Based on that set of theorems, a prototype compiler is
then produced in a very direct manner using Prolog [eIM87].

2. Refinement Algebra

This paper examines a simple programming language which contains assignment,
sequential composition, conditional and iteration constructs, and declaration and
scoping of variables. In the design of a correct compiler the first and absolute
requirement is a perfect comprehension of the meaning of the source and target
languages. If the implementation is to be supported by a mathematical proof,
these meanings must be expressed by some mathematical definition which forms
the basis of the reasoning. A wide variety of formalisms have been proposed for
this purpose, and there is difficulty in choosing between them. We suggest the
use of a complete set of laws as an algebraic specification of the meaning of the
programming language. The sufficiency of such a set of laws can be established
by an appropriate kind of normal form theorem. One of the advantages of
algebraic laws is that of modularity and generality: each of them is valid in
many programming languages; and they often remain valid when the language
is extended. The basic laws defining the programming language used in this
paper are given in [HoH92]. Some of the more useful laws are repeated here for
convenience. We take the simplifying view that all expressions always deliver a
value (i.e., no error can occur during the evaluation of an expression).

Sequential composition has SKIP as its unit, and distributes left over condi
tional.

Law 1.
(1) SKIP; q = q = q ; SKIP.
(2) (q <I b l> r); w = (q ; w) <I b l> (r; w).

We define an improvement relation between programs p and q that holds
whenever for any purpose the behaviour of q is as good as or better than that of
p; more precisely, if q satisfies every specification satisfied by p, and maybe more.
This relation is written p !:;;; q. !:;;; is a partial order; i.e., it is reflexive, transitive and
antisymmetric. The program ABORT represents the completely arbitrary behaviour
of a broken machine, and is the least controllable and predictable program; i.e.,
it is the bottom of !:;;;.

646 J. He and 1. P. Bowen

Law 2. ABORT ~ q.
Let b be a Boolean expression. The notation bJ. represents the conditional

SKIP <t b f> ABORT

Law 3. If variable v does not appear in the expression e then
(1) v := e ; (v = eh = v := e.
(2) (v = eh ; v := e ~ SKIP.

The command VAR v introduces a new variable v, and the command END v
removes the variable v. Declaration and end of scope commands obey the
following laws

Law 4.
(1) END v ; VARv ~ SKIP = VARv ; ENDv.
(2) v := e ; END v = END v.

The iteration b • q is defined as the least fixed point of the equation

X = (q ; X) <t b f> SKIP

and satisfies the following law

Law 5. b· q ; (b V c). q = (b V c) • q.

3. Specification of Machine Instructions

A correct compiler ensures that the execution of the machine code has the same
(or better) behaviour than that ascribed to the source code. In order to pursue a
rigorous reasoning for the correctness of a compiler, we decide to define the target
code in a subset of the source language whose semantics are already known. This
allows us to t:nanipulate the machine code and the source program in the same
mathematical framework. The definition of the machine language starts with a
simple set of the components of the machine state, and each instruction is then
identified by a fragment of code describing how the machine state is updated
by the execution of the instruction. This paper considers a machine with just six
components.

• m : rom -+ word is the store occupied by the machine code.
• M : ram -+ word is the store used for variables where the word-length is

unspecified.
• P : rom is the pointer to the current instruction.
• A, B, C : word are the general-purpose registers.

Here word is the set of machine word values, rom is the set of read-only memory
addresses, and ram is the (disjoint) set of read-write memory addresses.

We introduce a set of machine instructions below, each of which is defined by
a fragment of code operating on the machine state.

store(n) dj" M [n], P := A, P + 1

load(n) dj" A,B,C,P := M[n], A, B, P + 1

loadc(n) dj" A,B,C,P := n, A, B, P + 1

Specification, Verification and Prototyping of an Optimized Compiler 647

jump(k) dj' P := P +k + 1

condj(k) dj' P := P + 1 <J A I> P := P +k + 1

swap(A, B) dj' A,B,P := B,A, P + 1

swap(A, C) dj' A,C,P := C, A, P + 1

add dj' A,P := A+B, P + 1

In the following sections we will use "store(n)" (for example) to stand for the text
of instruction store(n).

The behaviour of a machine program stored in m[s], ... ,m[f - 1] can be
specified by

f sfm dj' VARA, B, C, P ;P := s;

(P <f) * mstep ;

(P =fh; ENDA, B, C, P

where mstep is an interpreter for a single machine instruction stored in m [Pl. The
program (P = fh ensures that if the execution of the interpreter terminates, it
will end at the finish address f.

4. A Provably Correct Compiling Specification

The compiling specification is defined as a predicate <c [lJ> q sf m 'II n $ d> relating
a process q and the machine code stored in m [s], ... , m [f - 1] where

• The symbol table'll maps each global variable of q to its address in the
memory M.

• n is the set of free locations in M which can be used to store the temporary
results during the evaluation of expressions; i.e., we assume that range(qs) n
n = 0.

• The register tables $ and d> are used to map each register to the expres
sion whose value is being held by it before and after the execution of the
machine code m[s], ... ,m[f -1] respectively. For example, $A[M[qsx]/x, ... ,
M ['II z] / z] is the value of the register A before the execution of the machine
program. In order to specify an uninitialized register, we will use .1. to stand
for the expression whose value is unspecified. Algebraically, the expression .1.
can be formalized by the following law:

VARx = VARx ; x :=.1.

We define a binary relation ::S among register tables by

$1 ::S $2 dj' 'v'R. $1(R) of.l => ($1(R) = $2(R))

Clearly ::S is a partial order. The notation $1 n $2 is used to stand for the
greatest lower bound of register tables $1 and $2.

It is the responsibility of the compiler to ensure that execution of the target code
should have the same (or better) behaviour than that ascribed to the source code.
This leads to the following definition of the compiling specification predicate <C[lJ>:

648

ccq>q s/m 'l'QcD, <D dg
['I'g](q) I;;::

VARP, A, B, C ;

J. He and J. P. Bowen

P, A, B, C := s, ['I'g](cDA), ['I'g](cDB), ['I'g](cDC);

(P <f) * mstep ;

(P = / 1\ A = ['I'g](<DA) 1\ B = ['I'g](<DB) 1\ C = ['I'g](<DC)h ;
ENDP, A, B, C

where the notation ['I'g](q) was defined in [HoH92] as the weakest specification
of the correct implementation of q with respect to the symbol table 'I' and the
free workspace 0.

['I'g](q) dg 'l'g; q ; '1'01

\TI,... dg VAR T., x, ... ,z ;
x, ... ,z := M['I'x], ... ,M['I'z];
END M [range('I') l±J 0.]

'1'01 dg VARM [range('I') l±J 0.] ;

M['I'x], ... ,M['I'z] := x, ... ,z;

ENDx, ... ,z

where {x, ... , z} contains all the program variables in the domain of '1', and M [S]
is an array variable with the index set S. Note that l±J stands for disjoint union.
For any expression e we define

['I'g](e) dg e[M ['I'x]/x, ... ,M ['I'z]/z]

'l'g and ['I'g] are fully investigated in [Hoa91, HoH92]. Here we only present
those properties of ['I' g] which will be used in the later proof.

Lemma

(1) ['I'g](SKIP) I;;:: SKIP
(2) ['I'g](q ; r)) I;;:: ['I'g](q); ['I'g](r)
(3) ['I'g](v := e) I;;:: M['I'v] := ['I'g](e)
(4) ['I'g](q <t b I> r) I;;:: ['I'g](q) <t ['I'g](b) I> ['I'g](r)
(5) ['I'g](b * q) I;;:: ['I'g](b) * ['I'g](q)

A predicate CC iff e s / m 'I' 0. cD <D is provided to relate an expression e to its machine
code. CC iff is correct if the register A will hold the value of e after the execution of
the machine code, and the memory used to store the values of program variables
will remain unchanged.

CCiffe s/m '1'0. cD <D dg (<DA = e) 1\ CCq>SKIPs/m'l'QcD<D

For Booleans, we introduce a predicate

CC[!4iff b s/m 'l'QcD<D {true ~ tt,false ~ fl}

Specification, Verification and Prototyping of an Optimized Compiler 649

which is correct if the execution of the machine code will terminate at the exit
address tl when the value of b is true, or otherwise at the address fl when b is
false.

~&6~bs,fm'f'Q<I>, <I> d;£
['f'n](SKIP) I::
VARP, A, B, C ;

P, A, B, C := s, ['f'n](<I>A), ['f'n](<I>B), ['f'n](<I>C);

(P <I) * mstep ;

(P = (tl <l ['f'n](b) I> fl) 1\ A = ['f'n](<I>A) 1\

B = ['f'n](<I>B) 1\ C = ['f'n](<I>C) h ;
ENDP, A, B, C

4.1. Theorems of Process Compilation

This section presents the theorems of the compiling specification predicates ~f!J',
~~ and ~&6~.

Program Compilation

SKIP compiles to an empty sequence of instructions.

(1) ~f!J' SKIP ssm 'f' Q <I> <I>

Sequential composition may be compiled by concatenating the resulting machine
code in memory.

(2) ~f!J'(q; r)sfm 'f'Q<I><I> if
3j, <1>1 • S ~ j ~ f 1\ ~ f!J' q s j m 'f' Q <I> <1>1 1\ ~ f!J' r j f m 'f' Q <1>1 <I>

Assignment is compiled by the following four theorems. <I> depends on whether
the registers hold values that depend on the assigned variable v. This information
is recorded by case analysis below. Vars is a function that returns the set of
variables used in an expression and Ef) stands for functional overriding.

(3a) ~f!J'(v := e)sfm 'f'Q<I><I> if
3<1>1 • ~ ~ e s if - 1) m 'f' Q <I> <1>1 1\ m rr - 1] = store('f'v) 1\

v rt. Vars(<I>1B) 1\ v rt. Vars(<I>1C) 1\ <I> = <1>1 Ef) {A ~ v}

(3b) ~f!J'(v := e)sfm 'f'Q<I><I> if
3<1>1 • ~ ~ e s if - 1) m 'f' Q <I> <1>1 1\ m rr - 1] = store('f'v) 1\

v E Vars(<I>1B) 1\ v rt. Vars(<I>1C) 1\ <I> = <1>1 Ef) {A ~ v, B ~ J..}

(3c) ~f!J'(v := e)sfm'f'Q<I><I> if
3<1>1 • ~ ~ e s if - 1) m 'f' Q <I> <1>1 1\ m rr - 1] = store('f'v) 1\

v rt. Vars(<I>1B) 1\ v E Vars(<I>1C) 1\ <I> = <1>1 Ef) {A ~ v, C ~ J..}

(3d) ~f!J'(v := e)sfm 'f'Q<I><I> if
3<1>1 • ~~ e s if - 1) m 'f' Q <I> <1>1 1\ m rr - 1] = store('f'v) 1\

650 J. He and J. P. Bowen

v E Vars(<I>1B) A v E Vars(<I>1C) A
<D = <1>1 E9 {A ~ v, B ~ 1-, C ~ 1-}

For the conditional construct the value of <D depends on the greatest lower bound
of the values given by the two subprograms q and r since either may be executed.

(4)~3P(q<tb I>r)slm'l'O<l><D if
3tl, fi, <1>1, <1>2, <1>3 - S :s; tl :s; fi :s; I 1\
~8lg b s tl m 'I' 0<1> <1>1 {true ~ tl,false ~ fi} A
~3Pq tl (fl-1)m '1'0<1>1 <1>2 A
m[fl- 1] = jumpif - fi) A
~3Pr film '1'0<1>1 <1>3 A
<D = <1>2 n <1>3

For the iteration construct, the the final value of <I> when band q are compiled
is the same as the starting value since q mayor may not be executed depending
on the value of b.

(5) ~3P(b * q)slm 'PO <I> <D if
3tl - s :s; tl :s; I A
~8lgbstlm'l'O<l><D{true ~ tl,false ~/}A
~3Pq tl if -1)m 'PO <D <I> 1\
m[f - 1] = jump(s - f)

A weaker value for <D is always allowed if a stronger one is possible when
compiling a program (e.g., when compiling the body q of the iteration construct
above).

(6)~3Pqslm'l'O<l><D if
3<1>1- <D :s <1>1 A ~3Pqsfm'l'O<l><I>1

Expression Compilation

Below are a few selected theorems for the compilation of integer expressions with
an addition operator.

If an expression is already held in the A register, then no object code is necessary.

(7a) ~gessm'l'O<l><I> if
e = <l>A

If an expression is held in the B register, then it is simply necessary to move this
to the A register, using the swap instruction. The values in the registers, recorded
by <D must be adjusted accordingly.

(7b) ~ g e sf m 'I' 0 <I> <D if
e = <l>B A
m[s] = swap(A, B) A
l=s+1A
<D = <I> E9 {A ~ <l>B, B ~ <l>A}

If a variable in an expression is not already held in one of the registers, it must
be pushed onto the register stack from memory.

Specification, Verification and Prototyping of an Optimized Compiler

(8a)~t&'xsjm'¥O<l><D if
X ~ range(<1» /\
m [s] = load('¥x) /\
j=s+l/\
<D = {A ~ X, B ~ <l>A, C ~ <l>B}

651

Similarly, a constant integer value that is not in one of the registers must also be
pushed onto the register stack.

(8b) ~t&'n sjm '¥O<l><D if
n ~ range(<1» /\
m[s] = loadc(n) /\
j=s+l/\
<D = {A ~ n, B ~ <l>A, C ~ <l>B}

If two expressions to be added are already in registers A and B, only the add
instruction needs to be generated.

(9a) ~t&'(el + e2)sjm'¥O<l><D if
el + e2 ~ range(<I» /\ {et, e2} = {<I>A, <l>B} /\
m[s] = add /\
j = s+l/\
<D = <I> E9 {A ~ el + e2}

If two expressions to be added are in registers A and C, then the value in the C
register must be moved to the B register first, using the swap instruction.

(9b) ~t&'(el + e2)sjm'¥O<l><D if
el + e2 ~ range(<I» /\ {et, e2} = {<I>A, <l>C} /\
m[s] = swap(B, C) /\ m[s + 1] = add/\
j=s+2/\
<D = {A ~ el + e2, B ~ <l>C, C ~ <l>B}

If one of the expressions in an addition is available in a register, then it may be
saved in a temporary location while the other expression is evaluated.

(lOa) ~t&'(el + e2)sjm'¥({loc} l±JO)<I><D if
el + e2 ~ range(<I» /\ e2 ~ range(<I» /\ el = <l>A /\
3j, <1>1, <1>2. s <j -::;,j /\ m[s] = store(loc) /\
~t&'e2(s+1)jm'¥O<l><I>1 /\ mU] = load(loc)/\
~t&' (el + e2)U + l)j m '¥ ({loc} l±J 0) <1>2 <D /\
<1>2 = {A ~ el, B ~ <1>1 A, C ~ <1>1 B}

(1Ob) ~t&'(el + e2)sjm'¥({loc}l±JO)<I><D if
el + e2 ~ range(<I» /\ e2 ~ range(<I» /\ el = <l>B /\
3j, <1>1, <1>2, <1>3. (s +2) -::;,j -::;,j /\
m[s] = swap(A, B) /\ m[s + 1] = store(loc) /\
~t&' e2 (s + 2)j m '¥ 0 <1>1 <1>2 /\
<1>1 = <I> E9 {A ~ <l>B, B ~ <l>A} /\
m U] = load(loc) /\
~t&'(el + e2)U + l)jm'¥({loc} l±JO)<I>3<D/\
<1>3 = {A ~ el, B ~ <l>2A, C ~ <l>2B}

If none of the expressions in an addition are available in any of the registers,
then it must be compiled from scratch.

652 J. He and J. P. Bowen

(11) <6'eff(e1 + e2)sfm'PQ<1>ci> if
e1 + e2 fJ. range(<1» /\ e1 fJ. range(<1» /\ e2 fJ. range(<1» /\
3j, <1>1 • S :::; j :::; f /\
<6' eff e1 s j m 'P Q <1> <1>1 /\
<6'eff(e1 + e2)jfm 'PQ<1>l ci>

Boolean Expression Compilation

Compilation of Boolean expressions involves an extra parameter that describes
the locations to which a jump should be made in the event of a true or false
evaluation of the expression.

For true and false constants, the jump is predetermined.

(12) <6'~efftruesfm'PQ<1><1>{true ~ tl,false ~ fl} if
m[s] = jump(tl - f) /\
f = s + 1 /\ tl =1= s /\ fl =1= s

(13)<6'~efffalsesfm'PQ<1><1>{true ~ tl,false ~fl} if
m[s] = jump(fi -f)/\
f = s + 1 /\ tl =1= s /\ fl =1= s

A variable must be pushed onto the register stack and tested.

(14) <6'~eff x sf m 'P Q <1> ci> {true ~ tl,false ~ fl} if
m[s] = load(<1>x) /\ m[s + 1] = condj(fi - (s + 2)) /\
m[s + 2] = jump(tl - (s + 3)) /\
f = s + 3 /\ tl fJ. [s,f) /\ fl fJ. [s,f) /\
ci> = {A ~ x, B ~ <1>A, C ~ <1>B}

The standard Boolean connectives are handled as follows:

(15) <6'~eff (b V c) sf m 'P Q <1> ci> {true ~ tl,false ~ fl} if
3 j, <1>1, <1>2 • S :::; j :::; f /\
<6'~eff b sj m Q <1> <1>1 {true ~ tl,false ~ j} /\
~£1Jeff cj f m Q<1>l <1>2 {true ~ tl,false ~ fl} /\
<1> = <1>1 n <1>2 /\
tl fJ. [s,f) /\ fl fJ. [s,f)

(16) <6'~eff(b /\ c)sfm 'PQ<1>ci> {true ~ tl,false ~ fl} if
3j, <1>1, <1>2. S :::;j :::;f /\
<6'~eff b sj m Q <1> <1>1 {true ~ j ,false ~ fl} /\
~~eff c j f m Q <1>1 <1>2 {true ~ tl,false ~ fl} /\
<1> = <1>1 n <1>2 /\
tl fJ. [s,f) /\ fl fJ. [s,f)

(17) <6'~eff (...,b) sf m 'P Q <1> ci> {true ~ tl,false ~ fl} if
<6'£1Jeff b sf m 'P Q <1> ci> {true ~ fl,false ~ tl}

4.2. Verification of Compiling Specification

This section presents a proof of one of the theorems to demonstrate the style
of proof used. Algebraic laws are used to gradually transform the program by a

Specification, Verification and Prototyping of an Optimized Compiler 653

series of refinement steps. In general, we aim for the proofs to be less than a page
in length to make them understandable and readable by humans. Long proofs
are seldom read and are likely to contain errors, especially if done by hand.

Proof of Theorem 3a

VARP, A, B, C ; P, A, B, C := s, ['1'0] (ct>A), ['I'o](ct>B), ['I'o](ct>C);
(P <f) * mstep ;
(P =f /\ A = ['I'o]«I>A) /\ B = ['I'o](<i>B) /\ C = ['I'o](<i>C)h;
ENDP, A, B, C

;;) {laws 3(1), 4(1) and 5}
VARP, A, B, C ; P, A, B, C := s, ['1'0] (ct>A), ['I'o](ct>B), ['I'o](ct>C);
(P < if - 1)) • mstep;
(P = if -1) /\ A = ['I'o](ct>IA) /\ B = ['I'o](ct>IB) /\ C = ['I'O](ct>IC))-L;
ENDP, A, B, C ;
VARP, A, B, C ;
P, A, B, C := if - 1), ['I'o](ct>IA), ['I'o](ct>IB), ['I'O](ct>1 C);
(P <f)' mstep;
(P = f /\ A = ['I'o](<i>A) /\ B = ['I'o](<i>B) /\ C = ['I'o](<i>C)h ;
ENDP,A, B, C

;;) {assumption, def of Cj C}
['I'o](SKIP) ;
VARP, A, B, C ;
P, A, B, C := if - 1), ['I'o](e), ['I'o](ct>IB), ['I'O](ct>1 C);
(P <f) * mstep;
(P = f /\ A = ['I'o](<i>A) /\ B = ['I'o](<i>B) /\ C = ['I'o](<i>C)h ;
ENDP,A, B, C
{assumption, def of store and <i>}
['I'o](SKIP) ;
VARP, A, B, C ;
P, A, B, C, M ['I'v 1 := f, ['I'o](e), ['I'o](ct>IB), ['I'O](ct>1 C), ['I'o](e);
(P = f 1\ A = M ['I'v 1 /\ B = ['I'o](ct>IB) /\ C = ['I'O](ct>1 C)h ;
ENDP,A, B, C
{laws 3(1) and 4(1)}
['I'o](SKIP) ; M ['I'v 1 := ['1'0] (e)

;;) {lemma (2)}
['I'o](SKIP; v := e)
{law i(1)}
['I'o](v := e)

5. A Prototype Compiler

All the compiling theorems are in the form of Horn clauses. Thus it is relatively
easy to code the specification as a logic program. The practical difficulties that
arise are ensuring termination and coding of the constraints. The former may be
attacked by taking into account which parameters are used as inputs and whicb
are outputs, and reordering conjoined predicates for efficient execution with this
knowledge in mind. Constraints may also be encoded with knowledge of which
parameters will be instantiated before use. This allows negation by failure to be
used. For a fuller discussion of the issues involved, see [Bow92]. In this case, it
is assumed that the source program (q), start address (8), symbol table (\}I), free
locations (0) and initial register table (<I» are instantiated, and the finish address
if), object code (m) and final register table (<i» are to be generated.

The example encodings of theorems in this section use "standard" pure
Prolog [CIM87]. Prolog's logical basis makes the encoding a relatively mechanical

654 J. He and J. P. Bowen

process. Infix and other operators are defined to aid readability, particularly of
source programs. The approach assumes the source language is input in abstract
syntax form, and a parser may be required to preprocess the concrete syntax in
practice [BoB92]. Constraints are encoded in curly brackets { ... }. Since Prolog,
unlike most high-level languages, does not evaluate expressions in parameters, it
is sometimes necessary to recode such parameters as new variables and add extra
constraints on these variables.

Program Compilation

(1) Skip
cp(skip,S,S,M,Psi,Omega,Phi,Phi).

(2) Sequential composition
cp(Q;R,S,F,M,Psi,Omega,Phi,Phi_)

cp(Q,S,J,M,Psi,Omega,Phi,Phil),
cp(R,J,F,M,Psi,Omega,Phil,Phi_),
{S=<J=<F}.

(3a) Assignment
cp(V:=E,S,F,M,Psi,Omega,Phi,Phi_)

ce(E,S,L,M,Psi,Omega,Phi,Phil), {F=L+l},
{M@L = store(Psi@V)},
{V notin vars(Phil@b)}, {V notin vars(Phil@c)},
{Phi_ = Phil <+> [a->V]}.

(4) Conditional
cp(QR,S,F,M,Psi,Omega,Phi,Phi_)

cbe(B,S,Tl,M,Psi,Omega,Phi,Phil,[true->Tl,false->Fl]),
cp(Q,Tl,L,M,Psi,Omega,Phil,Phi2), {Fl=L+l},
{M@L = jump(F-Fl)},
cp(R,Fl,F,M,Psi,Omega,Phil,Phi3),
{Phi_ = Phi2-Phi3},
{S<Tl<Fl=<F}.

(5) Iteration
cp(B*Q,S,F,M,Psi,Omega,Phi,Phi_)

cbe(B,S,Tl,M,Psi,Omega,Phi,Phi_, [true->Tl,false->F]),
cp(Q,Tl,L,M,Psi,Omega,Phi_,Phi), {F=L+l},
{M@L = jump(S-F)},
{S<Tl<F}.

Expression Compilation

The expression compilation clauses are straightforward although numerous. For
example:

(7a)
ce(E,S,S,M,Psi,Omega,Phi,Phi)

{E=Phi@a}.

(Sa)
ce(X,S,F,M,Psi,Omega,Phi,Phi_)

{X notin range(Phi)},
{M@S = load(Psi@X)},
{F=S+1} ,
{Phi_ = [a->X,b->Phi@a,c->Phi@b]}.

Specification, Verification and Prototyping of an Optimized Compiler

(9a)
ce(El+E2,S,F,M,Psi,Omega,Phi,Phi_)

{El+E2 notin range(Phi)}, {{El,E2}={PhiQa,PhiQb}},
{MQS = add}, {F=S+l},
{Phi_ = Phi <+> [a->El+E2]}.

(lOa)
ce(El+E2,S,F,M,Psi, [Loc I Omega] ,Phi,Phi_)

{El+E2 notin range(Phi)}, {E2 notin range(Phi)}, {El=PhiQa},
{MQS = store(Loc)},
ce(E2,S+l,J,M,Psi,Omega,Phi,Phil),
{MQJ = load(Loc)},
{Phi2 = [a->El,b->PhilQa,c->PhilQb]},
ce(El+E2,J+l,F,M,Psi, [LocIOmega] ,Phi2,Phi_),
{S+l=<J<F}.

(ll)
ce(El+E2,S,F,M,Psi,Omega,Phi,Phi_)

{El+E2 notin range(Phi)},
{El not in range(Phi)}, {E2 notin range(Phi)},
ce(El,S,J,M,Psi,Omega,Phi,Phil),
ce(El+E2,J,F,M,Psi,Omega,Phil,Phi_),
{S=<J=<F}.

Boolean Expression Compilation

655

Note that it the case of forward jumps, the location of the destination address is
not necessarily known at the time of execution. This can be alleviated by relaxing
some of the constraints at the time of execution. In practice this does not matter
since the "calling" clauses ensure that the constraints are met anyway.

(12)
cbe(true,S,F,M,Psi,Omega,Phi,Phi_, [true->Tl,false->Fl])

{F=S+l}, {MQS = jump(Tl-F)},
{Tl notin rng(S,F)}, {Fl notin rng(S,F)}.

(14)
cbe(X,S,F,M,Psi,Omega,Phi,Phi_, [true->Tl,false->Fl])

{M@S = load(PsiQX)},
{S2=S+2}, {MQ(S+l) = condj(Fl-S2)},
{F=S+3}, {M@S2 = jump(Tl-F)},
{Tl notin rng(S,F)}, {Fl notin rng(S,F)},
{Phi_ = [a->X,b->PhiQa,c->Phi~b]}.

(15)
cbe(B or C,S,F,M,Psi,Omega,Phi,Phi_, [true->Tl,false->Fl])

cbe(B,S,J,M,Psi,Omega,Phi,Phil,[true->Tl,false->J]),
cbe(C,J,F,M,Psi,Omega,Phil,Phi2, [true->Tl,false->Fl]),
{Phi_ = Phil-Phi2},
{Tl notin rng(S,F)}, {Fl notin rng(S,F)}.

6. Conclusion

An example of an optimizing compiling specification and matching prototype
compiler have been presented together with a technique for proving the compiling
specification correct. This has extended previous work by recording the contents

656 J. He and J. P. Bowen

of registers known at compile-time, and using this information to optimize the
code generated. It would be possible to extend this technique to cover the
contents of program variables as well if desired by supplementing the information
recorded in <l> and <1>. Additionally, to reduce the number of parameters to the
compiling relation, it may be beneficial to merge s with <l> and f with <I> since the
former represents information concerned with the precondition and the latter is
concerned with the postcondition when the programming constructs are executed.
For example, we could make s = ['Po](<l>P) andf = ['Po] (<I>P).

One issue is to ensure that the theorems are complete in the sense that all
valid constructs can be compiled to (at least one) object code. In the case of
multiple theorems for different optimizations of the same construct, this can be
ensured by checking that the constraining predicates in all the relevant theorems
for a particular construct reduce to true when combined (using disjunction). If
this is not the case then it is possible for the compiler not to produce object code
in certain (valid) cases that have not been covered.

More than one theorem may apply in the compilation of a particular construct
and several (possibly an infinite number of) object code sequences may be valid.
In this case, the prototype compiler will (attempt to) return all the possibilities.
A real compiler will of course select one of these sequences. This code selection
process is potentially exponential in complexity and an important aspect of an
actual compiler is choosing an optimized code sequence efficiently [Gie92]. In the
example Prolog prototype compiler presented here, code may be "selected" by
ordering the clauses appropriately with the more efficient or preferable clauses
placed first.

In standard Prolog, functors (in particular, lists) must be used to encode
sets, etc., needed by the constraints in the compiling theorems. The extra clauses
required to complete the program and implement the constraints (not included
in the paper) consist of about two pages of program code. Thus, it would be
tractable to formally prove the prototype compiler implements the specification
for a given set of inputs, assuming a suitable semantics of (a subset of) Prolog
[LI087], if this is of concern (e.g., see [BSW90]). In addition, optimization using
transformation of logic programs [CIL92] would be possible. However this has
not (yet) been attempted by the authors, since the prototype has simply been
used as a means of quickly animating the specification mechanically.

Proofs of termination and non-violation of the omitted occurs-check in Prolog
[KPS93] and the compilation of the Prolog itself [Rus92] are possible. Obviously
it would be even more interesting to prove a real (optimizing) compiler correct,
but this is still beyond the capability of current proof technology. Attempts have
been made to prove a simple compiler correct, but even this is highly intractable
[BBF92].

Constraint logic programming [Coh90] is now well established and several
implementations are available. Such systems could allow an even more direct
encoding from the theorems, avoiding the need for some of the explicit encodings
of constraints needed in standard Prolog. This could also allow the prototype
to be used in more modes, and perhaps even as a decompiler [BoB93, BrB92].
A simple decompiler in Prolog, based on a specification similar to the style
presented, here has already been produced [Bow93a].

Compilation into other paradigms, such as via a normal form [HHS93] and
directly into a net list of hardware components [HPB93], are likely to provide new
and interesting optimization challenges for the future.

Specification, Verification and Prototyping of an Optimized Compiler 657

Acknowledgements

Prof. Tony Hoare originated the style of compiling specification and verifica
tion presented here. Tony Hoare, Burghard von Karger and Augusto Sampaio
provided helpful comments on an earlier draft.

References

[ASU86]

[Bjo92]

[Bow92]

[Bow93a]

[Bow93b]

[Bow94]

[BoB92]

[BoB93]

[BF093]

[BHP90]

[BoS93]

[BrB92]

[BSW90]

[Bun82]

[BBF92]

[CIL92]

[CIM87]

[Coh90]

[Cur93]

[Gie92]
[GiG92]

Aho, A. v., Sethi, R. and Ullman, J. D.: Compilers: Principles, Techniques and Tools.
Addison-Wesley, Series in Computer Science, 1986.
Bjorner, D.: Trusted Computing Systems: The ProCoS Experience. Proc. ICSE '14,
North-Holland, Melbourne, Australia, 11-14 May 1992.
Bowen, J. P.: From Programs to Object Code using Logic and Logic Programming. In
[GiG92], pp. 173-192.
Bowen, J. P.: From Programs to Object Code and back again using Logic Program
ming: Compilation and Decompilation. Journal of Software Maintenance: Research and
Practice, 5, 205-234 (December 1993).
Bowen, J. P. et al.: A ProCoS II Project Description: ESPRIT Basic Research Project
7071. Bulletin of the European Association for Theoretical Computer Science (EATCS),
50, 128-137 (June 1993).
Bowen, J. P. (ed.): Towards Verified Systems. Elsevier, Real-Time Safety-Critical Systems
series, 1994.
Bowen, J. P. and Breuer, P. T.: Occam's Razor: The Cutting Edge of Parser Technology.
Proc. TO ULO USE '92: Fifth International Conference on Software Engineering and its
Applications, Toulouse, France, 7-11 December 1992.
Bowen, J. P. and Breuer, P. T.: Decompilation. In van Zuylen, H. (ed.), The REDO
Compendium: Reverse Engineering for Software Maintenance, chapter 10, John Wiley &
Sons, pp. 131-138, 1993.
Bowen, J. P., Friinzle, M., Olderog, E.-R. and Ravn, A.P.: Developing Correct Systems.
Proc. 5th Euromicro Workshop on Real-Time Systems, IEEE Computer Society Press, pp.
176-187, 1993.
Bowen, J. P., He Jifeng and Pandya, P. K.: An Approach to Verifiable Compiling
Specification and Proto typing. In Deransart, P. and Maluszynski, J. (eds.), Programming
Language Implementation and Logic Programming, Springer-Verlag, LNCS 456, pp. 45-
59, 1990.
Bowen, J. P. and Stavridou, V.: Safety-Critical Systems, Formal Methods and Standards.
IEE/BCS Software Engineering Journal, 8(4), 189-209 (July 1993).
Breuer, P. T. and Bowen, J. P.: Decompilation is the Efficient Enumeration of Types. In
Billaud, M. et al. (eds.), Journees de Travail WSA'92 Analyse Statique, BIGRE 81412,
IRISA-Campus de Beaulieu, F-35042 Rennes cedex, France, pp. 255-273, 1992.
Bundy, A., Smaill, A. and Wiggins G.: The Synthesis of Logic Programs from Inductive
Proofs. In Lloyd, J. W. (ed.) Computational Logic. Springer-Verlag, Basic research series,
pp. 135-149, 1990.
Bunimova, E. 0.: A Method of Language Mappings Describing. Doctoral dissertation,
Moscow University, Russia, 1982. (In Russian.)
Buth, B., Buth, K.-H .• Friinzle, M., von Karger, B., Lakhneche, Y, Langmaack, H.
and Miiller-Olm, M.: Provably Correct Compiler Implementation. In Karstens, U. and
Pfahler, P. (eds.), Compiler Construction, Springer-Verlag, LNCS 641, pp. 141-155, 1992.
Clement, T. P. and Lau, K.-K.: Logic Program Synthesis and Transformation. Springer
Verlag, Workshops in Computing, 1992.
Clocksin, W. F., and Mellish, C. S.: Programming in Prolog. 3rd edition, Springer-Verlag,
1987.
Cohen, J.: Constraint Logic Programming Languages. Communications of the ACM,
33(7), 52-68 (1990).
Curzon, P.: Deriving Correctness Properties of Compiled Code. Formal Methods in
System Design, 3, 83-115 (1993).
Giegerich, R.: Considerate Code Selection. In [GiG92], pp. 51-65.
Giegerich, R. and Graham, S. L. (eds.): Code Generation - Concepts, Tools, Techniques.
Springer-Verlag, Workshops in Computing, 1992.

658

[HeB92]

[HPB93]

[Hoa91]

[HoH92]

[HHB90]

[HHS93]

[KPS93]

[Lev92]

[Llo87]
[Rus92]

[Ste93]
[SWC91]

J. He and J. P. Bowen

He Jifeng and Bowen, J. P.: Time Interval Semantics and Implementation of a Real-Time
Programming Language. Proc. Fourth Euromicro Workshop on Real-Time Systems, IEEE
Computer Society Press, pp. 11{}-115, 1992.
He Jifeng, Page, I. and Bowen, J. P.: Towards a provably correct hardware implemen
tation of Occam. In Milne, G. J. and Pierre, L. (eds.) Correct Hardware Design and
Verification Methods, Springer-Verlag, LNCS 683, pp. 214-225, 1993.
Hoare, C. A. R.: Refinement Algebra Proves Correctness of Compiling Specifications. In
Morgan, C. C. and Woodcock, J. C. P. (eds.), 3rd Refinement Workshop, Springer-Verlag,
Workshops in Computing, pp. 33--48, 1991.
Hoare, C. A. R. and He Jifeng: Refinement Algebra Proves Correctness of a Compiler.
In Broy, M. (ed.), Programming and Mathematical Method, Springer-Verlag, NATO ASI
Series F: Computer and Systems Sciences, vol. 88, pp. 245-269, 1992.
Hoare, C. A. R., He Jifeng, Bowen, J. P. and Pandya, P. K.: An Algebraic Approach to
Verifiable Compiling Specification and Prototyping of the ProCoS Level 0 Programming
Language. ESPRIT '90 Conference Proceedings, Kluwer Academic Publishers, pp. 804-
818, 1990.
Hoare C. A. R., He Jifeng and Sampaio, A.: Normal Form Approach to Compiler
Design. Acta Informatica, 30, 701-739 (1993).
Krishna Rao, M. R. K., Pandya, P. K. and Shyamasundar, R. K.: Verification Tools in
the Development of Provably Correct Compilers. In Woodcock, J. C. P. and Larsen, P.
G. (eds.), FME '93: Industrial-Stength Formal Methods, Springer-Verlag, LNCS 670, pp.
442--461, 1993.
Levin, V.: Algebraically Provable Specification of Optimized Compilations. In Bj0rner,
D., Broy, M. and Pottosin, I.V. (eds.), Formal Methods in Programming and Their Appli
cations, Springer-Verlag, LNCS 735, 1993.
Lloyd, J. w.: Foundations of Logic Programming. 2nd edition, Springer-Verlag, 1987.
Russinolf, D. M.: A Verified Prolog Compiler for the Warren Abstract Machine. Journal
of Logic Programming, 13, 367--412 (1992).
Stepney, S.: High Integrity Compilation: A Case Study. Prentice Hall, 1993.
Stepney, S., Whitley, D., Cooper, D. and Grant, c.: A Demonstrably Correct Compiler.
Formal Aspects of Computing, 3(1), 58-101 (January-March 1991).

Received November 1992

Accepted in revised form November 1993 by c.B. Jones

