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Abstract 

The higher fidelity modeling of minimum-time transfers using continuous constant
acceleration low-thrust is depicted by including the higher zonal harmonics and for
the Earth gravity model. The inclusion of these higher order harmonics is of great bene-
fit in carrying out accurate transfer simulations, especially for long duration flights
dwelling in low altitudes where the effects of these zonals are greatest. The analysis pre-
sented here can also be coded in the flight guidance computer of spacecraft for au-
tonomous operations and on ground computers for solution uploads and resetting during
low-thrust transfers. Equinoctial elements are used to avoid singularities when orbits are
circular or equatorial and the applicability of the theory is of a general nature regardless
of the size, shape and spatial orientation of the orbits provided they are not of the para-
bolic or hyperbolic types. To this end, two sets of dynamic and adjoint differential equa-
tions in terms of nonsingular orbital elements are derived by further considering a more
accurate perturbation model in the form of the higher order Earth zonal harmonics and

. Previous analyses involved only the first-order term in order to model optimal low-
thrust transfers between any two given circular or elliptic orbits. The first formulation
uses the eccentric longitude as the sixth element of an equinoctial set of elements while
describing the thrust as well as the zonal accelerations in the so called direct equinoctial
frame. The second formulation makes use of the true longitude as the sixth element in-
stead while resolving the thrust and the zonal accelerations in the rotating Euler-Hill
frame simplifying considerably the algebraic derivations leading to the generation of the
nonsingular differential equations that are also free of any singularity for the important
zero eccentricity and zero inclination cases often encountered in Earth orbit transfer
problems. The derivations of both nonsingular formulations are mutually validated by
generating an optimal transfer example that achieves the same target conditions regard-
less of which formulation is used. 
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Introduction 

This paper is a direct extension of several previous contributions made by this
author in the field of optimal orbit transfer using unaveraged precision-integrated
dynamics. The theory of orbital dynamics and optimal transfer has greatly bene-
fited from the pioneering contributions of Broucke, Cefola, and Edelbaum [1]–[3]
who introduced the use of nonsingular equinoctial orbital elements that are immune
to the nasty singularities inherent in circular and/or equatorial orbits. These ele-
ments were also adopted by Betts [4] and Walker [5] with a slight modification val-
idating their applicability for parabolic and hyperbolic orbits as well. Battin [6] in
his classical masterpiece discusses and defines equinoctial-based differential equa-
tions to integrate spacecraft trajectories. This author provided a series of contri-
butions [7]–[13] directly applicable for optimal low-thrust orbit transfer work
using a variety of equinoctial elements sets while also considering the perturbative
effects of the oblateness of the Earth such as . More recently, Feistel [14] made
use of a form for the various zonal accelerations resolved in the inertial system and
given in terms of the radius vector components along the inertial directions [15]
and derived the partial derivatives of these acceleration vectors with respect to the
radius vector itself, which in turn allowed him to generate the partial derivatives of
these accelerations with respect to the equinoctial elements in order to finally pro-
duce the adjoint differential equations needed to solve the two point boundary value
problem orbit transfer. Besides , Feistel also considered the , , and terms
while obtaining a quasi-perfect numerical agreement for with this author’s re-
sults, the latter based on the Gaussian formulation. 

In this paper, two fundamental sets of equinoctial elements have been used to vali-
date the mathematical derivations that lead to the generation of the corresponding
nonsingular state and adjoint differential equations for direct use in operational guid-
ance applications. The elements used are 

and either , the eccentric
longitude, or the true longitude as the sixth element of the six-
element sets.  Furthermore, the direct equinoctial frame which has been
historically used first such as in [1]–[3] is adopted for the a, h, k, p, q, F formulation
to resolve the various accelerations. Because the right-hand sides of the differential
equations can also be cast in terms of F, there is no need to solve Kepler’s tran-
scendental equation at each integration step to extract F itself because it is being
directly integrated. The unit vectors are such that and are in the current
orbit plane with rotated clockwise through the angle from the direction of the
ascending node, is 90 degrees ahead of in the direction of the motion, while is
along the instantaneous normal to the orbit plane. 

The second more compact formulation adopts the set a, h, k, p, q, L and
resolves the various accelerations along the rotating Euler-Hill orbital frame
with along the radius vector in the instantaneous orbit plane and 90 degrees
ahead of along the direction of motion, and with along the out-of-plane
direction. Contrary to the F formulation, there is no need to rotate the
accelerations due to and from the frame to the frame, thus
simplifying to a large extent the algebraic derivations required to produce the
adjoint differential equations used in the steering of the thrust vector, when the
L formulation is used instead. The subsequent sections deal with the development
of the acceleration components due to the zonals both in terms of F and L, before
deriving the Euler-Lagrange equations for the various multipliers. A numerical
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comparison is shown at the end to show that both formulations lead to the exact
same transfers. 

A short duration transfer example that was used before [7]–[13] is adopted here for
illustration purposes and in order to avoid very long integrations. The results presented
at the end of this paper show only small differences between the solutions using 
only and those more elaborate ones using additionally higher harmonics. However
these differences become considerable for long duration transfers that spend a long
time at lower altitudes before spiraling out to the higher orbits where the perturba-
tions’ effects decrease very quickly. Additional discussions are provided in the Results
section to make the case for the adoption of the present higher-fidelity modeling. 

Zonal Harmonics Perturbation Acceleration Components 
in Euler-Hill Frame 

Assuming that the Earth is symmetrical about its polar axis, its potential U can
then be written in terms of the zonal harmonics as 

(1)

where r is the magnitude of the spacecraft position vector with respect to the cen-
ter of the Earth, R, the radius of the Earth at the equator, , the spacecraft declina-
tion with respect to the equator, , the Legendre polynomials of order n in 
and is the Earth gravity constant. The disturbing potential is then given by 

(2)

Neglecting the and higher zonals, F takes the form 

(3)

Replacing , by , the perturbing acceleration is then given by the gradient of the
disturbing potential 

(4)

Because and , where and are unit vectors along r and z, can
then be expressed in the Euler-Hill frame as  
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The transformation from the Euler-Hill frame to the inertial equatorial frame
is obtained through the three rotations involving the Eulerian angles , i

and where stands for the true anomaly 

(6)

Because and where , the accelera-
tion can then be cast into the final form  

(7)

Using the trigonometric power relations to express in terms of the multiple-
angle expressions involving only first powers, and rearranging terms, the 
components of due to can be written as 
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These accelerations components can also be obtained directly from their inertial
representations as shown in the Appendix. The above derivations are thus validated. 

The Treatment of the , Perturbations within the Eccentric
Longitude Formulation 

Following the analysis presented in [12] and [13], the dynamic equations for the
set a, h, k, p, q, F are readily augmented to include the higher zonals’ contributions as 
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and finally 

eq. (176) of [7]

The journal version [13] of the original work [12] is however free of these typo-
graphic errors. 

It has been shown in [8] that the classical elements i and are related to p, q, L
by the expressions 
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They read as 
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The partial derivatives have the same structure as in [8], namely with
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Y1�rX1�r

 �� fw�J3��F � �� fh�J3��F

 �� fw�J3��q � �� fh�J3��q

 �� fw�J3��p � �� fh�J3��p

 �� fw�J3��k � �� fh�J3��k

 �� fw�J3��h � �� fh�J3��h

 �� fw�J3��a � �� fh�J3��a

fw

�� fg�J3

�F
�

��Y1�r�
�F

� fr�J3 �
Y1

r
 
�� fr�J3

�F
�

��X1�r�
�F

� f��J3 �
X1

r
 
�� f��J3

�F

 
�� fg�J3

�q
�

Y1

r
 
�� fr�J3

�q
�

X1

r
 
�� f��J3

�q
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(62)

(63)

(64)

(65)

For , we have 

(66)

� 60�J3R3r�8�q��X1

�h�F

� p��Y1

�h�F
��qY1 � pX1�2 �1 � p2 � q2��3

�� f��J3

�h
� 480�J3R3r�9� 

�r

�h�F

�qX1 � pY1� �qY1 � pX1�2 �1 � p2 � q2��3

� 3�J3R3r�6�q
�X1

�a
� p

�Y1

�a��1 � p2 � q2��1

� 18�J3R3r�7 
�r

�a
�qX1 � pY1� �1 � p2 � q2��1

� 120�J3R3r�8�qX1 � pY1� �qY1 � pX1��q
�Y1

�a
� p

�X1

�a��1 � p2 � q2��3

� 60�J3R3r�8�q
�X1

�a
� p

�Y1

�a��qY1 � pX1�2 �1 � p2 � q2��3

�� f��J3

�a
� 480�J3R3r�9 

�r

�a
�qX1 � pY1� �qY1 � pX1�2 �1 � p2 � q2��3

� f��J3

� 240�J3R3r�8�qY1 � pX1�2�q
�Y1

�F
� p

�X1

�F��1 � p2 � q2��3

� 640�J3R3r�9 �r

�F
�qY1 � pX1�3�1 � p2 � q2��3

� 12�J3R3r�6�q
�Y1

�F
� p

�X1

�F��1 � p2 � q2��1

�� fr�J3

�F
� 72�J3R3r�7 

�r

�F
�qY1 � pX1� �1 � p2 � q2��1

� 240�J3R3r�8�qY1 � pX1�3�1 � p2 � q2��42q

� 240�J3R3r�8�qY1 � pX1�2Y1�1 � p2 � q2��3

� 12�J3R3r�6�qY1 � pX1� �1 � p2 � q2��22q

�� fr�J3

�q
� �12�J3R3r�6 Y1�1 � p2 � q2��1

� 240�J3R3r�8�qY1 � pX1�3�1 � p2 � q2��42p

� 240�J3R3r�8�qY1 � pX1�2X1�1 � p2 � q2��3

� 12�J3R3r�6�qY1 � pX1� �1 � p2 � q2��22p

�� fr�J3

�p
� 12�J3R3r�6X1�1 � p2 � q2��1

 � 240�J3R3r�8�qY1 � pX1�2�q��Y1

�k�F

� p��X1

�k �F
��1 � p2 � q2��3

 � 640�J3R3r�9��r

�k�F

�qY1 � pX1�3�1 � p2 � q2��3
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(67)

(68)

(69)

(70)

(71)� 3�J3R3r�6�q��X1

�F� � p��Y1

�F���1 � p2 � q2��1

� �1 � p2 � q2��3 � 18�J3R3r�7 �r

�F
�qX1 � pY1� �1 � p2 � q2��1

� 120�J3R3r�8�qX1 � pY1� �qY1 � pX1��q��Y1

�F� � p��X1

�F��
� 60�J3R3r�8�q��X1

�F� � p��Y1

�F���qY1 � pX1�2 �1 � p2 � q2��3

�� f��J3

�F
� 480�J3R3r�9 

�r

�F
�qX1 � pY1� �qY1 � pX1�2 �1 � p2 � q2��3

� 3�J3R3r�6�qX1 � pY1� �1 � p2 � q2��22q

� 3�J3R3r�6X1�1 � p2 � q2��1

� 180�J3R3r�8�qX1 � pY1� �qY1 � pX1�2 �1 � p2 � q2��4 2q

� 120�J3R3r�8�qX1 � pY1� �qY1 � pX1�Y1�1 � p2 � q2��3

�� f��J3

�q
� �60�J3R3r�8X1�qY1 � pX1�2�1 � p2 � q2��3

� 3�J3R3r�6�qX1 � pY1� �1 � p2 � q2��22p

� 3�J3R3r�6Y1�1 � p2 � q2��1

� 180�J3R3r�8�qX1 � pY1� �qY1 � pX1�2 �1 � p2 � q2��4 2p

� 120�J3R3r�8�qX1 � pY1� �qY1 � pX1�X1�1 � p2 � q2��3

�� f��J3

�p
� �60�J3R3r�8Y1�qY1 � pX1�2�1 � p2 � q2��3

� 3�J3R3r�6�q��X1

�k �F

� p��Y1

�k�F
��1 � p2 � q2��1

� �1 � p2 � q2��3 � 18�J3R3r�7��r

�k�F

�qX1 � pY1� �1 � p2 � q2��1

� 120�J3R3r�8�qX1 � pY1� �qY1 � pX1��q��Y1

�k�F

� p��X1

�k �F
�

� 60�J3R3r�8�q��X1

�k �F

� p��Y1

�k�F
��qY1 � pX1�2 �1 � p2 � q2��3

�� f��J3

�k
� 480�J3R3r�9��r

�k�F

�qX1 � pY1� �qY1 � pX1�2 �1 � p2 � q2��3

� 3�J3R3r�6�q��X1

�h�F

� p��Y1

�h�F
��1 � p2 � q2��1

� �1 � p2 � q2��3 � 18�J3R3r�7��r

�h�F

�qX1 � pY1� �1 � p2 � q2��1

� 120�J3R3r�8�qX1 � pY1� �qY1 � pX1��q��Y1

�h�F

� p��X1

�h�F
�
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For , we have the partials 

(72)

(73)

(74)

(75)

(76)

(77)�
15

2
�J3R3r�6 

�r

�F
�1 � p2 � q2� �1 � p2 � q2��1

� �q��Y1

�F� � p��X1

�F��
� 60�J3R3r�7�1 � p2 � q2� �1 � p2 � q2��3�qY1 � pX1�

�� fh�J3

�F
� 210�J3R3r�8 

�r

�F
�1 � p2 � q2� �1 � p2 � q2��3�qY1 � pX1�2

� 3�J3R3r�5�1 � p2 � q2� �1 � p2 � q2��2q

� 3�J3R3r�5q�1 � p2 � q2��1

� 60�J3R3r�7�1 � p2 � q2� �1 � p2 � q2��3�qY1 � pX1�Y1

� 180�J3R3r�7�1 � p2 � q2� �1 � p2 � q2��4q�qY1 � pX1�2

�� fh�J3

�q
� 60�J3R3r�7q�1 � p2 � q2��3�qY1 � pX1�2

� 3�J3R3r�5�1 � p2 � q2� �1 � p2 � q2��2p

� 3�J3R3r�5p�1 � p2 � q2��1

� 60�J3R3r�7�1 � p2 � q2� �1 � p2 � q2��3�qY1 � pX1�X1

� 180�J3R3r�7�1 � p2 � q2� �1 � p2 � q2��4 p�qY1 � pX1�2

�� fh�J3

�p
� 60�J3R3r�7p�1 � p2 � q2��3�qY1 � pX1�2

� �1 � p2 � q2� �1 � p2 � q2��1

� �q��Y1

�k�F

� p��X1

�k �F
� �

15

2
�J3R3r�6��r

�k�F

� 60�J3R3r�7�1 � p2 � q2� �1 � p2 � q2��3�qY1 � pX1�

 
�� fh�J3

�k
� 210�J3R3r�8 ��r

�k�F

�1 � p2 � q2� �1 � p2 � q2��3�qY1 � pX1�2

� �1 � p2 � q2� �1 � p2 � q2��1

� �q��Y1

�h�F

� p��X1

�h�F
� �

15

2
�J3R3r�6��r

�h�F

� 60�J3R3r�7�1 � p2 � q2� �1 � p2 � q2��3�qY1 � pX1�

 
�� fh�J3

�h
� 210�J3R3r�8 ��r

�h�F

�1 � p2 � q2� �1 � p2 � q2��3�qY1 � pX1�2

� �q
�Y1

�a
� p

�X1

�a� �
15

2
 �J3R3r�6 

�r

�a
�1 � p2 � q2� �1 � p2 � q2��1

� 60�J3R3r�7�1 � p2 � q2� �1 � p2 � q2��3�qY1 � pX1�

 
�� fh�J3

�a
� 210�J3R3r�8 

�r

�a
�1 � p2 � q2� �1 � p2 � q2��3�qY1 � pX1�2

� fh�J3
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The accelerations given in equations (14)–(16) in terms of the angles i and 
are converted to a form involving the equinoctial elements by using the
equivalencies 

(78) 

(79) 

(80) 

(81) 

(82) 

(83) 

Therefore, the acceleration components can be written as 

(84)

(85)

(86)

And in terms of the fast variable F, the acceleration components take the form 

(87)

(88)

(89)

The partial derivatives with are identical
to equations (43)–(59) except that the accelerations are replaced by the coun-
terparts shown in equations (87)–(89) above. These last three equations are used to
generate the partials of and with respect to a, h, k, p, q and F. For

the six partial derivatives can be written as 

� 3500�J4R4r�11 
�r

�a
�qY1 � pX1�4 �1 � p2 � q2��4

� 150�J4R4r�8�qY1 � pX1��q
�Y1

�a
� p

�X1

�a��1 � p2 � q2��2

�� fr�J4

�a
� 600�J4R4r�9 

�r

�a
�qY1 � pX1�2 �1 � p2 � q2��2

� fr�J4,
� fh�J4� f��J4,� fr�J4,

J4J3

fJ4 � � ff�J4 f̂ � � fg�J4 ĝ � � fh�J4ĥ�fJ4��z

 � 15�J4R4r�7�qY1 � pX1� �1 � p2 � q2� �1 � p2 � q2��2

 � fh�J4 � �140�J4R4r�9�qY1 � pX1�3�1 � p2 � q2� �1 � p2 � q2��4

 � 30�J4R4r�8�qY1 � pX1� �qX1 � pY1� �1 � p2 � q2��2

 � f��J4 � �280�J4R4r�10�qY1 � pX1�3�qX1 � pY1� �1 � p2 � q2��4

 � 350�J4R4r�10�qY1 � pX1�4�1 � p2 � q2��4 �
15

8
 �J4R4r�6

 � fr�J4 � �75�J4R4r�8�qY1 � pX1�2�1 � p2 � q2��2

J4

 � 15�J4R4r�6�qsL � pcL� �1 � p2 � q2� �1 � p2 � q2��2

 � fh�J4 � �140�J4R4r�6�qsL � pcL�3�1 � p2 � q2� �1 � p2 � q2��4

 � 30�J4R4r�6�qsL � pcL� �qcL � psL� �1 � p2 � q2��2

 � f��J4 � �280�J4R4r�6�qsL � pcL�3�qcL � psL� �1 � p2 � q2��4

 � 350�J4R4r�6�qsL � pcL�4�1 � p2 � q2��4 �
15

8
 �J4R4r�6

 � fr�J4 � �75�J4R4r�6�qsL � pcL�2�1 � p2 � q2��2

J4

 si
4�3 � 4c2� � c4�� � 128�qsL � pcL�4��1 � p2 � q2�4

 si
3ci�3s� � s3�� � 32�qsL � pcL�3�1 � p2 � q2���1 � p2 � q2�4

 si
4c��3s� � s3�� � 64�qsL � pcL�3�qcL � psL���1 � p2 � q2�4

 sicis� � 2�1 � p2 � q2� �qsL � pcL���1 � p2 � q2�2

 si
2s�c� � 4�qsL � pcL� �qcL � psL���1 � p2 � q2�2

 si
2�1 � c2�� � 8�qsL � pcL�2��1 � p2 � q2�2

�J4
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(90)

(91)

(92)

(93)

(94)

� 150�J4R4r�8�qY1 � pX1��q
�Y1

�F
� p

�X1

�F��1 � p2 � q2��2

�� fr�J4

�F
� 600�J4R4r�9 

�r

�F
�qY1 � pX1�2 �1 � p2 � q2��2

 � 2800�J4R4r�10�qY1 � pX1�4�1 � p2 � q2��5q

 � 1400�J4R4r�10�qY1 � pX1�3Y1�1 � p2 � q2��4

 � 300�J4R4r�8�qY1 � pX1�2 �1 � p2 � q2��3q

 
�� fr�J4

�q
� �150�J4R4r�8 �qY1 � pX1�Y1�1 � p2 � q2��2

 � 2800�J4R4r�10�qY1 � pX1�4�1 � p2 � q2��5p

 � 1400�J4R4r�10�qY1 � pX1�3X1�1 � p2 � q2��4

 � 300�J4R4r�8�qY1 � pX1�2�1 � p2 � q2��3p

 
�� fr�J4

�p
� 150�J4R4r�8 �qY1 � pX1�X1�1 � p2 � q2��2

�
45

4
 �J4R4r�7 ��r

�k�F

� 1400�J4R4r�10�qY1 � pX1�3�q��Y1

�k�F

� p��X1

�k �F
��1 � p2 � q2��4

� 3500�J4R4r�11 ��r

�k�F

�qY1 � pX1�4 �1 � p2 � q2��4

� 150�J4R4r�8�qY1 � pX1��q��Y1

�k�F

� p��X1

�k �F
��1 � p2 � q2��2

�� fr�J4

�k
� 600�J4R4r�9��r

�k�F

�qY1 � pX1�2 �1 � p2 � q2��2

�
45

4
 �J4R4r�7 ��r

�h�F

� 1400�J4R4r�10�qY1 � pX1�3�q��Y1

�h�F

� p��X1

�h�F
��1 � p2 � q2��4

� 3500�J4R4r�11 ��r

�h�F

�qY1 � pX1�4 �1 � p2 � q2��4

� 150�J4R4r�8�qY1 � pX1��q��Y1

�h�F

� p��X1

�h�F
��1 � p2 � q2��2

�� fr�J4

�h
� 600�J4R4r�9��r

�h�F

�qY1 � pX1�2 �1 � p2 � q2��2

�
45

4
 �J4R4r�7 

�r

�a

� 1400�J4R4r�10�qY1 � pX1�3�q
�Y1

�a
� p

�X1

�a��1 � p2 � q2��4

Inclusion of Higher Order Harmonics 53



(95)

For , in a similar way, the partial derivatives are obtained as

(96)

(97)

 � 840�J4R4r�10�qY1 � pX1�2�q��Y1

�k �F

� p��X1

�k �F
�

 
�� f��J4

�k
� 2800�J4R4r�11��r

�k�F

�qY1 � pX1�3 �qX1 � pY1� �1 � p2 � q2��4

 � 30�J4R4r�8 �qY1 � pX1��q��X1

�h�F

� p��Y1

�h�F
��1 � p2 � q2��2

 � 30�J4R4r�8�q��Y1

�h�F

� p��X1

�h�F
��qX1 � pY1� �1 � p2 � q2��2

 � 240�J4R4r�9��r

�h�F

�qY1 � pX1� �qX1 � pY1� �1 � p2 � q2��2

 � 280�J4R4r�10�qY1 � pX1�3�q��X1

�h�F

� p��Y1

�h�F
��1 � p2 � q2��4

 � �qX1 � pY1� �1 � p2 � q2��4

 � 840�J4R4r�10�qY1 � pX1�2�q��Y1

�h �F

� p��X1

�h �F
�

 
�� f��J4

�h
� 2800�J4R4r�11��r

�h�F

�qY1 � pX1�3 �qX1 � pY1� �1 � p2 � q2��4

 � 30�J4R4r�8 �qY1 � pX1��q
�X1

�a
� p

�Y1

�a��1 � p2 � q2��2

 � 30�J4R4r�8�q
�Y1

�a
� p

�X1

�a��qX1 � pY1� �1 � p2 � q2��2

 � 240�J4R4r�9 
�r

�a
�qY1 � pX1� �qX1 � pY1� �1 � p2 � q2��2

 � 280�J4R4r�10�qY1 � pX1�3�q
�X1

�a
� p

�Y1

�a��1 � p2 � q2��4

 � �qX1 � pY1� �1 � p2 � q2��4

 � 840�J4R4r�10�qY1 � pX1�2�q
�Y1

�a
� p

�X1

�a �
 
�� f��J4

�a
� 2800�J4R4r�11 

�r

�a
�qY1 � pX1�3 �qX1 � pY1� �1 � p2 � q 2��4

� f��J4

�
45

4
 �J4R4r�7 

�r

�F

� 1400�J4R4r�10�qY1 � pX1�3�q
�Y1

�F
� p

�X1

�F��1 � p2 � q2��4

� 3500�J4R4r�11 
�r

�F
�qY1 � pX1�4 �1 � p2 � q2��4
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(98)

(99)

(100)

(101)

 � 30�J4R4r�8 �qY1 � pX1��q
�X1

�F
� p

�Y1

�F��1 � p2 � q2��2

 � 30�J4R4r�8�q
�Y1

�F
� p

�X1

�F��qX1 � pY1� �1 � p2 � q2��2

 � 240�J4R4r�9 �r

�F
�qY1 � pX1� �qX1 � pY1� �1 � p2 � q2��2

 � 280�J4R4r�10�qY1 � pX1�3�q
�X1

�F
� p

�Y1

�F��1 � p2 � q2��4

 � �qX1 � pY1� �1 � p2 � q2��4

 � 840�J4R4r�10�qY1 � pX1�2�q
�Y1

�F
� p

�X1

�F�
 
�� f��J4

�F
� 2800�J4R4r�11 �r

�F
�qY1 � pX1�3 �qX1 � pY1� �1 � p2 � q2��4

 � 120�J4R4r�8�qY1 � pX1� �qX1 � pY1� �1 � p2 � q2��3q

 � 30�J4R4r�8�qY1 � pX1�X1�1 � p2 � q2��2

 � 30�J4R4r�8Y1�qX1 � pY1� �1 � p2 � q2��2

 � 2240�J4R4r�10�qY1 � pX1�3�qX1 � pY1� �1 � p2 � q2��5q

 � 280�J4R4r�10�qY1 � pX1�3X1�1 � p2 � q2��4

 
�� f��J4

�q
� �840�J4R4r�10�qY1 � pX1�2Y1�qX1 � pY1� �1 � p2 � q2��4

 � 120�J4R4r�8�qY1 � pX1� �qX1 � pY1� �1 � p2 � q2��3p

 � 30�J4R4r�8�qY1 � pX1�Y1�1 � p2 � q2��2

 � 30�J4R4r�8X1�qX1 � pY1� �1 � p2 � q2��2

 � 2240�J4R4r�10�qY1 � pX1�3�qX1 � pY1� �1 � p2 � q2��5p

 � 280�J4R4r�10�qY1 � pX1�3Y1�1 � p2 � q2��4

 
�� f��J4

�p
� 840�J4R4r�10�qY1 � pX1�2X1�qX1 � pY1� �1 � p2 � q2��4

 � 30�J4R4r�8 �qY1 � pX1��q��X1

�k �F

� p��Y1

�k�F
��1 � p2 � q2��2

 � 30�J4R4r�8�q��Y1

�k�F

� p��X1

�k �F
��qX1 � pY1� �1 � p2 � q2��2

 � 240�J4R4r�9��r

�k�F

�qY1 � pX1� �qX1 � pY1� �1 � p2 � q2��2

 � 280�J4R4r�10�qY1 � pX1�3�q��X1

�k �F

� p��Y1

�k�F
��1 � p2 � q2��4

 � �qX1 � pY1� �1 � p2 � q2��4
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And finally for , the relevant partials can be cast in the form 

(102)

(103)

(104)

(105) � 60�J4R4r�7�qY1 � pX1� �1 � p2 � q2� �1 � p2 � q2��3p

 � 30�J4R4r�7�qY1 � pX1�p�1 � p2 � q2��2

 � 15�J4R4r�7X1�1 � p2 � q2� �1 � p2 � q2��2

 � 1120�J4R4r�9�qY1 � pX1�3 �1 � p2 � q2� �1 � p2 � q2��5p

 � 280�J4R4r�9�qY1 � pX1�3p�1 � p2 � q2��4

 
�� fh�J4

�p
� 420�J4R4r�9�qY1 � pX1�2X1 �1 � p2 � q2� �1 � p2 � q2��4

 � 15�J4R4r�7�q��Y1

�k�F

� p��X1

�k �F
��1 � p2 � q2� �1 � p2 � q2��2

 � 105�J4R4r�8��r

�k�F

�qY1 � pX1� �1 � p2 � q2� �1 � p2 � q2��2

 � �1 � p2 � q2� �1 � p2 � q2��4

 � 420�J4R4r�9�qY1 � pX1�2�q��Y1

�k�F

� p��X1

�k �F
�

 
�� fh�J4

�k
� 1260�J4R4r�10��r

�k�F

 �qY1 � pX1�3�1 � p2 � q2� �1 � p2 � q2��4

 � 15�J4R4r�7�q��Y1

�h�F

� p��X1

�h�F
��1 � p2 � q2� �1 � p2 � q2��2

 � 105�J4R4r�8��r

�h�F

�qY1 � pX1� �1 � p2 � q2� �1 � p2 � q2��2

 � �1 � p2 � q2� �1 � p2 � q2��4

 � 420�J4R4r�9�qY1 � pX1�2�q��Y1

�h�F

� p��X1

�h�F
�

 
�� fh�J4

�h
� 1260�J4R4r�10��r

�h�F

 �qY1 � pX1�3�1 � p2 � q2� �1 � p2 � q2��4

 � 15�J4R4r�7�q
�Y1

�a
� p

�X1

�a��1 � p2 � q2� �1 � p2 � q2��2

 � 105�J4R4r�8 
�r

�a
�qY1 � pX1� �1 � p2 � q2� �1 � p2 � q2��2

 � �1 � p2 � q2� �1 � p2 � q2��4

 � 420�J4R4r�9�qY1 � pX1�2�q
�Y1

�a
� p

�X1

�a�
 
�� fh�J4

�a
� 1260�J4R4r�10 

�r

�a
 �qY1 � pX1�3�1 � p2 � q2� �1 � p2 � q2��4

� fh�J4
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(106)

(107)

The Treatment of the , Perturbations within 
the True Longitude Formulation 

The dynamic and adjoint equations for the true longitude formulation were given
in references [7] and [11]. The dynamic equations are given by 

(108)

Unlike the eccentric longitude formulation of the previous section, where the
thrust acceleration, the components of the rows of matrix M, and the , , and 
accelerations were resolved along the equinoctial frame this true longitude
formulation uses the Euler-Hill frame such that the rows of matrix above
as well as the thrust and zonal accelerations are resolved in this Hill frame. The
Hamiltonian and the adjoint differential equations for the combined thrust and 
perturbations given in reference [11] are completed below by the addition of the
higher order and terms such that with the unit vector 

(109)

(110) � �z
T 

�BL

�z
 �fJ2 � fJ3 � fJ4� � �z

TBL��fJ2

�z
�

�fJ3

�z
�

�fJ4

�z �
 �̇z � �

�H

�z
� ��z

T 
�BL

�z
 ft û � �L 

�

�z
 �na2�1 � h2 � k2�1�2

r2 �
H � �z

TBL�z�ft û � �L�na2�1 � h2 � k2�1�2�r 2 � �z
TBL�z� �fJ2 � fJ3 � fJ4�

û � �ur, u�, uh�J4J3

J2

BLr̂, �̂, ĥ
f̂ , ĝ, ŵ,

J4J3J2

ȧ

ḣ

k̇

ṗ

q̇

L̇

 �   

B11
L

B21
L

B31
L

B41
L

B51
L

B61
L

B12
L

B22
L

B32
L

B42
L

B52
L

B62
L

B13
L

B23
L

B33
L

B43
L

B53
L

B63
L

   ��ur

u�

uh

�� ft� � fJ2 � fJ3 � fJ4� �  

0

0

0

0

0

na2�1 � h2 � k2�1�2

r2

J4J3

� 15�J4R4r�7�q
�Y1

�F
� p

�X1

�F��1 � p2 � q2� �1 � p2 � q2��2

 � 105�J4R4r�8 
�r

�F
�qY1 � pX1� �1 � p2 � q2� �1 � p2 � q2��2

 � �1 � p2 � q2� �1 � p2 � q2��4

 � 420�J4R4r�9�qY1 � pX1�2�q
�Y1

�F
� p

�X1

�F�
 
�� fh�J4

�F
� 1260�J4R4r�10 �r

�F
�qY1 � pX1�3�1 � p2 � q2� �1 � p2 � q2��4

 � 60�J4R4r�7�qY1 � pX1� �1 � p2 � q2� �1 � p2 � q2��3q

 � 30�J4R4r�7�qY1 � pX1�q�1 � p2 � q2��2

 � 15�J4R4r�7Y1�1 � p2 � q2� �1 � p2 � q2��2

 � 1120�J4R4r�9�qY1 � pX1�3 �1 � p2 � q2� �1 � p2 � q2��5q

 � 280�J4R4r�9�qY1 � pX1�3q�1 � p2 � q2��4

 
�� fh�J4

�q
� �420�J4R4r�9�qY1 � pX1�2Y1 �1 � p2 � q2� �1 � p2 � q2��4
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In reference [11], and were not included in the analysis, and there was
simply written as f. The and partials are needed to complete this
analysis. Note that the partial derivatives of matrix with respect to

as given in the appendix of reference [7] have two typographic
errors in equations (A65) and (A74) that should read as 

(A65) of [2] 

(A74) of [2] 

Now using the expressions for and in equations (34)–(36),
directly in terms of a, h, k, p, q and L, we have for the partials with respect
to the elements a, h, k, p, q and L as

(111)

(112)

(113)

(114)

(115)

(116) � 240�J3R3r�5�qsL � pcL�2�qcL � psL� �1 � p2 � q2��3

 � 400�J3R3r�6��r

�L�L

�qsL � pcL�3 �1 � p2 � q2��3

 � 12�J3R3r�5�qcL � psL� �1 � p2 � q2��1

 
�� fr�J3

�L
� 60� J3R3r�6��r

�L�L

�qsL � pcL� �1 � p2 � q2��1

 � 480�J3R3r�5�qsL � pcL�3 �1 � p2 � q2��4q

 � 240�J3R3r�5�qsL � pcL�2sL�1 � p2 � q2��3

 � 24�J3R3r�5�qsL � pcL� �1 � p2 � q2��2q

 
�� fr�J3

�q
� �12�J3R3r�5sL�1 � p2 � q2��1

 � 480�J3R3r�5�qsL � pcL�3 �1 � p2 � q2��4 p

 � 240�J3R3r�5�qsL � pcL�2cL�1 � p2 � q2��3

 � 24�J3R3r�5�qsL � pcL� �1 � p2 � q2��2p

 
�� fr�J3

�p
� 12�J3R3r�5cL�1 � p2 � q2��1

 � 400�J3R3r�6��r

�k�L

�qsL � pcL�3 �1 � p2 � q2��3

 
�� fr�J3

�k
� 60� J3R3r�6��r

�k�L

�qsL � pcL� �1 � p2 � q2��1

 � 400�J3R3r�6��r

�h�L

�qsL � pcL�3 �1 � p2 � q2��3

 
�� fr�J3

�h
� 60� J3R3r�6��r

�h�L

�qsL � pcL� �1 � p2 � q2��1

 � 400�J3R3r�6��r

�a�L

�qsL � pcL�3 �1 � p2 � q2��3

 
�� fr�J3

�a
� 60� J3R3r�6��r

�a�L

�qsL � pcL� �1 � p2 � q2��1

� fr�J3,
� fh�J3,� f��J3� fr�J3,

�

�k�na2�1 � h2 � k2�1�2

r 2 � � �2na2r�3G 
�r

�k
� na2r�2kG�1

B63
L � n�1a�2rG�1�qsL � pcL�

z � �a, h, k, p, q, L�
BL

�fJ4��z�fJ3��z
fJ2J4J3

58 Kéchichian



For the partials, we have in a similar way 

(117)

(118)

(119)

(120)

(121)

(122)

For , the relevant partial derivatives take the form 

(123) �
15

2
�J3R3r�6��r

�a�L

�1 � p2 � q2� �1 � p2 � q2��1

 
�� fh�J3

�a
� 150�J3R3r�6��r

�a�L

�qsL � pcL�2 �1 � p2 � q2� �1 � p2 � q2��3

� fh�J3

 � 3�J3R3r�5�qsL � pcL� �1 � p2 � q2��1

 � 15�J3R3r�6��r

�L�L

�qcL � psL� �1 � p2 � q2��1

 � 120�J3R3r�5�qsL � pcL� �qcL � psL�2 �1 � p2 � q2��3

 � 60�J3R3r�5�qsL � pcL�3 �1 � p2 � q2��3

 
�� f��J3

�L
� 300�J3R3r�6��r

�L�L

�qcL � psL� �qsL � pcL�2 �1 � p2 � q2��3

 � 6�J3R3r�5�qcL � psL� �1 � p2 � q2��2q

 � 3�J3R3r�5cL�1 � p2 � q2��1

 � 360�J3R3r�5�qcL � psL� �qsL � pcL�2 �1 � p2 � q2��4q

 � 120�J3R3r�5�qcL � psL� �qsL � pcL�sL�1 � p2 � q2��3

 
�� f��J3

�q
� �60�J3R3r�5cL�qsL � pcL�2 �1 � p2 � q2��3

 � 6�J3R3r�5�qcL � psL� �1 � p2 � q2��2 p

 � 3�J3R3r�5sL�1 � p2 � q2��1

 � 360�J3R3r�5�qcL � psL� �qsL � pcL�2 �1 � p2 � q2��4p

 � 120�J3R3r�5�qcL � psL� �qsL � pcL�cL�1 � p2 � q2��3

 
�� f��J3

�p
� �60�J3R3r�5sL�qsL � pcL�2 �1 � p2 � q2��3

 � 15�J3R3r�6��r

�k�L

�qcL � psL� �1 � p2 � q2��1

 
�� f��J3

�k
� 300� J3R3r�6��r

�k�L

�qcL � psL� �qsL � pcL�2 �1 � p2 � q2��3

 � 15�J3R3r�6��r

�h�L

�qcL � psL� �1 � p2 � q2��1

 
�� f��J3

�h
� 300� J3R3r�6��r

�h�L

�qcL � psL� �qsL � pcL�2 �1 � p2 � q2��3

 � 15�J3R3r�6��r

�a�L

�qcL � psL� �1 � p2 � q2��1

 
�� f��J3

�a
� 300� J3R3r�6��r

�a�L

�qcL � psL� �qsL � pcL�2 �1 � p2 � q2��3

� f��J3
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(124)

(125)

(126)

(127)

(128)

In a similar way using the acceleration components given in equations (84)–(86)
in terms of a, h, k, p, q and L, we have for the component, the partials 

(129)

(130)

� 
45

4
�J4R4r�7��r

�h�L

� 2100�J4R4r�7��r

�h�L

�qsL � pcL�4 �1 � p2 � q2��4

 
�� fr�J4

�h
� 450�J4R4r�7��r

�h�L

�qsL � pcL�2 �1 � p2 � q2��2

� 
45

4
�J4R4r�7��r

�a�L

� 2100�J4R4r�7��r

�a�L

�qsL � pcL�4 �1 � p2 � q2��4

 
�� fr�J4

�a
� 450�J4R4r�7��r

�a�L

�qsL � pcL�2 �1 � p2 � q2��2

� fr�J4

fJ4

�
15

2
�J3R3r�6��r

�L�L

�1 � p2 � q2� �1 � p2 � q2��1

 � 60�J3R3r�5�qsL � pcL� �qcL � psL� �1 � p2 � q2� �1 � p2 � q2��3

 
�� fh�J3

�L
� 150�J3R3r�6��r

�L�L

�qsL � pcL�2�1 � p2 � q2� �1 � p2 � q2��3

 � 3�J3R3r�5�1 � p2 � q2� �1 � p2 � q2��2q

 � 3�J3R3r�5q�1 � p2 � q2��1

 � 180�J3R3r�5�qsL � pcL�2 �1 � p2 � q2� �1 � p2 � q2��4q

 � 60�J3R3r�5�qsL � pcL�2q�1 � p2 � q2��3

 
�� fh�J3

�q
� �60�J3R3r�5�qsL � pcL�sL�1 � p2 � q2� �1 � p2 � q2��3

 � 3�J3R3r�5�1 � p2 � q2� �1 � p2 � q2��2p

 � 3�J3R3r�5p�1 � p2 � q2��1

 � 180�J3R3r�5�qsL � pcL�2 �1 � p2 � q2� �1 � p2 � q2��4p

 � 60�J3R3r�5�qsL � pcL�2p�1 � p2 � q2��3

 
�� fh�J3

�p
� 60�J3R3r�5�qsL � pcL�cL�1 � p2 � q2� �1 � p2 � q2��3

 �
15

2
�J3R3r�6��r

�k�L

�1 � p2 � q2� �1 � p2 � q2��1

 
�� fh�J3

�k
� 150�J3R3r�6��r

�k�L

�qsL � pcL�2 �1 � p2 � q2� �1 � p2 � q2��3

 �
15

2
�J3R3r�6��r

�h�L

�1 � p2 � q2� �1 � p2 � q2��1

 
�� fh�J3

�h
� 150�J3R3r�6��r

�h�L

�qsL � pcL�2 �1 � p2 � q2� �1 � p2 � q2��3
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(131)

(132)

(133)

(134)

For the partials, we have 

(135)

(136)

(137) � 180�J4R4r�7��r

�k�L

�qsL � pcL� �qcL � psL� �1 � p2 � q2��2

 
�� f��J4

�k
� 1680�J4R4r�7��r

�k�L

�qsL � pcL�3 �qcL � psL� �1 � p2 � q2��4

 � 180�J4R4r�7��r

�h�L

�qsL � pcL� �qcL � psL� �1 � p2 � q2��2

 
�� f��J4

�h
� 1680�J4R4r�7��r

�h�L

�qsL � pcL�3 �qcL � psL� �1 � p2 � q2��4

� 180�J4R4r�7��r

�a�L

�qsL � pcL� �qcL � psL� �1 � p2 � q2��2

 
�� f��J4

�a
� 1680�J4R4r�7��r

�a�L

�qsL � pcL�3�qcL � psL� �1 � p2 � q2��4

� f��J4

 �
45

4
�J4R4r�7��r

�L�L

 � 1400�J4R4r�6�qsL � pcL�3�qcL � psL� �1 � p2 � q2��4

 � 2100�J4R4r�7��r

�L�L

�qsL � pcL�4 �1 � p2 � q2��4

 � 150�J4R4r�6 �qsL � pcL� �qcL � psL� �1 � p2 � q2��2

 
�� fr�J4

�L
� 450�J4R4r�7��r

�L�L

�qsL � pcL�2 �1 � p2 � q2��2

 � 2800�J4R4r�6�qsL � pcL�4 �1 � p2 � q2��5q

 � 1400�J4R4r�6�qsL � pcL�3sL �1 � p2 � q2��4

 � 300�J4R4r�6�qsL � pcL�2 �1 � p2 � q2��3q

 
�� fr�J4

�q
� �150�J4R4r�6�qsL � pcL�sL�1 � p2 � q2��2

 � 2800�J4R4r�6�qsL � pcL�4 �1 � p2 � q2��5 p

 � 1400�J4R4r�6�qsL � pcL�3cL �1 � p2 � q2��4

 � 300�J4R4r�6�qsL � pcL�2 �1 � p2 � q2��3p

 
�� fr�J4

�p
� 150�J4R4r�6�qsL � pcL�cL�1 � p2 � q2��2

� 
45

4
�J4R4r�7��r

�k�L

� 2100�J4R4r�7��r

�k�L

�qsL � pcL�4 �1 � p2 � q2��4

 
�� fr�J4

�k
� 450�J4R4r�7��r

�k�L

�qsL � pcL�2 �1 � p2 � q2��2
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(138)

(139)

(140)

And finally for , the six partial derivatives are obtained as 

(141)

(142)

(143) � 90�J4R4r�7��r

�k�L

�qsL � pcL� �1 � p2 � q2� �1 � p2 � q2��2

 
�� fh�J4

�k
� 840�J4R4r�7��r

�k�L

�qsL � pcL�3 �1 � p2 � q2� �1 � p2 � q2��4

 � 90�J4R4r�7��r

�h�L

�qsL � pcL� �1 � p2 � q2� �1 � p2 � q2��2

 
�� fh�J4

�h
� 840�J4R4r�7��r

�h�L

�qsL � pcL�3 �1 � p2 � q2� �1 � p2 � q2��4

 � 90�J4R4r�7��r

�a�L

�qsL � pcL� �1 � p2 � q2� �1 � p2 � q2��2

 
�� fh�J4

�a
� 840�J4R4r�7��r

�a�L

�qsL � pcL�3 �1 � p2 � q2� �1 � p2 � q2��4

� fh�J4

 � 30�J4R4r�6�qsL � pcL�2 �1 � p2 � q2��2

 � 30�J4R4r�6�qcL � psL�2 �1 � p2 � q2��2

 � 180�J4R4r�7��r

�L�L

�qsL � pcL� �qcL � psL� �1 � p2 � q2��2

 � 280�J4R4r�6�qsL � pcL�4�1 � p2 � q2��4

 � 840�J4R4r�6�qsL � pcL�2�qcL � psL�2�1 � p2 � q2��4

 
�� f��J4

�L
� 1680�J4R4r�7��r

�L�L

�qsL � pcL�3�qcL � psL� �1 � p2 � q2��4

 � 120�J4R4r�6�qsL � pcL� �qcL � psL� �1 � p2 � q2��3q

 � 30�J4R4r�6�qsL � pcL�cL�1 � p2 � q2��2

 � 30�J4R4r�6sL�qcL � psL� �1 � p2 � q2��2

 � 2240�J4R4r�6�qsL � pcL�3�qcL � psL� �1 � p2 � q2��5q

 � 280�J4R4r�6�qsL � pcL�3cL�1 � p2 � q2��4
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� �840�J4R4r�6�qsL � pcL�2sL�qcL � psL� �1 � p2 � q2��4
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(144)

(145)

(146)

Note that the partials appearing in the above equa-

tions, are as in equation (65) of reference [11], namely 

Numerical Results 

We first show the need to include the and accelerations by running an opti-
mal trajectory generated in [12] and [13] with only taken into account. The
initial and final orbits for the example transfer are shown in Table 1. The overall
minimum-time solution is obtained by also searching for the optimal departure
point on the initial orbit at time as well as the optimal arrival location on the
final orbit at time , which is itself one of the search parameters. The shooting
method is used by starting from guessed values for the five multipliers at time

namely, as well as the initial mean longitude
or rather eccentric longitude corresponding to the initial angular position

. The value of is also guessed and the dynamic and adjoint differentialtf���0

�F�0���0

��q�0��p�0,��k�0,��h�0,��a�0,t � 0,
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 � 15�J4R4r�6�qcL � psL� �1 � p2 � q2� �1 � p2 � q2��2

 � 90�J4R4r�7��r

�L�L

�qsL � pcL� �1 � p2 � q2� �1 � p2 � q2��2

 � 420�J4R4r�6�qsL � pcL�2�qcL � psL��1 � p2 � q2��1 � p2 � q2��4

 
�� fh�J4
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 � 15�J4R4r�6sL �1 � p2 � q2� �1 � p2 � q2��2

 � 1120�J4R4r�6�qsL � pcL�3�1 � p2 � q2� �1 � p2 � q2��5q
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�q
� �420�J4R4r�6�qsL � pcL�2sL �1 � p2 � q2� �1 � p2 � q2��4

 � 60�J4R4r�6�qsL � pcL� �1 � p2 � q2� �1 � p2 � q2��3p

 � 30�J4R4r�6 �qsL � pcL�p�1 � p2 � q2��2

 � 15�J4R4r�6cL �1 � p2 � q2� �1 � p2 � q2��2

 � 1120�J4R4r�6�qsL � pcL�3�1 � p2 � q2� �1 � p2 � q2��5p

 � 280�J4R4r�6�qsL � pcL�3p�1 � p2 � q2��4

 
�� fh�J4

�p
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equations with only are integrated forward in time simultaneously starting from
until while thrusting along the optimal orientation given by

that effectively maximizes the Hamiltonian H in equa-
tion (23) with and turned off. The quantities as
well as and are slowly adjusted until the final orbit parameters , ,

that correspond to the target given in Table 1 are met to within
a reasonably small tolerance, with and also satisfied. 

The initial and final orbit parameters are given as classical elements in Table 1
but are converted at time to obtain the equinoctial equivalents to start the
integrations, and converted from the equinoctials at to the equivalent classicals
for tabulation purposes. 

The initial values of the converged multipliers are given by 
,

the optimal initial
location was obtained as rad, and the minimum time was
obtained as . 

With corresponding to the mean anomaly the state
and costate equations are propagated forward in time starting from the converged
multipliers above and using equations (108) and (110) by firing along the optimal
direction until . Both and the con-
verged multipliers as well as the optimal correspond to the optimal solution ob-
tained with only [12], [13]. Thus three runs are made using these converged
values, the first two using the original formulation of [11], [12], and [13] respec-
tively and the third run using equations (108) and (110) of this present paper with

and turned on in order to fly the trajectory using a more accurate Earth gravity
model. The first two runs from time to will achieve the desired end condi-
tions because the initial converged multiplier values are the optimal ones correspond-
ing to the simplified gravity model that uses only. Obviously using these converged
values to fly with a more accurate gravity model that uses and and termi-
nating the flight at the -optimal flight time will fail to meet the end conditions. 

Table 1 shows the achieved final parameters for this LEO to GEO transfer using
the Achieved [L] of [11] and Achieved [F] of [12] and [13] formulations using 
only, and the present paper Achieved [L] formulation using and , i.e., equa-
tions (108)– (110). As in all runs, we use and

and a Runge-
Kutta 78 integration method as given by the Fehlberg coefficients with relative and
absolute error controls set at the level. 

As expected, the Achieved [L]- and Achieved [F]- forward runs meet the tar-
get conditions effectively as shown in Table 1, while the Achieved [L]- run
misses the final semimajor axis by 4 km and the argument of perigee by 4 deg or
equivalently the final position by as much. These results show that restricting our-
selves to a reduced model with only and using the corresponding optimal solu-
tion to fly in the more realistic and accurate model with and will miss the
target even for this very short duration transfer which experiences very little per-
turbation from the zonal harmonics. These differences will be dramatically more
enhanced for long duration transfers that dwell for long periods of time in the grav-
ity well at LEO where the zonal perturbations affect the trajectories considerably. 

Note that the integrated value of L at the final time namely 
from Achieved [L], corresponds to which corresponds to theM = 45.411543 deg

L = 45.4919264 degtf,

J4J3J2,
J2

J2J3J4

J2J2

10�9

J4 � �1.58 � 10�6,J3 � �2.56 � 10�6,J2 � 1.08263 � 10�3,
ft � 9.8 � 10�5 km�s2

J4J3J2,
J2

tfJ2

J4J3J2,
J2

tft � 0
J4J3

J2

J2

���0

tftf = 58,104.83438 sû � �z
TBL�z����z

TBL�z��

M0 � �131.7396776 deg���0

58,104.83438 s
tf���0 � �2.299291130

��q�0 � �2.254928992 � 104 s,��p�0 � 3.281827358 � 101 s,
��k�0 � �9.150040837 � 103 s,��h�0 � 8.060772261 � 102 s4.800100306 s�km,

��a�0 �

tf

t � 0

Hf � 1�F�f � 0
a, e, i, �, ��q�f�p�f,

�k�f,�h�f�a�ftf�F�0

��q�0��p�0,��k�0,��h�0,��a�0,fJ4fJ3

û � �z
TM�z, F����z

TM�z, F��
ûtf��F�0 � 0

J2



optimal insertion point on the target orbit with only. As discussed above, the value
of M as well as the values of the other parameters from Achieved [L]- are
clearly significantly different due to the addition of the and terms. 

We now generate an optimal minimum-time trajectory using equations
(108)–(110) and searching on the initial values of 
and and starting with until the final a, h, k, p, q,
and are satisfied. The result is 

rad, and 

Because and , is identical to 
deg. Using these initial values, the Achieved [L]- [equations (108)–(110)],
and Achieved [F]- [equations (17)–(24)] parameters at time are in perfect
agreement as seen in Table 2, thus validating both the L and F formulations of the
present paper. Note that 

As stated above, this fast transfer trajectory experiences very little zonal pertur-
bation effects and that is why the -optimized and the present -optimized so-
lutions differ very little in total flight time as well as in the final insertion location.
These differences can become quite substantial and cannot be neglected both dur-
ing preliminary designs and actual operations. Even the small differences seen in
this present example can be misleading because if the and perturbations are
not accounted for, and the solutions rely only on the -only model, they cannot be
flown accurately as shown in Table 1 due to the presence of the higher order har-
monics. In fact, further harmonics such as and must also be included extend-
ing the present analysis especially for long duration transfers spanning several
months with a considerable amount spent in LEO. 

However, it is possible to use a cruder -only model and continuously update the
transfer solution during an actual flight in order to eventually correct for the effects of
the unmodelled higher order perturbations as the spacecraft approaches its higher des-
tination orbit such as GEO.  It is however better to use a more refined model such as
the one exposed here even if continuous updates are planned for actual flights because
more accurate and economical trajectories can then be flown.  If low-thrust is used in-
stead to transfer to lower orbits or if the transfers are done entirely in low orbit and of
long duration, then higher fidelity models are even more beneficial to implement. 

The value of deg corresponds to deg and
the value of deg corresponds to deg indicat-
ing perfect agreement for the optimized insertion location on the target orbit. 

Conclusion 

A higher-fidelity modeling of optimal low-thrust transfers between any given cir-
cular or elliptic orbits using a more complete Earth gravity model in the form of
higher-order harmonics has thus been derived based on the Gaussian form of the
dynamic system equations in terms of the nonsingular equinoctial elements. 

Two previously developed formulations based on the use of the eccentric and
true longitude as the sixth or fast orbit element respectively, and fully accounting
for the perturbation both in the dynamic and adjoint differential equations, have
been extended in this present paper by the inclusion of the higher zonal harmonics
terms and in order to generate even higher accuracy optimal low-thrust tra-
jectories than with alone. A fast LEO to GEO minimum-time transfer using aJ2

J4J3

J2

M � 45.40920884L � 45.49094391
M � 45.40920885F � 45.45009839

J2

J6J5

J2

J4J3

tf

J2J3J4J2

��L�0 � ��F�0 � 0.

tfJ2J3J4

J2J3J4

�M�0 � �131.7436944�L�0�0 � 0�0 � 0e0 � 0,
58,104.96895 s.

tf ��L�0 � �2.299361237�2.254952264 � 104s,��q�0 �  
3.284285354 � 101s,��p�0 ��9.149918686 � 103s,��k�0 � 8.064085075 � 102 s,

��h�0 ���a�0 � 4.800362521 s/km,H � 1
��L� � 0,��L�0 � 0L 0

��q�0,��p�0,��k�0,��h�0,��a�0,
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J2J3J4
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relatively high constant thrust acceleration is generated for illustration purposes and
the achieved trajectories from both formulations are compared leading to a perfect
match, thus validating both formulations at once. The consideration of two differ-
ent formulations is necessary in order to make sure that the nonsingular state and
adjoint differential equations are both free of algebraic and coding errors regardless
of which formulation is adopted for operational use. The true longitude formulation
which also resolves the various accelerations in the Euler-Hill frame is more con-
cise and easier to derive than the eccentric longitude formulation which resolves the
accelerations along the direct equinoctial frame. However, the latter formulation
was the one that was historically developed first.  All the derivations were done by
hand without the use of any symbolic manipulation software. The numerical results
and their discussion show the benefits of adopting this more refined theory for both
simulations and flight guidance applications. The consideration of additional har-
monics such as and within the present context of the Gaussian formulation can
lead to even higher accuracy modeling of optimal low-thrust transfers. 
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Appendix: Transformation of the , Inertial Accelerations 
to the Rotating Frame 

The perturbation accelerations due to and in the Euler-Hill frame can also
be obtained directly from the inertial system . Going back to equation (3) for
the disturbing potential we have with 

such that for the terms, and in view of 

(A-1)

(A-2)

(A-3)

Replacing x, y and z above by their respective expressions in terms of the Eulerian
angles with and and in view
of the rotation matrix in equation (6), and after some algebra,

(A-4)

In a similar way

(A-5)

(A-6)

For the accelerations

(A-7)

(A-8)

(A-9)

which leads to the expressions 
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(A-10)

where can be written as 

(A-11)

with 

(A-12)

These expressions are equivalent to those in equations (11)–(16). The inertial
accelerations, namely for both the and terms can be found in reference
[15]. However, the terms in equations (9.7-4) and (9.7-6) of that reference
have  a typographical error as they should read and

respectively. The symbol is used as R in this paper. reJ2
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