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Background and Motivation

With the growth of the space age, it has become desirable to place spacecraft into a
wide variety of mission orbits. Typically a launch vehicle is used to deploy a satellite
into a low altitude park orbit. It then becomes necessary to transfer from the park
orbit to the mission orbit. A major goal of mission design is to compute this orbit
transfer to minimize some performance objective. The most common objective is
to minimize the fuel consumed by the orbit transfer. For spacecraft using propul-
sion systems whose thrust is high compared to the mass of the vehicle, i.e. so called
high thrust systems, the duration of the burns is very short compared to the dura-
tion of the orbit transfer itself. Consequently it is common to model high thrust
systems using an instantaneous or impulsive velocity change. In essence a minimum
fuel orbit transfer is approximated using a so-called minimum transfer. In 1925,
the German scientist, Walter Hohmann, demonstrated that a minimum transfer
between two circular orbits in the same plane could be achieved using two impulsive
velocity increments.

Although the original Hohmann transfer was strictly between coplanar orbits,
the term is often loosely used to describe any two-impulse transfer. For example,
one of the most common applications involves transferring between a circular orbit
with an altitude of 150 nm and inclination of 28.5 deg (a standard shuttle park orbit)
to a geosynchronous orbit which is circular at an altitude of 19,323 nm and incli-
nation of 0.0 deg. The “Hohmann” transfer for this application is illustrated in Fig. 1.
However the park and mission orbits are not coplanar in this case, and some of the
requisite inclination change must be accomplished by each of the . For this transfer
nearly all of the inclination change is achieved by the second impulse.
In fact for any orbit transfer it is most efficient to change the orbital plane at a high
altitude when the velocity is smallest.
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Because changing the orbit plane is the most expensive portion of the transfer one
is led to consider a three burn transfer. For this type of transfer, the second burn does
all of the plane change at a very high altitude. In fact it was demonstrated in Betts [2]
that a three impulse solution is more efficient than two impulses for some transfers
that require large plane changes. Figure 2 illustrates the situation. A critical property
of a three burn transfer is that the second burn be located a “long” distance from the
primary body (Earth). Thus one is led to consider locating the second impulse at or
near the Moon. In effect the lunar gravitational attraction can be used in lieu of the
second burn, thereby producing a very efficient trajectory. The concept of using a
lunar gravity assist to design a nominal mission trajectory has been considered by
many authors (cf [16]). Lee, Dunham, Hsu, and Roberts [13] discuss using a lunar
swingby, however as with most analyses they do not minimize the impulsive velocity.

This paper deals with an approach for computing optimal lunar swingby trajec-
tories between two Earth orbits. First some representative optimal transfers are pre-
sented that illustrate the performance benefits. Then the problem formulation is
explained and a number of challenging numerical issues are addressed. To facilitate
using the examples as benchmark problems, the dynamics are modeled using three-
body mechanics but do not require more sophisticated planetary ephemerides.
Finally, suggestions are given concerning the numerical methods as well as practical
implementation of the technique. 

Optimal Lunar Transfer Examples

For the sake of illustration, examples of lunar swingby transfers to four different
mission orbits are presented. All of the transfers begin in a circular park orbit at an
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FIG. 1. Optimal Two-Impulse Transfer to Geosynchronous Orbit.

FIG. 2. Optimal Three-Impulse Transfer Orbit.



altitude of 150 nm, with an inclination of 28 deg. The outbound transfer orbit is
established by , and after passing around the Moon the inbound transfer returns
to the mission orbit which is established by applying . All of the transfers
minimize the total , that is

(1)

To obtain meaningful results it is also necessary to impose some limit on the total
transfer time. An upper bound of 15 days is imposed on the total transfer time for
the examples.

Synchronous Equatorial

Results are presented for a geosynchronous orbit which is circular at an altitude
of 19,323 nm and inclination of 0.0 deg. Figure 3 illustrates the optimal lunar
swingby trajectory and for comparison summarizes the total of the swingby as
well as a standard two-impulse “Hohmann” transfer. It is interesting to observe that
even for this case which requires only 28.5 degrees of plane change, the swingby
solution saves 188.01 fps of total .

Polar, 24 hr (A)

Figure 4 illustrates the optimal lunar swingby trajectory to an orbit which is
circular at an altitude of 19,323 nm and inclination of 90 deg. This solution is char-
acterized by an outbound transfer trajectory from the descending node of the park
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FIG. 3. Optimal Swingby Transfer to Geosynchronous Orbit.

Total (fps)
Hohmann 8056.67 5851.44 13,908.12 
Swingby 10,201.39 3518.72 13,720.11
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orbit and as such will be referred to as solution “A.” The total plane change for this
transfer is 61.5 deg which is achieved using 3059.56 fps less than the corresponding
Hohmann transfer.

Polar, 24 hr (B)

Figure 5 illustrates the optimal lunar swingby trajectory to the same mission orbit
as in the previous section. In contrast to solution “A,” this trajectory is characterized
by an outbound transfer from the ascending node of the park orbit and as such will
be referred to as solution “B.” Although the swingby solution “B” is slightly less
efficient than solution “A” it still is 3013.20 fps less than the Hohmann transfer. It is
also worth noting the very small difference in the Hohmann solutions between “A”
and “B,” which can be attributed to the small (yet different) lunar perturbations.
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Total (fps)
Hohmann 8113.34 8610.82 16,724.17 
Swingby 10,225.16 3440.44 13,665.61
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FIG. 4. Optimal Swingby Transfer to Polar, 24 hr Orbit.



Retrograde Molniya

The final example, shown in Fig. 6, is a retrograde Molniya mission orbit.
Specifically the orbit is elliptical with an (osculating) apogee altitude of 21,450 nm,
a perigee altitude of 350 nm, an argument of perigee of 270 deg, and a retrograde
inclination of 116.6 deg. This particular orbit has a period of approximately 12 hours,
and requires an orbital plane change of 88.1 deg. For this example the lunar
swingby saves 25,011.05 fps of total . In this extreme case the Hohmann transfer
is approximately 264% more expensive.

�v
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FIG. 5. Optimal Swingby Transfer to Polar, 24 hr Orbit.

Total (fps)
Hohmann 8113.33 8610.77 16,724.10 
Swingby 10,251.24 3459.66 13,710.90
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Equations of Motion

The dynamic behavior of a spacecraft can be modeled using a simplified version
of the N-body problem as described in Battin [1]. It is convenient to use an Earth-
centered Cartesian coordinate system, with boldface notation used to distinguish a
vector from a scalar. Let and denote the position and velocity of the spacecraft,
and and the position and velocity of the Moon.3 The motion is described by

(2)

(3)

(4)

(5)

where , , and where G is the uni-
versal gravitation constant with and denoting the masses of the Earth and Moon
respectively. The disturbing acceleration caused by the gravitation of the Moon is

(6)

where 

(7)

is a vector from the Moon to the vehicle with magnitude . To avoid losing
precision when evaluating equation (6), Battin [1] suggests defining the function

(8)
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FIG. 6. Optimal Swingby Transfer to Molniya Orbit.

Total (fps)
Hohmann 546.99 39,682.76 40,229.76
Swingby 10,392.39 4826.32 15,218.71
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The perturbing acceleration of equation (6) is then given by

(10)

Kepler Orbit Propagation

As written the differential equations (4–5) constitute a two-body approximation
to the lunar motion. It is well known that this system has an analytic solution and
for convenience we briefly summarize the approach (cf [1], [9]). In general, the
technique is applicable to any two-body system using the appropriate definitions
for the gravitational constant and coordinates and consequently we omit
the subscript for generality. Given a Cartesian state vector at time called the
reference epoch and a specified change in eccentric anomaly , a new
state vector , with corresponding time change can be computed as

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

Notice that the sequence of calculations equations (11–25) constitute an explicit
definition for the states, as well as the corresponding time increment, that can be
expressed as
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(26)

(27)

(28)

The propagation is explicit with respect to the independent variable , but is implicit
with respect to the time t. To be more precise let us rewrite equation (28) as

(29)

since where is the final time corresponding to the eccentric anomaly
increment .

Differential-Algebraic Formulation of Three Body Dynamics

The original system of 12 differential equations (2–5) can be recast as a
differential-algebraic (DAE) system involving the six states and , and the
single algebraic variable as

(30)

(31)

(32)

Observe that the implicit algebraic equation (32) is a modified form of Kepler’s
transcendental equation. The gravitational perturbation on the spacecraft is
defined by the position vectors and using equations (8–10). The lunar position
vector is completely determined by equation (26) using the Kepler propagation pro-
cedure outlined in equations (11–25). Thus the complete functional dependency is
given by

Boundary Conditions

Denote the state variables at a particular time (e.g. the beginning or end of the
trajectory) by and . Boundary conditions defining both the park and mission
orbits are typically stated in terms of osculating orbit elements, i.e. nonlinear func-
tions of and . There are many equivalent ways to specify both the park and mission
orbits. A circular orbit with specified radius can be achieved by imposing the
boundary constraints

(33a)

(33b)

(33c)

Equation (33a) fixes the magnitude of the position vector, equation (33b) defines
the circular velocity, and equation (33c) ensures the flight path angle (and eccen-
tricity) is zero. Observe that when equations (33a) and (33b) are satisfied equa-
tion (33c) is just
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which is equivalent to making the normalized position and velocity vectors ortho-
gonal. However, as written the denominator in equation (33c) is a constant, which
is the preferable, i.e. “more linear,” way to pose the constraint.

To achieve a particular inclination we must enforce the boundary condition

(34a)

where the angular momentum vector h and north vector are

(34b)

(34c)

(34d)

(34e)

Observe that equation (34a) is stated in terms of rather than the inclination 
itself, thereby avoiding ambiguities when computing the inverse cosine.

If the desired orbit is elliptic, equations (33a)–(33c) are not applicable. Instead
to achieve a specified semimajor axis , and eccentricity , we must impose
the boundary conditions

(35a)

(35b)

where the eccentricity vector is given by

(35c)

and the angular momentum is given by equation (34b).
For elliptic orbits , the eccentricity vector is directed toward periapsis,

thereby defining the orientation of the principal axis. In general, the argument of
periapsis is an angle measured in the orbital plane from the ascending node to
periapsis. The particular case , can be enforced by imposing the conditions

(36a)

(36b)

where

(36c)
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(36e)

and e is given by equation (35c), with defined by equation (34b), and from equa-
tion (34d). Again notice that the denominator of equation (36c) involves the constant

instead of the quantity appearing on the right hand side of equation (35b).��e��ē
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 iz � �0, 0, 1�T

 ĥ �
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ī
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��r̃�� ��ṽ��
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A Four Step Solution Technique

Most effective numerical methods are based on the premise that:

A hard problem can be broken into a sequence of easy subproblems.

For example, to compute the root of a nonlinear constraint using Newton’s
Method, one must solve the sequence of linear approximations 

. Similarly, when using a nonlinear programming (NLP) algorithm (cf [3])
to solve a nonlinear optimization problem, one solves a sequence of: (a) quadratic
programming subproblems (an SQP Method) or, (b) unconstrained subproblems
(a barrier method). In like fashion an optimal control solution can be obtained by solv-
ing a sequence of NLP subproblems. Of course there may be no clear definition of
an “easy subproblem.” For Newton’s method is it better to compute or use
a secant approximation? Is a quadratic program easier than an unconstrained
subproblem? Ultimately the solution technique should consist of a sequence of sub-
problems that can be solved efficiently and reliably. Thus to compute a solution to
an optimal lunar swingby let us first pose a sequence of “easier” subproblems. It
is important to remark that the proposed technique is a heuristic—other equally
valid methods can be postulated. However the heuristic has proven to be both reli-
able and efficient. A later section describes how each subproblem is solved.

The Four Step Solution Technique can be summarized as follows:

Step 1: Three Impulse, Conic Solution
Solve a small NLP with analytic propagation ignoring lunar gravity.

Step 2: Three-Body Approximation to Conic Solution
Solve an “inverse problem” to fit three-body dynamics to the conic solution.

Step 3: Optimal Three-Body Solution with Fixed Swingby Time
Use the solution from Step 2 to initialize.

Step 4: Optimal Three-Body Solution
Compute solution with free swingby time, using Step 3 as an initial guess.

Step 1: Three Impulse, Conic Solution

Since the optimal trajectory depends on the relative geometry of three bodies,
namely, the Earth, Moon, and spacecraft, it is critical that the solution process is initi-
ated with a reasonable geometric configuration. This goal can be achieved by using a
very simplified model of the dynamics. In particular for Step 1, it is assumed that
the spacecraft dynamics are determined entirely by the gravitational attraction of the
primary body, Earth. Further, it is assumed that the lunar swingby can be approximated
by a simple velocity increment. Because all of the dynamics are modeled using a two-
body approximation, the analytic trajectory propagation approach outlined in the
Kepler Orbit Propagation section can be exploited. With these simplifying assump-
tions one can pose the following very simple nonlinear programming problem.

Optimization Variables. The problem can be formulated using 24 variables to
define the trajectory as illustrated in Fig. 7.

State at Park Orbit Departure (37)

State at Mission Orbit Arrival (38)

Swingby Velocity Increment and Lunar 
Transfer Angle to Intercept (39)

��vs, �EL�:

�ri, vi, �v2, �Ei�:

�ro, vo, �v1, �Eo�:

c��xk�

c�xk��c��xk�
xk�1 � xk �

c�x� � 0
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The outbound (Earth to Moon) transfer orbit is defined by the variables in equa-
tion (37), namely the Cartesian state at the beginning of the outbound transfer 

, the impulsive velocity , and the eccentric anomaly change for the outbound
trajectory . Equation (38) defines the corresponding variables for the inbound
(Moon to Earth) transfer. The velocity increment provided by the Moon at
swingby is defined as , and the location of the Moon relative to a reference
epoch is defined by the angle .

Park Orbit Conditions. In order to enforce the boundary conditions at the park
orbit, the following NLP constraints must be imposed:

Position Continuity (40)

Impulsive Velocity Change (41)

Park Orbit Constraints (42)

Equation (40) insures that the park orbit and outbound transfer orbit position is con-
tinuous. The impulsive velocity change at departure is enforced by equation (41).
The park orbit state vector must also satisfy the nonlinear constraints denoted in
equation (42). For the circular park orbit illustrated here, the vector is given by
equations (33a–c) and equation (34a).

Mission Orbit Conditions. The boundary conditions imposed by the mission
orbit lead to a set of NLP constraints similar to those enforced at departure, namely,

Position Continuity (43)

Impulsive Velocity Change (44)

Mission Orbit Constraints (45)

Constraints (43) and (44) are analogous to (40) and (41). The mission orbit
constraints denoted by the vector in equation (45), are computed using the
appropriate expressions from the sixth section.

Lunar Conditions. The conditions at the Moon used to approximate the lunar
swingby all involve expressions for the state vector computed using the Kepler
propagation described by equations (26) and (27) as
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FIG. 7. Three Impulse Conic Solution.



Outbound/Inbound Position (46)

Outbound/Lunar Position (47)

Velocity Change

(48)

The constraints (46) force the outbound and inbound transfer trajectories to have
the same position at the swingby. Observe that the outbound position is
completely determined by the departure state , , and the outbound eccentric
anomaly change , with similar comments applicable to the inbound leg. While
equation (46) insures continuity between the outbound and inbound trajectories, it
is also necessary that the swingby occur at the Moon’s position. This is achieved
using constraint (47). Of course this constraint will locate the swingby at the center
of the Moon, which can only be achieved by ignoring the lunar gravity. Finally, one
must model the velocity change at the Moon, and this is expressed by equation (48).
Observe that equation (48) involves the Kepler velocities , and an impulsive
change . This constraint requires the velocity after the swingby to equal the vector
sum of: (a) the velocity before the swingby, plus, (b) the velocity of the Moon, plus,
(c) the impulsive change.

Objective. The objective function for this simplified model problem is to mini-
mize the total , i.e.

(49)

The solution to this problem should define a geometric configuration of the Earth-
Moon system that is optimal when ignoring the lunar gravitational effects.

Step 2: Three-Body Approximation

The solution to the simplified model problem computed in Step 1 is designed to
construct an approximate solution to the overall problem. Unfortunately, by design,
the simplified model ignores one of the primary dynamic aspects of the real problem.
Specifically, the conic solution solves

(50a)

(50b)

but not the three-body dynamics

(51a)

(51b)

Let us denote the conic solution from equation (50a) by . If one assumes that the
conic trajectory is approximately correct then it is reasonable to find a “nearby”
trajectory that does satisfy the correct dynamics given by equation (51a). This goal
can be achieved by “fitting” the three-body trajectory to the conic i.e. by minimizing
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subject to

(53)

(54)

(55)

where is the spacecraft position on the conic trajectory and is
the state evaluated at the same time points on the three-body trajectory. Observe
that in this inverse problem an algebraic inequality constraint equation (55) is
included to insure the trajectory is sufficiently above the lunar surface where 
is a lower bound on the distance from the spacecraft to the Moon. The conic solution
serves as a good initial guess for this inverse problem, so it is reasonable to set

, provided the N data points exclude the single time point at the Moon.
Clearly the lunar acceleration cannot be evaluated when in
equation (6).

Step 3: Fixed Swingby Time

The solution obtained from Step 2 provides an excellent initial guess for Step 3.
In particular, it supplies a time history for , that satisfies the full three-body
dynamic equations (2–5). Furthermore, by construction the boundary conditions at
the park and mission orbits will be approximately satisfied. Thus one can pose a
problem with two distinct phases described by either the three-body dynamic
equations (2–5) or the differential-algebraic system equations (30–32). Figure 8
illustrates the dynamic simulation.

Phase 1: Outbound Transfer. The outbound transfer begins at the free initial time
which must satisfy the following park orbit conditions analogous to those used

for Step 1:

Position Continuity (56)

Impulsive Velocity Change (57)

Park Orbit Constraints (58)�p�rp, vp� � 0
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FIG. 8. Fixed Swingby Time Solution.



The phase terminates at the fixed time which must satisfy the lunar conditions

Closest Approach (59)

Lunar Flight Path Angle (60)

Observe that by forcing the lunar flight path angle to be zero equation (60) insures
that the closest approach to the Moon will occur at .

Phase 2: Inbound Transfer. The inbound transfer begins at the fixed time and
must satisfy the conditions

State Continuity (61)

Lunar State (62)

Equation (61) ensures continuity in all of the states across the phase boundary, and
since the time is fixed equation (62) enforces consistency with the lunar reference
epoch .

Phase 2 terminates at the free time and at that point must satisfy the mission
orbit conditions

Position Continuity (63)

Impulsive Velocity Change (64)

Mission Orbit Constraints (65)

Mission Duration (66)

The objective for this dynamic optimization problem is to minimize

(67)

Step 4: Optimal Three-Body Solution

The completion of Step 3 will provide an excellent initial guess for the full optimal
three-body lunar swingby. Indeed, only two modifications to the formulation in
Step 3 are required. First, of course, the time of closest approach to the Moon,
must be free. Second, one must ensure that the lunar state at the (free) initial time
is consistent with the reference epoch for the Moon. Thus at the beginning of Phase 1,
the following additional boundary conditions must be satisfied:

(68)

(69)

Typically any convenient reference epoch for the Moon can be chosen.

Solving the Subproblems

The preceding sections posed a set of subproblems that can be solved to obtain
an optimal lunar swingby trajectory. But how does one efficiently solve the subprob-
lems? In particular it is necessary to solve:

• an optimal control problem in Steps 3 and 4.
• a parameter estimation (inverse) problem in Step 2.
• a nonlinear programming problem in Step 1.

There are many good algorithms and corresponding software implementations
available to solve the nonlinear programming (NLP) problem:
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However, the problems we want to solve are of the form

Optimal Lunar Swingby Trajectories 363

Find variables
to minimize the objective

subject to constraints

cL  c�x�  cU.

F�x�

xT � �x1, . . . , xn�

So why is this problematic? The NLP methods work with a finite set of variables
and functions , . However, both the optimal control and estimation prob-

lems are infinite dimensional, i.e. they involve the functions and . How do
we formulate the problem?

Historically shooting methods were employed to in effect “eliminate” the infinite
dimensional problem by solving 

Using this approach the NLP involves the finite set of boundary values treated as
optimization variables. Unfortunately, the resulting boundary value problem is very
nonlinear. For the swingby trajectory the variables appear at the problem bound-
aries, whereas the lunar gravity appears as a perturbation in the “middle” of the
problem. As a consequence the resulting ODE or DAE can be very unstable. Fur-
thermore because it is necessary to incorporate error control mechanisms in order
to numerically propagate the equations of motion, and this must be done during all
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optimization iterations the overall process is very inefficient. Treatment of path
inequality constraints is at best cumbersome and often simply impractical using a
shooting method. In effect a shooting method which forces the dynamic constraints
(ODE’s) to be satisfied at every iteration is analogous to a generalized reduced
gradient (GRG) algorithm for solving an NLP. It is generally recognized that a
“constraint following” method is very inefficient. In short, a shooting method is not
an attractive alternative for this problem.

Discretization Methods utilize an entirely different approach. The dynamic vari-
ables , are discretized leading to a finite, albeit large, set of variables. The
differential equations or dynamic constraints are then replaced by nonlinear alge-
braic constraints. Figure 9 illustrates the approach using a very simple trapezoidal
rule to approximate the ODE. In general there are three basic operations when using
a so-called direct transcription method. Specifically the approach is as follows:

An Optimal Control Algorithm

Direct Transcription: Transcribe the optimal control problem into a nonlinear
programming (NLP) problem by discretization.

Sparse Nonlinear Program: Solve the sparse (SQP or Barrier) NLP.
Mesh Refinement: Assess the accuracy of the approximation (i.e. the finite

dimensional problem), and if necessary refine the discretization, and then repeat
the optimization steps.

In fact, the approach can be considered an SNLP (Sequential Nonlinear Program-
ming Algorithm). All of the relevant techniques for solving optimal control problems
using direct transcription have been implemented in the software, and are
discussed in [3], [5], and [4]. The methodology is extended to inverse problems in [7],
by utilizing NLP methods appropriate for large scale least squares applications.

Barrier or SQP Algorithm?

There are a number of efficiency issues that must be addressed within the context
of an SNLP algorithm. The second step of the algorithm requires the solution of an
NLP, however, among the many possible nonlinear programming algorithms it is de-
sirable to choose the most efficient. Computational experience provides some insight
to guide the choice. Specifically, let us compare the performance of two different

����

u�t�y�t�
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FIG. 9. Discretization Methods.



NLP algorithms when solving the small, dense NLP subproblems required by Step 1
from the previous section. Table 1 summarizes the performance of two different NLP
algorithms when used to solve three different NLP problems. In particular results are
presented for the sequential quadratic programming (SQP) algorithm described in [3]
and [5]. Two different techniques were used to compute the Hessian matrix, namely
a finite difference approximation denoted as “Newton,” and a quasi-Newton “BFGS”
(Broyden-Fletcher-Goldfarb-Shanno) recursive update. The second algorithm is the
primal-dual interior point or barrier algorithm described in [4]. This algorithm was
also tested using Newton and BFGS Hessian approximations.

For each algorithm the table presents the number of gradient and Hessian evalu-
ations needed to reach a solution. Although the number of problems in this test set
is quite small, the basic findings are consistent with much more extensive testing as
described in [6]. Generally the SQP algorithm was both more efficient and more
robust than the barrier method. Although it is difficult to prove, one speculates that
an SQP method is simply a better choice for solving very nonlinear optimization
problems. Conversely, our experience suggests a barrier algorithm may be prefer-
able for problems with linear constraints, especially when there are many inequal-
ities. The testing also suggests that a quasi-Newton Hessian approximation requires
significantly more iterations to converge. While this is not surprising, it is extremely
important when considering the very large sparse NLP problems that arise when
using discretization methods for optimal control. 

A quasi-Newton Hessian approximation suffers from another deficiency that is
not demonstrated by this comparison. The results given utilize a quasi-Newton
approximation to the full Hessian. However, exploiting matrix sparsity when using
a quasi-Newton update has to date been computationally unsuccessful. One common
alternative is to apply a quasi-Newton update to the projected or reduced Hessian,
which is dense. For example this technique is used by Gill, Murray, and Saunders [11]
in the software SNOPT. Unfortunately, as they state in [12] the method is “. . . best
suited for problems with a moderate number of degrees of freedom (say, up to
2000).” Byrd, Hribar, and Nocedal [8] use a limited memory update in the software
KNITRO in an attempt to deal with the storage requirements of the dense projected
Hessian matrix. Unfortunately like all quasi-Newton methods, limited memory
updates do not demonstrate quadratic convergence, and consequently become
prohibitively expensive for problems with many degrees of freedom. Generally,
algorithms that fully exploit Hessian sparsity have demonstrated superior computa-
tional performance for large scale optimization. Full Hessian sparsity is exploited
by the SQP and barrier methods in , as well as the LOQO algorithm of
Vanderbei and Shanno [15].

����
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TABLE 1. NLP Algorithm Performance Comparison

Step 1-Small, Dense NLP Subproblems

Mission Equatorial Polar Molniya 
SQP-Newton (10,4) (16,10) (135,44)
SQP-BFGS (24,19) (36,31) (186,96)
Barrier-Newton (24,22) (57,55) (70,68)†
Barrier-BFGS (242,241)† (58,56) (286,284)

Key: (Gradient Eval., Hessian Eval.) †No Solution



A second more serious performance issue occurs when comparing NLP algorithms
for use within the context of an SNLP. Is an SQP better than a barrier method for
Sequential Nonlinear Programming? Typically the NLP problem size grows as the
discretization mesh is refined. In this context it is required that one efficiently solve a
sequence of NLP’s. The obvious way to achieve this goal is to use coarse grid infor-
mation to “hot start” the fine grid NLP. In fact one can use high order polynomial
interpolation of the coarse grid solution to construct a very good initial guess for the
NLP problem that must be solved on a fine grid. Thus, as the mesh is refined the initial
guess for the NLP subproblem becomes better and better. An SQP algorithm can
exploit this. In contrast for an interior point algorithm, the iterates must be strictly fea-
sible. Constructing a feasible initial iterate by perturbing the user supplied initial
guess is a straightforward process performed by computational software. However in
so doing, the very first iterate for each barrier NLP is inconsistent with the coarse grid
interpolation. In short, a barrier algorithm cannot exploit a good guess! This funda-
mental shortcoming of an interior point method is discussed by Forsgren [10].

To illustrate this point consider the solution of the optimal control subproblem
for the polar mission summarized in Tables 2 and 3. Both cases were initiated using
the same information. Specifically the initial trajectory was constructed as the
solution from a Step 2 inverse problem. Using this three-body solution trajectory a
variable step-size numerical integration algorithm was used to construct the initial
grid points. Referring to Table 2, the first grid had 594 points, leading to an NLP
problem with 7136 optimization variables and 7715 nonlinear constraints. The
solution to this coarse grid problem requires 18 gradient evaluations (NGC),
10 Hessian evaluations (NHC), and 3794 function evaluations (NFE) including
those needed for finite difference derivatives. The resulting solution had a relative
discretization error of and was computed in 30.1 seconds. The grid
was refined two times, with the final grid containing 1113 points. Table 3 presents
exactly the same history, when a barrier algorithm is used to solve the NLP sub-
problems. For the SQP algorithm as the mesh is refined, the number of Hessian
evaluations and iterations decreases—only one Hessian is needed on the second on
third grids. Each coarse grid solution provides a very good guess, and the Newton
method is within its region of quadratic convergence. For the barrier method this is
not true! The second mesh required an additional 49 Hessian evaluations because
the initial guess was perturbed. The overall penalty in computation time is cata-
strophic in this example. In addition, because the initial guesses were perturbed the
barrier algorithm converged to a different local solution than the SQP. All of
the computational results were obtained using a Dell M60 laptop computer, with a
Linux operating system.

� � 1 � 10�4
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TABLE 2. Mesh Refinement with an SQP Algorithm

SQP

k M n m NGC NHC NFE Time (sec)

1 594 7136 7715 18 10 3794 30.1
2 881 10580 11446 4 1 454 7.8
3 1113 13364 14462 4 1 454 10.6

Total 26 12 4702 48.6

1 � 10�8
4 � 10�7
1 � 10�4

�



Is Mesh Refinement Needed?

In light of the apparent conflict between mesh refinement and a barrier algorithm
it is important to review why it is necessary. Let us consider the solution of the Step 2
inverse problem solution for the polar mission. To review, the conic trajectory avail-
able from the solution of Step 1 can be used to construct an initial guess. In particular
by sampling the conic at 600 equal increments, one obtains a nonlinear least
squares problem with 1800 residuals. To avoid a singularity it is necessary to omit
the point at the Moon. The shaded region in Fig. 10 illustrates the discontinuous
behavior in one component of the velocity from the conic trajectory, and the
solid line shows the smoothed approximation that results after “fitting” a three-body

�E
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TABLE 3. Mesh Refinement with a Barrier Algorithm

Barrier†

k M n m NGC NHC NFE Time (sec)

1 594 7720 7715 328 319 112475 749.3
2 881 12985 12980 57 49 17637 233.7
3 1113 14090 14085 6 2 881 18.5

Total 391 370 130993 1001.6

†Different Local Solution than SQP.

1 � 10�8
2 � 10�7
1 � 10�5

�

FIG. 10. Velocity Discontinuity.



solution to the conic. Table 4 summarizes the behavior of the mesh refine-
ment procedure for this example and Fig. 11 illustrates what the procedure does to
both the discretization error and the mesh distribution. Initially the discretization
error is very large in the vicinity of the Moon. Clearly this error can be attributed
to the approximate nature of the conic trajectory—i.e. the position goes through the
center of the Moon and the velocity change is impulsive. During the first few re-
finement iterations grid points are added in the vicinity of the discontinuity and this
leads to a significant reduction in the discretization error as measured by the value
of in Table 4. In fact after the first refinement iteration only six grid points were
added, all in the neighborhood of the discontinuity, and this reduced the discretiza-
tion error by nearly four orders of magnitude. It is also worth noting that solving
the NLP subproblem after adding these grid points was significantly more expen-
sive (taking 17 Hessian evaluations), because the entire solution had to be adjusted
to account for this effect. Clearly, mesh refinement is needed in order to address the
singularities in the vicinity of the Moon.

DAE or ODE Formulation?

The three-body dynamics of the system can be described by the ordinary differen-
tial equations summarized in the third section. However, the differential-algebraic
system presented in the fifth section can also be used when solving the subproblems

�
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FIG. 11. Mesh Refinement.

TABLE 4. Mesh Refinement

k M n m NGC NHC NFE Time (sec)

1 599 7188 7775 12 2 144 3.5 
2 606 7272 7866 21 17 525 1.1
3 606 7272 7866 4 2 724 7.6
4 742 8904 9634 4 1 448 5.6

Total 41 22 1841 27.7

k Refinement No M Grid Pts n NLP vars
m NLP cons. NGC Grad Eval NHC Hess Eval
NFE Func Eval Disc. Error Time CPU�

1 � 10�8
1 � 10�6
9 � 10�5
6 � 10�1

�
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TABLE 5. Steps 3 & 4, Optimal Solution for Molniya Mission

ODE Formulation

M n NGC NHC Time (sec)

630 7568 26 7 32.02
807 9692 7 2 12.30
940 11288 4 1 8.66
1190 14288 4 1 11.22

1190 14291 10 4 45.49

Total Time 109.69 sec �

TABLE 6. Steps 3 & 4, Optimal Solution for Molniya Mission

DAE Formulation

M n NGC NHC Time (sec)

1097 8782 30 14 45.27
1530 12246 4 1 7.98
2056 16454 4 1 11.82

2056 16456 7 2 31.02

Total Time 96.09 sec�

in Steps 2, 3, and 4. Is one formulation preferable to the other in terms of either
computational speed and/or solution accuracy? To address this question, Tables 5
and 6 compare the formulations. Specifically, the optimal control problems in Step
3 and 4, for the Molniya mission were solved using the ODE and DAE formula-
tions. Both were initialized with the same Step 2 solution trajectory. 

The comparison reveals a number of issues. First, the DAE formulation required
a final grid with 2056 points, whereas the ODE formulation achieved the same
accuracy with 1190 points. There are 12 ODE’s and the DAE system has only seven
equations. Since the number of grid points is related to the nonlinearity of the equa-
tions as well as the order of interpolation, this suggests the DAE system may be
more nonlinear. However, the total solution time is dictated by the total number of
NLP variables in the discretized subproblem. The ODE formulation requires
14,291 variables for the final iteration. In contrast, the DAE formulation needs
16,456 variables. Thus the size of the NLP problems is nearly the same, even
though one formulation involves nearly twice as many dynamic equations. Overall,
there was no clearcut difference between the ODE and DAE formulations in either
speed or accuracy for the applications considered here.

Summary and Conclusions

This paper demonstrates that optimal lunar swingby trajectories can yield signifi-
cant performance benefits for Earth orbital missions that require large plane change.
A four-step technique for computing the orbit transfers was presented and demon-
strated on a number of example missions. The approach requires first computing an



approximate solution using simple two-body dynamics. The conic solution is then
used to construct a three-body trajectory by incorporating a large scale parameter
estimation or inverse problem technique. The three-body trajectory serves as an
excellent initial guess for the final two trajectory optimization steps. Although the
stepwise procedure is illustrated for lunar swingby trajectories it has more general
applicability for any interplanetary mission analysis that currently employs “patched
conic” techniques.

The lunar swingby trajectory optimization problem is a very nonlinear boundary
value problem. As such, it serves as a challenging application to use when testing
various numerical solution techniques. Simple shooting methods are ineffective
because the lunar gravitational effects appear in the “middle” of the problem and
tend to accentuate errors propagated from the trajectory boundary. In contrast, large
scale collocation methods demonstrate the necessary robustness to deal with these
instabilities. Within the context of direct transcription methods, it is demonstrated
that a sequential quadratic programming (SQP) method is more robust and efficient
than a primal-dual barrier algorithm. In particular, a barrier algorithm cannot
exploit a good guess, which has a significant impact on both efficiency and robustness.
Finally, the use of an efficient mesh refinement procedure is critical for computing
a stable solution to the problem.
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Appendix A: Reference Epoch

The reference epoch for all numerical results corresponds to a Julian date of
2453561.5, (July 10, 2005). All results utilize an ICRF (International Celestial
Reference Frame). The lunar ephemeris was constructed using a least squares fit of
two-body dynamics to the JPL DE405 lunar ephemeris [14] over a 60 day period
beginning at the reference epoch. The resulting lunar state vector, and correspond-
ing equatorial radii and gravitational constants are given in Table 7.


