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Introduction

Gravitational capture is the phenomenon where a particle, coming from outside the sphere
of influence of another body, may have its velocity relative to the celestial body reduced
and it can even stay in orbit around it temporarily, using only gravitational forces. This hap-
pens due to the change of the two-body energy of the massless body from positive to nega-
tive relative to one of the primaries of the restricted three-body problem. The two-body
energy is constant in the two-body problem, but not in the three-body problem, where this
energy is not conserved due to the perturbation of the third body. The importance of
this study is that the results can be used to decrease the fuel expenditure for a mission going
from one of the primaries to the other, like an Earth-Moon mission. This is performed by
applying an impulse to the spacecraft during the temporary capture to accomplish a perma-
nent capture. The application of this phenomenon in spacecraft trajectories is recent in
the literature. The first demonstration of this was in 1987 (Belbruno [1]). Further studies in-
clude Belbruno [2, 3]; Krish [4]; Krish, Belbruno, and Hollister [5]; Miller and Belbruno [6];
Belbruno and Miller [7, 8]. They all studied missions in the Earth-Moon system that use this
technique to save fuel during the insertion of the spacecraft in its final orbit around the
Moon. Another set of papers that made fundamental contributions in this field, also with
the main objective of constructing real trajectories in the Earth-Moon system, are those of
Yamakawa, Kawaguchi, Ishii, and Matsuo (see references [9]–[12]). The first real appli-
cation of a ballistic capture transfer was made during an emergency in a Japanese space-
craft [13]. After that, some studies that consider the time required for this transfer appeared
in the literature. Examples of this approach can be found in the papers by Vieira-Neto and
Prado [14, 15]. The references related to the gravitational capture for the elliptic case, like
Bailey [16, 17, 18] and Heppenheimer [19], do not use the variation of the two-body energy
as done in this paper.
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The Elliptic Restricted Three-Body Problem

The equations of motion for the spacecraft are assumed to be the ones valid for
the well-known planar restricted elliptic three-body problem. The standard canoni-
cal system of units is used, which implies that:

1. The unit of distance is the semimajor axis of the orbit M1 and M2;
2. The angular velocity (�) of the motion of M1 and M2 is assumed to be one;

3. The mass of the smaller primary (M2) is given by (where and

are the real masses of M1 and M2, respectively) and the mass of M1 is 
to make the total mass of the system unitary;

4. The unit of time is defined such that the period of the motion of the two pri-
maries is 

5. The gravitational constant is one.

There are several systems that can be used to describe the elliptic restricted prob-
lem [20]. In this section the fixed (inertial) and the rotating-pulsating systems are
described.

In the fixed system the origin is located in the barycenter of the two heavy
masses M1 and M2. The horizontal axis is the line connecting M1 and M2 and the
vertical axis is perpendicular to the horizontal axis. In this system the positions of
M1 and M2 are 

(1)

(2)

(3)

(4)

where r is the distance between the two primaries, given by and

. is the true anomaly of M2. Then, in this system, the equations of motion of the
massless particle are 

(5)

(6)

where means the second derivative with respect to nondimensional time, and 
are the distances from M1 and M2, given by 

(7)

(8)

Now the rotating-pulsating system of reference is introduced. In this system, the
origin is again the center of mass of the two massive primaries. The horizontal axis
(x) is the line that connects the two primaries. It rotates with a variable angular ve-
locity in such a way that the two massive primaries are always in this axis. The ver-
tical axis (y) is perpendicular to the x-axis. Besides the rotation, the system also
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pulsates in such a way to keep the massive primaries in fixed positions. To achieve
this situation, the unit of distances is multiplied by the instantaneous value of the
distance between the two primaries (r). In a system like this one, the positions of
the primaries are 

(9)

In this system, the equations of motion for the massless particle are 

(10)

(11)

and there is also an equation that relates time and the true anomaly of the primaries

(12)

where the over dot means derivative with respect to the true anomaly of the pri-
maries and p is the semi-lactus rectum of the ellipse.

The equations that relate one system to another are 

(13)

(14)

(15)

(16)

for the positions and 

(17)

(18)

(19)

(20)

for the velocities, where and 

The Gravitational Capture

To define the gravitational capture it is necessary to use a few basic concepts
from the two-body celestial mechanics. Those concepts are 

a. Closed orbit: a spacecraft in an orbit around a central body is in a closed orbit if
its velocity is not large enough to escape from the central body. It remains always
inside a sphere centered in the central body;
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b. Open orbit: a spacecraft in an orbit around a central body is in an open orbit if
its velocity is large enough to escape from the central body. In this case, the
spacecraft can go to infinity, no matter what is its initial position.

To identify the type of orbit of the spacecraft it is possible to use the definition of
the two-body energy (E ) of a massless particle orbiting a central body. The equation

is where V is the velocity of the spacecraft relative to the central

body, � is the gravitational parameter of the central body and r is the distance be-
tween the spacecraft and the central body. 

With this definition it is possible to say that the spacecraft is in an open orbit if
its energy is positive and that it is in a closed orbit if its energy is negative. In the
two-body problem this energy remains constant and it is necessary to apply an ex-
ternal force to change it. This energy is no longer constant in the restricted three-
body problem. Then, for some initial conditions, a spacecraft can alternate the sign
of its energy from positive to negative or from negative to positive. When the vari-
ation is from positive to negative the maneuver is called a “gravitational capture,”
to emphasize that the spacecraft was captured by gravitational forces only, with no
use of an external force, like the thrust of an engine. The opposite situation, when
the energy changes from negative to positive is called a “gravitational escape.”
In the restricted three-body problem there is no permanent gravitational capture. If
the energy changes from positive to negative, it will change back to positive in the
future. The mechanism of this capture is very well explained in all the references
cited in this paper.

Assumptions to Study This Problem

To study this problem, several assumptions are made. They are

1. The true anomaly (�) of the secondary body is the parameter used to study the
importance of the eccentricity in the problem (see Fig. 1);

2. The motion is planar;
3. The starting point of each trajectory is 100 km from the Moon’s surface 

in canonical units from the center of the smallest primary). The angle �, from
the line joining the two primaries, shown in Fig. 1, is used to compute the
initial position;

��0.0045

E �
V 2

2
�

�

r
,

570 de Almeida Prado and Vieira Neto

FIG. 1. Configuration of the Bodies at in the Elliptical Restricted Three-Body Problem.t � 0



4. The magnitude of the initial velocity is calculated from a given value of
where v is the velocity of the massless body relative to the

smallest primary. Here, and in several other points of the present paper, a trans-
formation between the velocity with respect to the primaries and the velocity
given by the rotating-pulsating system is required. To perform this task, equa-
tions (17) to (20) are used for the conversion between the velocities in the iner-
tial and in the rotating-pulsating system and, then, a direct vector subtraction can
give the velocity with respect to the primaries, since the inertial velocities of the
primaries are known from the elliptic theory of orbits. The direction of the ve-
locity is assumed to be perpendicular to the line joining the smallest primary to
the massless body in a counterclockwise direction;

5. The escape occurs when the spacecraft reaches a distance of 100.000 km (0.26
in canonical units) from the center of the smallest primary in a time shorter than
50 days in canonical units) [11];

6. For each initial condition, the trajectory was numerically integrated backward in
time. Every escape in backward time corresponds to a gravitational capture in a
forward time.

Some Results

As an example of the calculations performed in the present paper, the results for
the cases where the eccentricity of the primaries is kept constant and the true anom-
aly assumes the values 0°, 90°, 180°, 270° is shown. The Earth-Moon system is
used, so the eccentricity is fixed in the value 0.0549. Figure 2 shows the numerical
results in plots where the radial variable is the magnitude of C3 and the angular vari-
able is the angle �. Figure 3 shows the circular case, for comparison. The savings
are greater where the secondary body is at periapse what is expected,
since the smaller distance between the two primaries increases the effect of the
third body (the main cause of the savings). It is also clear the regions of maximum
and minimum savings. When the Moon is at the perigee, the differences between
the circular and elliptic models are very small. These differences are increased for
the positions of � around 10°–20° and 340°–350°. At those points the value of C3

goes up to canonical units for the elliptic case, while for the circular case it
stays at Regions around 70°–80° are also of interest.

The fact that the eccentric dynamics allows larger savings when compared to the
circular one for some points is an important result. The eccentric dynamics better
represent the reality, and it is also possible to use it to obtain an extra savings, in
the order of 4.76% (from to canonical units). Better models for the
dynamics, that include more forces, could lead to even larger savings.

The jump close to shown in Fig. 3 also appeared in reference [11]. It is
located between and There are many other discontinuities similar
to this one in other plots. To understand the reason for that, a plot of two trajecto-
ries is made in Fig. 4, both with but using for the first one
and for the second one. It is clear that, changing only in �, one tra-
jectory can leave the sphere of influence of the Moon, while the other one collides
with the Moon. This fact can be easily noted in Fig. 4, because both trajectories ini-
tially escape from the Moon, then they make a return to pass close to the Moon
again. At this point, the first trajectory follows its way going far way from the
Moon, while the second trajectory collides with the Moon. This fact causes the dis-
continuities shown in the plots.

0.1#� � 57.6#
� � 57.5#C3 � �0.16,

57.6#.� � 57.5#
� � 60#

�0.22�0.21

�0.21.
�0.22

�� � 0#�,

��12

C3 � v 2 � 2��r2,
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To study in more detail the effect of the initial true anomaly (angle �) in the sav-
ings of energy, Fig. 5 shows the variation of C3 with �, when � is kept fixed.

This figure shows that the conditions in � are more important than in � for the
values of the eccentricities simulated. When the true anomaly changes, keeping �
constant, the minimum energy is almost the same. In the case where the
perilune are at the opposite side of the Earth, and this geometry allows the mini-
mum values of C3.

For the minimum energy does not reach levels of energy as low as for
the case but it shows regularity and levels of two-body energy lower than
in the cases and In more realistic cases, it is possible to make
the transfers when since there are disadvantages in terms of the potential
savings in the cases 

Then, some hypothetical systems are studied, with the goal of having more de-
tails about the effect of the eccentricity in this problem. Figure 6 shows results

� � 0#.
� � 0#,

� � 270#.� � 90#
� � 0#,

� � 180#

� � 0#,
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FIG. 2. Minimum C3 for the Earth-Moon System with � � 0#, 90#, 180#, 270#.�e � 0.0549�



when and the eccentricities of the primaries are 0.0, 0.2, 0.4, and 0.8.
The true anomaly assumes the values for every value of the
eccentricity. In this figure, the magnitude of C3 in canonical units is the radial vari-
able and the angle � is the angular variable. The eccentricity is 0.0 for the first plot,
0.2 for the second, 0.4 for the third, and 0.8 for the fourth one. It is clear that the
lowest level of energy appears when the smaller primary is at periapse and
the worst results appear when it is at the apoapses When 
and there are intermediate results. This is expected, because the smaller� � 270#

� � 90#�� � 180#�.
�� � 0#�

270#180#,90#,0#,
� � 0.01,
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FIG. 4. Discontinuities for the case At the left, the trajectory for where there is
an escape. At the right, the trajectory for where there is a collision.� � 57.6#,

� � 57.5#,C3 � �0.16.



distance between the primaries increases the third body perturbation, which is the
main cause of the reduction of energy. From those results it is also possible to con-
clude that, by increasing the eccentricity, there is an increase in the differences of
the level of energy for the families (those families appear
with more difference from each other). It is also possible to conclude that the in-
crease of the eccentricity increases the levels of savings to increase. The radial scale
goes from 0.2 (for ) to 0.8 (for ). Those figures also show the im-
portance of the choice of the angle �. The differences in the magnitude of C3 ob-
tained by different values of this parameter are very large.

Effects of the Eccentricity in the Time Required for the Capture

For this analysis, the energy was selected and fixed. Two situations
were studied. In the first one the eccentricity was fixed at 0.4 and the true anomaly
varied from to in steps of These results are shown in Fig. 7. In this figure90#.270#0#

C3 � �0.14

e � 0.8e � 0.0

270#180#,90#,� � 0#,
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the radial variable is the time of capture in canonical units and the angular variable
is the angle �. There are four positions for the Moon, where is the position
closest to the Earth and is the position with more distance from the Earth.
Each point corresponds to one trajectory. 

After that, the true anomaly was fixed at and the eccentricity was varied to
assume the values 0.0, 0.2, 0.4, and 0.8. These results are shown in Fig. 8. Those
systems of primaries are similar to the Earth-Moon system, with the eccentricities
increased to emphasize the results.

The plots show the existence of two families of trajectories. There are large vari-
ations in the time required for the capture, depending on the initial value of the
angle �. This fact shows the importance of this study, because you can get shorter
times for the transfer for a fixed value of the energy savings.

Looking at the plots for and in Fig. 7, the change in the results
are small, because the majority of the captures have a time smaller than two canon-
ical units. Looking at the case it is possible to see larger changes in the� � 180#,

� � 90#� � 0#

0#

� � 180#
� � 0#
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plots. Two new families of trajectories appear and the majority of them have times
of capture between two and four canonical units of time. The largest distance be-
tween the two primaries in this geometry reduces the gravitational perturbation and
increases the time to complete the capture. The results for shows the re-
turn of the two characteristic families. But, larger values for the time of capture,
when compared to the case still appear and the number of trajectories that
do not belong to the family increases.

Figure 8 shows the effect of the eccentricity in the time for the capture when
and the eccentricity is varied. In this figure the radial variable is the time of

capture in canonical units and the angular variable in the angle �. Every point rep-
resents one trajectory. The characteristic of the problem of having two families is
still valid here, this time for all the plots showed.

Those studies show that there is a measurable effect from increasing the eccen-
tricity for a fixed value of the true anomaly. In general, there is a tendency to

� � 0#

� � 0#,

� � 270#
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FIG. 7. Times for the Capture for Eccentricity of 0.4.



reduce the time of capture with the increase of the eccentricity. This is also ex-
plained by the reduction of the distance between the primaries, since the positions
studied are held constant at the periapses. Strong effects appear for large values of
the eccentricity (like when where the two families rotate in the clockwise
direction, staying almost horizontal. This means that the value of � that allows min-
imum and maximum times of capture changes. These results can be used in opti-
mization problems, like the ones shown below.

Optimization Problems

Several optimization problems can be solved using the results available in this re-
search. Two of them are shown below.

Problem 1: Suppose that it is necessary to build a trajectory that ends in gravita-
tional capture in a given system of primaries and for a fixed value of Assuming
that (Earth-Moon system), it is desired that this trajectory has� � 0.0121506683

rp.

e � 0.8�,
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the minimum possible time of flight, but with and 
Figures 7 and 8 are used to solve this problem. This problem is solved for the
eccentricities 0.2, 0.4, and 0.8. The values for the true anomaly are 

and The results are shown in Table 1. It includes the angle � and
the time of capture. The savings in obtained is 0.031296 canonical units
(0.032016 km�s) for all the cases, since C3 is constant. 

The results are in agreement with the general rule that says that, when the pri-
maries are closer, the perturbation is larger and the time for the capture is smaller.
For a fixed value of the eccentricity, the times are smaller for and larger for

For a fixed value of the true anomaly, the time decreases with the in-
crease of the eccentricity for and it increases when This means
that the differences between the times of capture for different locations of the pri-
maries increase with the eccentricity. The general conclusion is that, taking into ac-
count the effects of the eccentricity of the primaries, it is possible to design a
trajectory that has the minimum time of capture. The regions of values of � does
not change much, and the solutions are around Figure 9 shows the
trajectory of a space vehicle for the circular solution, as seen in the rotating frame.

This type of problem can be solved for different values of etc. Similar
problems with more degrees of freedom (like free can also be solved with the
same technique.

Problem 2: Another variant of optimization problems that can be solved with the
data shown here, is the problem of searching a gravitational capture trajectory that
has a maximum savings subject to constraints in time, like a maximum time al-
lowed for the maneuver. Figures 7 and 8 are also used to solve this problem. As-
sume that the Earth-Moon system is used and the value of is
required, together with the time limit of 0.8 canonical units of time for the maneu-
ver. Again, four possibilities for the eccentricities and for the true anomaly are used.
Table 2 shows the results. Compared with the circular solution, it is clear that for a
fixed value of the eccentricity, C3 reaches a minimum for and a maximum
for 

Then, the maximum savings for a problem with an upper limit of time is reached
for the position It is also noted that C3 decreases with the increase of the
eccentricity for and it increases when � � 180#.� � 0#

� � 0#.

� � 180#.
� � 0#

rp � 0.004781477

rp�
C3,rp,�,

� � 300# � 30#.

� � 180#.� � 0#
� � 180#.

� � 0#

�V
270#.180#,90#,

� � 0#,e � 0.0,

rp � 0.004781477.C3 � �0.14
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TABLE 1. Solutions for Problem 1

0° 90° 180° 270°

0 — — —
— — —

0.2 335° 333° 331°
0.6576 0.9452 0.7656

0.4 312° 354° 330°
0.5402 1.3657 0.7016

0.8 281° 315° 330°
0.1797 2.6443 0.3882t � 0.1735

� � 292#

t � 0.4556
� � 325#

t � 0.6033
� � 311#

t � 0.7482
� � 338#

e��



Then, the differences in energy for several final conditions of a specific trajec-
tory increase with the increase of the eccentricity of this trajectory. The general
conclusion is that, when taking into account the eccentricity of the primaries, it is
possible to design a maneuver with maximum savings for a given time limit for the
capture. The region of � that solves this problem is around Figure 10
shows the trajectory of a spacecraft for the solution of the circular case, as seen

330# � 15#.

Study of the Gravitational Capture in the Elliptical Restricted Three-Body Problem 579

FIG. 9. Trajectory of Problem 1 (Canonical Units).

TABLE 2. Solutions for Problem 2

0° 90° 180° 270°

0 — — —
— — —

0.2
321° 346° 331°

0.4
342° 328° 330°

0.8
333° 346° 330°� � 328#

�0.34�0.07�0.71C3 � �0.85

� � 328#
�0.16�0.09�0.24C3 � �0.28

� � 338#
�0.14�0.11�0.17C3 � �0.19

� � 328#
C3 � �0.15

e��



from the rotating system. Solutions for other cases can be obtained by solving a
particular problem or interpolating the tables available.

Conclusions

A numerical algorithm was developed to study the problem of gravitational
capture in the elliptical restricted three-body problem. The effect of the true anom-
aly for a fixed eccentricity and the effect of the eccentricity for a fixed true
anomaly were studied. 

From the results available, it is possible to conclude that the elliptic restricted
three-body problem has some differences in the results, when compared with the
circular case. These differences can be used in real missions to obtain some extra
savings in fuel or in time for the maneuver. Figure 6 showed the locations and the
magnitude of the differences between the two mathematical models and can be
used to find optimal points for the maneuver.

The simulations made in this paper also explained the reason of some important
discontinuities shown in the plots of minimum energy reached by the gravita-
tional capture.

The main effect of the eccentricity is to decrease the two-body energy. Another
important effect is that, if C3 is held fixed, the time for the capture is reduced when
the eccentricity is increased.
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FIG. 10. Trajectory for Problem 2 (Canonical Units).



Regarding the true anomaly, the periapsis is the best location for the
gravitational capture because it has the larger savings in terms of energy and
the smaller times of capture.

The results showed in this paper also allow the formulation and solution of sev-
eral practical problems involving optimization of parameters. Two examples were
proposed and solved: 1) to find a trajectory that has a fixed energy and the mini-
mum time of capture and; 2) to find one trajectory that has the minimum energy
with a limit time for the capture. Both solutions were shown in details.
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