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 Linear and non-linear quantitative structure property relationship (QSPR) models for predicting the gas/particle partitioning 
coefficients of semivolatile organic compounds were developed based on partial least squares (PLS) and artificial neural network 
(ANN) to identify a set of structurally based numerical descriptors. Multilinear regression (MLR) was used to build the linear 
QSPR models using combination of the compounds structural descriptors and topological indices related to environmental condi-
tions such as temperature, pressure and particle size. The prediction results for PLS and ANN models give very good coefficient 
of determination (0.97). In consistent with experimental studies, it was shown that linear and non-linear regression analyses are 
useful tools to predict the relationship between the calculated descriptors and gas/particle partitioning coefficient. 
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INTRODUCTION 

 Semivolatile organic compounds (SVOCs) are distributed 
throughout the environment. An example of SVOCs includes 
polycyclic aromatic hydrocarbons (PAHs), polychlorinated 
biphenyls (PCBs) and others. These compounds have been 
implicated in causing a range of health problems in the      
immune, endocrine, nervous and reproductive systems of   
animals and humans [1]. Polychlorinated biphenyls (PCBs) 
were prohibited in Europe and the USA in the 1970s [2,3] 
because they are toxic on living organisms and bio-
accumulative characteristics. PCB sources contributing the 
atmospheric concentration levels are burning of PCB         
containing materials, air-water/soil exchange, vaporization 
from waste disposal areas sludge  dewatering  beds,  electronic 

*Corresponding author. E-mail: deeb2000il@yahoo.com

devices containing PCBs [4,5]. Polycyclic aromatic            
hydrocarbons (PAHs) are organic compounds composed of at 
least two aromatic rings combined together. PAHs are        
produced during incomplete combustion of organic materials 
from sources such as residential heating (coal, wood, and oil), 
vehicle exhausts, aluminum production, cement manufacture, 
production of coal tar, coke and asphalt, and petroleum         
catalytic cracking. Many of PAH compounds have been    
classified as potential human carcinogens. As a result, they 
have received widespread interest in recent decades in air  
pollution studies [6,7]. PAHs are categorized as priority     
pollutants in the United States Environmental Protection 
Agency (US EPA) and the European Environment Agency 
(EEA). Polychlorinated dibenzo-p-dioxins (PCDD) are well-
known organic pollutants [8,9]. These fine particles play an 
essential role in the transport of toxic compounds and related 
increased health risk to humans (US EPA, 1996).  
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 SVOCs concentrations are generally higher in metropolitan 
areas than in rustic areas [10-13] and show seasonal           
disparities. SVOCs in atmosphere are realized to partition  
between gas and particle phase. Gas/particle partitioning of 
SVOCs is an important topic in understanding the atmospheric 
behavior of SVOCs. To fully understand atmospheric         
phenomena and possible health effects, it is necessary to    
undertake a partitioning study that considers site specific  
characteristics (particle size, surface area, and mass), source 
region and meteorological conditions. The gas/particle       
partitioning coefficient, expressed as Kp, is a necessary input 
parameter for mathematical models that attempt to interpret 
SVOCs’ transportation and vapor exchange across the air-
water interface [8,14,15]. It is also an indispensable parameter 
to estimate the concentrations of SVOCs [16] in different   
environmental matrixes. Therefore, information about the Kp

values for SVOCs is needed. 
 However, the experimental procedures determining the 
values of Kp are always time-consuming, cost-expensive, and 
difficult to accurately distinguish congener species with    
similar physicochemical properties [15-17]. A different but 
highly effective tool depending on QSPR can be utilized to 
predict Kp values for those compounds with no literature    
values. 
 QSPR studies are very active in different fields including 
chemistry,    biochemistry   and   environmental   problems.  In 
QSPR, a correlation between physicochemical properties and 
molecular descriptors are generated [17]. Once a QSPR model 
is constructed, the whole congeners can be predicted.  

 Recently, the direct prediction of gas/particle partitioning 
for SVOCs using QSPR methods were reported [18] for 209 
polychlorinated biphenyl compounds by partial least    
squaresmethod. In continuation to previous studies [19-23], 
this study aims to evaluate multivariate statistical models for 
predication of the gas/particle partitioning coefficients of 
SVOCs. For this purpose, the relationship between molecular 
descriptors, related to the factors found experimentally to  
affect the gas/particle partitioning of SVOCs [6,7] and the 
logarithm of Kp were comprehensively explored and then 
QSPR models were constructed using partial least squares 
(PLS) and artificial neural network (ANN) method. Finally, 
the performances of the QSPR models were validated.
 A total of 70 semivolatile organic compounds were      
collected. These compounds represent several chemical 
classes including PAHs, PCBs, Polychlorinated Naphthalenes 
(PCNs), PBDEs and PCDD/Fs which are pollutants widely 
identified in atmosphere. The Kp values (25 °C) for PAHs and 
PCBs are cited from the literature by Finizio et al. [24] PCNs, 
PBDEs and PCDD/Fs are cited from Harner et al. [25], Chen 
et al. [26] and Kadowaki et al. [27], respectively, according to 
the method of Finizio et al. [24]. These SVOCs together with 
observed logarithms of their gas/particle partitioning          
coefficient (logKp) values listed in Table 1.  

EXPERIMENTAL 

Software 
 Geometry  Optimization  was  performed  by   HyperChem 

              Table 1. Non-Ionic Organic Compounds Used in this Study and Their Experimental logKp Values 

No. Compound name logKp No. Compound name logKp

1b Fluorene -4.48 36a 1,2,4,5,8-Petachlorinated naphthalene -3.39 

2d Phenanthrene -4.20 37b 1,2,3,4,6,7-Hexachlorinated napthalene -3.14 

3a Anthracene -4.27 38a 1,2,3,4,5,7-Hexachlorinated napthlene -3.09 

4a Pyrene -3.27 39a 1,2,3,5,7,8-Hexachlorinated napthalene -3.09 

5c Fluoranthene -3.37 40a 1,2,4,5,6,8-Hexachlorinated napthalene -3.04 

6a Chrycene -2.16 41a 1,2,3,4,5,6-Hexachlorinated napthalene -2.96 
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 Table 1. Continued 

7c Benz[a]anthracene -2.13 42a 1,2,3,4,5,8-Hexachlorinated napthalene -2.92 

8a Benzo[a]pyrene -1.08 43a 1,2,3,4,5,6,7-Heptachlorinated napthalene -2.60 

9c Benz[k]fluoranthene                                     -1.32 44b 1,2,3,4,5,6,8-Heptachlorinated napthalene -2.56 

10a 2,4'-Dichlorinated biphenyls -4.60 45b 1,2,3,4,5,6,7,8-Octachlorinated napthalene -2.16 

11a 2,3',4'-Trichlorinated biphenyls -4.03 46b 2,4,4'-Tribrominated biphenyle ether -3.49 

12a 2,2',3,3'-Tetrachlorinated biphenyls -3.72 47c 2,2,4,4'-Tera brominated biphenyle ether -2.72 

13a 2,2'4,5'-Terachlorinated biphenyls -3.89 48a 2,3',4,4'-Tetrabrominated biphenyle ether -2.59 

14b 2,2',5,5'-Tetrachlorinated biphenyls -3.80 49a 2,2,'3,4,4'-Pentabrominated biphenyle ether -1.80 

15c 2,3',4,4'-Terachlorinated biphenyls -3.66 50a 2,2'4,4',5-Pentabrominated biphenyle ether -1.98 

16a 2,3',4,'5-Tetrachlorinated biphenyls -3.61 51a 2,2',4,4',6-Pentabrominated biphenyle ether -2.14 

17a 2,4,4',5-Tetrachlorinated biphenyls -3.63 52a 2,2,'3,4,4',5'-Hexabrominated biphenyle ether -1.28 

18c 2,2',3,4',5'-Penta chlorinated biphenyls -3.29 53c 2,2',4,4'5,5'-Hexabrominated biphenyle ether -1.32

19a 2,2',4,4',5-Pentachlorinated biphenyls -3.35 54b 2,2',4,4',5,6'-Hexabrominated biphenyle ether -1.50 

20a 2,2'4,5,5'-Pentachlorinated biphenyls -3.39 55c 2,2,'3,4,4',5',6-Heptabrominated biphenyle ether -0.91 

21a 2,2,3,3',4,4'-Hexachlorinated biphenyls -2.67 56c 1,2,3,4-Tetrachlorinateddibenzodioxine -2.36 

22b 2,2',3,4,4',5'-Hexachlorinated biphenyls -2.79 57a 1,2,3,7-Tetrachlorinateddibenzodioxine -2.41 

23c 2,2,'3,3'4,4',5-Heptachlorinated biphenyls  -2.88 58a 1,3,6,8-Tetrachlorinateddibenzodioxine -3.01 

24b 2,2',3,3',4,4',5-Heptachlorinated biphenyls -2.23 59c 2,3,7,8-Terachlorinateddibenzodioxine -3.32 

25a 2,2',3,4,4',5,5'-heptachlorinated biphenyls -2.36 60b 1,2,3,4,7-Pentachlorinateddibenzodioxine -2.17 

26b 1,3,5-Trichlorinated napthalene -4.46 61c 1,2,3,4,7,8-Hexachlorinateddibenzodioxine -1.23 

27a 1,4,6-Trichlorinated napthalene -4.46 62a 1,2,3,4,6,7,8-Heptachlorinateddibenzodioxine -0.60

28b 1,3,5,7-Tetrachlorinated napthalene -4.15 63a Octachlorinateddibenzodioxine -0.57 

29b 1,4,6,7-Tetrachlorinated napthalene -4.03 64a 2,3,7,8-Tetrachlorinated dibenzofuran -2.40 

30a 1,2,3,5-Tetrachlorinated napthalene -3.93 65a 2,3,4,7,8-Pentachlorinated dibenzofuran -2.26 

31c 1,2,5,8-Tetrachlorinated napthalene -3.86 66a 1,2,3,4,7,8-Hexachlorinated dibenzofuran -1.91 

32c 1,2,4,5,7-Pentachlorinated naphthalene -3.57 67a 1,2,3,6,7,8-Hexachlorinated dibenzofuran -1.91 

33a 1,2,4,5,6-Pentachlorinated napthalene -3.46 68a 1,2,3,4,6,7,8-Heptachlorinated dibenzofuran -0.89 

34a 1,2,4,7,8-Pentachlorinated napthalene -3.46 69a 1,2,3,4,7,8,9-Heptachlorinated dibenzofuran -0.58 

35a 1,2,3,5,8-Pentachlorinated napthalene -3.45 70b Octachlorinated dibenzofuran -0.44 
aCompound  belongs to the training set.  bCompound  belongs  to the  test  set.  cCompound  belongs to the  validation  set as  
applied in the ANN  analysis. Note  that  in  PLS  analysis,  aand  ccompounds  are  belonging to  the  same  set (training set).   
dUtlier. 
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(Version 7.0 Hypercube, Inc.) at the Austin model 1 (AM1), 
semi-empirical method level. An AM1 optimization was    
chosen since it was developed and parameterized for common 
organic structures. Descriptors were calculated using          
HyperChem and Dragon software (Milano Chemometrics and 
QSPR Group, http://www.disat.unimib.it/chm/). SPSS       
Software (version 13.0, SPSS, Inc.) was used for the simple 
MLR analysis. PLS, PCA and ANN regression were          
performed in the MATLAB (Version 7.0.1 (R14), Mathworks, 
Inc.) environment. 

Chemical Data and Descriptors
 Compounds name and their logarithms of the gas/particle 
partitioning coefficient (logKp) are included in Table 1. 
Chemical structure of these compounds was obtained from 
HyperChem software and optimized on AM1 semi-empirical 
level. The Optimization was preceded by the Polak-Rebiere 
algorithm to reach 0.01 root mean square gradient. In this 
study, 19 molecular descriptors including combination of 
structural descriptors and topological indices were calculated 
using HyperChem and Dragon software, these descriptors are 
J, JhetZ, Jhetm, Jhetv, Jhete, Jhetp, BAC, 0

χ, 1
χ, 2χ, 0

χ

v, 1
χ

v, 2
χ

v, 
MR, MV, PC, Ir, ST, Pl (See Appendix 1).  

Multiple Linear Regression (MLR) Analysis 
 MLR analysis using the method of maximum-R2 with 
stepwise selection and elimination of variables [28] was     
employed to model the logarithms of the gas/particle          
partitioning coefficient (logKp) relationships with different set 
of structural descriptors and topological indices to select initial 
input models for the artificial neural networks algorithm 
(ANN).  

Principal Component-Artificial Neural Network (PC-
ANN) 
 In contrast to MLR, the artificial neural networks (ANN) 
are capable of recognizing highly nonlinear relationships. The 
flexibility of ANN enables it to discover more complex      
relationships in experimental data, when it is compared with 
the traditional statistical models. The principal component-
artificial neural network (PC-ANN) was proposed by       
Gemperline et al. [29], to improve training speed and decrease 
the overall calibration error.   

 In this method [29], as a preliminary treatment, the input 
data (i.e., molecular descriptors) was normalized so as to have 
zero mean and unity variance, and then were subjected to 
principal component analysis (PCA) before being introduced 
into the neural network. The most significant principal      
components (PCs), which explain most of the variances in the 
original data (>95%), were selected, ranked according to   
decreasing Eigen-value and then used as ANN input. It should 
be noted for each MLR resulted model separate PC-ANN 
models were developed so that the input’s descriptors were the 
subsets selected by the stepwise MLR methods.  
 In the case of each MLR model, a feed-forward neural 
network with back-propagation of error algorithm was       
constructed to model the property structure relationships    
between the extracted PCs of the descriptors in one hand and 
the logarithm of gas/particle partitioning coefficient data of the 
semivolatile organic compounds in the second hand. More 
details about the model development in PC-ANN and the    
network architecture are explained in references [19,20,22]. 
Over-fitting problem or poor generalization capability happens 
when a neural network over learns during the training period.  
 A too well-trained model may not perform well on unseen 
data set due to its lack of generalization capability. An       
approach to overcome this problem is the early stopping 
method in which the training process is concluded as soon as 
the overtraining signal appears. This approach requires the 
data set to be divided into three subsets: training, test and  
validation sets. The training and the validation sets are the 
norm in all model training processes. The test set is used to 
test the trend of the prediction accuracy of the model trained at 
some point of the training process. At later training stages, the 
validation error increases. This is the point when the model 
should cease to be trained to overcome the over-fitting     
problem. To achieve this purpose, the extracted PCs for each 
MLR model were classified into training set (60%), validation 
set (20%) and external test set (20%). Then, the training and 
validation sets were used to optimize the network               
performance. The regression between the network output and 
the property was calculated for the three sets individually. The 
training function “trainscg” in MATLAB was used to train the 
network. To find models with lower errors, the ANN          
algorithm was run many times, each time run with different 
geometry and/or initial weights.   
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Partial Least Squares (PLS) Analysis 
 PLS is a method for building regression models on the 
latent variable (LV) decomposition relating two blocks,     
matrices X and Y, which contain the independent, x, and   
dependent, y, variables, respectively. In this procedure, it is 
necessary to find the best number of latent variables, which is 
normally performed by using cross-validation, based on     
determination of minimum prediction error. Leave-one-out 
cross validation was carried out using the NIPALS algorithm. 
Applications of PLS have been discussed by several workers 
[21,30,31].  The  data  was  divided  into  80% training set and  

20% test set. To have comparable data with that used in the 
ANN analysis, the outliers and test set compounds are kept the 
same as in the PC-ANN analysis.  

RESULTS AND DISCUSSION 

 MLR Analysis 
 Table 1 shows the SVOCs listed together with observed 
logKp values. Table 2 records the regression models suggested 
from MLR analyses on logKp and a set of 19 molecular de 
scriptors including combination  of  structural  descriptors  and 

       Table 2. Correlation Coefficient for MLR, PLS and ANN  Models  3-16 and  Cross  Validation  Parameters  for  PLS and ANN  
                      Models 

MLR PC-ANN PLS   
M#a

Descriptors 
R SE  #PCs Rc R2

CV
c Rp PEp  LV Rc R2

CV
c Rp PEp

3 2
χ, MR, ST 0.972 0.260  2 0.978 0.951 0.988 7.263  2 0.968 0.933 0.984 6.396 

4 2
χ, MR, ST, 0χ 0.974 0.253  3 0.978 0.944 0.989 6.47  3 0.971 0.938 0.984 6.546 

5 2
χ, MR, ST, 

0
χ, MV 

0.975 0.250  2 0.975 0.904 0.984 10.227  3 0.969 0.936 0.984 6.658 

6 2
χ, MR, ST, 

0
χ, MV, Ir 

0.979 0.232  3 0.982 0.958 0.993 6.138  2 0.970 0.936 0.984 6.607 

7 2
χ, MR, ST, 

0
χ, MV Ir, 1χv

0.98 0.225  3 0.986 0.966 0.993 6.366  2 0.966 0.958 0.984 6.542 

8 2
χ, MR, ST, 

0
χ, MV, Ir, 

1
χ

v, 1χ

0.981 0.223  3 0.969 0.9 0.986 9.315  3 0.970 0.938 0.983 6.844

9 2
χ, MR, ST, 

0
χ, MV, Ir, 

1
χ

v, 1χ, BAC 

0.984 0.207  3 0.972 0.936 0.985 10.306  8 0.980 0.958 0.994 5.365 

10 2χ, MR, ST, 
0χ, MV, Ir, 
1χv, 1χ, BAC, 
0χv 

0.985 0.203  3 0.974 0.936 0.985 6.536  3 0.966 0.929 0.988 5.669 
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       Table 2. Continued 

11 2
χ, MR, ST, 
χ0, MV, Ir, 
1
χ

v, 1χ, BAC, 
0
χ

v, Jhetp

0.985 0.204  3 0.977 0.946 0.984 7.174  3 0.970 0.937 0.988 6.219 

12 2
χ, MR, ST, 

0
χ, MV, Ir, 1χv, 

1
χ, BAC, 0χv, 

Jhetp, PC 

0.985 0.206  3 0.972 0.938 0.973 9.546  4 0.972 0.941 0.987 6.423 

13 2
χ, MR, ST, 0

χ, 0χv, Ir, 1χv, 
1
χ, BAC, 0χv, 

Jhetp, PC, 2χv

0.985 0.207  3 0.98 0.947 0.985 8.272  3 0.970 0.937 0.988 6.043 

14 2
χ, MR, ST, 

0
χ, MV, Ir, 

1
χ

v, 1χ, BAC, 
0
χ

v, Jhetp, PC, 
2
χ

v, Jhetm

0.985 0.209  3 0.981 0.96 0.991 6.223  3 0.969 0.935 0.988 5.999 

15 2
χ, MR, ST, 

0
χ, MV, Ir, 

1
χ

v, 1χ, BAC, 
0
χ

v, V, Jhetp, 
PC, 2χv, Jhetm, 
Jhete

0.985 0.211  3 0.981 0.957 0.986 7.02  3 0.968 0.934 0.987 6.021 

16 2
χ, MR, ST, 

0
χ, MV, Ir, 

1
χ

v, 1χ, BAC, 
0
χ

v, Jhetp, PC, 
2
χ

v, Jhetm, 
Jhete, Pl 

0.985 0.212  3 0.975 0.939 0.987 7.409  3 0.970 0.937 0.985 6.747 

    aM# is model number, crefers to the training (calibration) set and prefers to the external test (prediction) set,  R is correlation         
   coefficient, R2

CV (Q2)  is cross-validated coefficient of determination, SE is standard error of  the estimate, EP is the relative  
          standard error of prediction. 
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topological indices (See Appendix 1). The number of         
descriptors in these models is varied between 3 and 16. 
 The highest MLR correlation coefficient (R) obtained is 
0.985 for a regression model with 10-16 descriptors (models 
10-16). Table 2 shows that R is constant for models 10-16 
pointing up that adding more than 9 or 10 variables will not 
improve the correlation. However, model 8 has close          
coefficient of determination (R2) to that of models 6 and 7 
(~0.96) which implies that 6-8 descriptors are enough to    
describe the relation with logKp. This number is less than what 
is recommended by the rule of the thumb [32]. Artificial neural 
networks algorithm (ANN) was used seeking to investigate the 
obtained regression models.  

PC-ANN
 The inputs of the ANN were the subset of the descriptors 
used in different MLR models (Table 2). The correlation data 
matrix for these descriptors is represented in Table 3. As it is 
observed, some descriptors represent high degree of           
collinearity. Collinear descriptors add redundancy to the input 
data matrix and therefore the performances of the models   
obtained by using these descriptors will be degraded. Principal 
component analysis (PCA) and more specifically factor   
analysis (FA) groups together variables that are collinear to 
form a composite indicator capable of capturing as much of 
common information of those indicators as possible. Each 
factor reveals the set of variables having the highest           
association with it. The idea under this approach is to account 
for the highest possible variation in the indicators set using the 
smallest possible number of factors. Therefore, the index no 
longer depends upon the dimensionality of the dataset but it is 
rather based on the “statistical” dimensions of the data.      
Application of PCA on a descriptor data matrix results in a 
loading matrix containing factors or principal components, 
which are orthogonal and therefore do not correlate with each 
other. We used these factors as the inputs of ANN instead of 
the original descriptors.  
 Since, the information contents of some extracted features 
(PC’s) may not be in the same direction of the property data, 
the main problem arises from all of the PCA-based algorithms, 
is how many and which PC’s constitute a good subset for   
predictive purposes. Different methods have been addressed to 
select the significant PC’s for calibration [32-38]. The simplest 

and most common one is a top-down variable selection where 
the factors are ranked in the order of decreasing eigenvalues 
(eigenvalue ranking, ER). The factors with the highest       
eigenvalue are considered as the most significant ones, and, 
subsequently, the factors are introduced into the calibration 
model until no further improvement of the calibration model is 
obtained.  
 Firstly, PCA was used to classify the molecules into    
training, validation and prediction sets. PCA was performed 
on the whole data of 70 compounds and 19 descriptors and the 
first principal was plotted versus the second and third ones. 
Figure 1 shows the distribution of the data in the space of the 
first and second PCs (Fig. 1a) as well as their distribution in 
the space of the first and third PCs (Fig. 1b). Figure 1a shows 
that compound 2 is an outlier, i.e. molecule 2 behaves        
differently from other molecules with respect to both         
molecular structure (descriptors) and the logarithm of 
gas/particle partitioning coefficients (logKp). Therefore, this 
molecule was not used in the future analysis. The space of the 
first and second PCs was not enough to describe the            
distribution of all the data, hence, the space of the first and 
third PCs was considered to have clearer picture of the data set 
distribution. According to the pattern of the distribution of the 
data in factor spaces (Fig. 1) the training, validation and     
prediction molecules were selected homogenously, so that 
molecules in different zones of Figs. 1a and 1b included to all 
three subsets. After removing the outliers and subjecting the 
data for the remaining 69 compounds to the preliminary treat-
ment mentioned above, the classified data was used as an in-
put for the ANN.  
 In this study, a three-layered feed-forward ANN model 
with back-propagation learning algorithm [39] was employed. 
First, the nonlinear relationship between the subset of        
descriptors selected by stepwise selection-based MLR (Table 
2) and logKp was proceeded by PC-ANN models with similar 
structure. The number of hidden layer’s nodes was set 7 for all 
models and the number of nodes in the input layer was the 
number of PCs extracted for each subset of descriptors. The 
results of PC-ANN modeling for MLR models number 3-16
are given in Table 2.  
 This table shows that, from a statistical viewpoint, models 
6, 7 and 14 are comparable. This table shows that the        
mentioned   models  have   almost    the    highest   correlation          
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coefficient for the external test set (0.993, 0.993 and 0.991 for 
models 6, 7 and 14, respectively) which reflects their high 
predictive power. The PRESS/SST ratio, where PRESS is the 
predictive residual sum of squares and SST is the regression 
sum of squares, calculated as  

 ( 2 2
exp

1 1
/ ( ) / ( )

n n

pred pred
i i

PRESS SST y y y y
= =

= − −∑ ∑
) 

is an indicator of how reasonable the models are.  
 These models have a relatively low PRESS/SST ratio 
(0.042, 0.034 and 0.040 for models 6, 7 and 14, respectively) 
compared with other models which make them the most    
reasonable models among all. Furthermore, the training set in 
models 6, 7 and 14 has a correlation coefficient of 0.982 and 
0.986 and 0.981, respectively. The cross-validation             
coefficients   of  determination  (R2

CV or Q2)  for  model  6  are  

        Table 3. Correlation Matrix for the Variables Used in ANN Models 

logKp Jhetm Jhete Jhetp BAC 0
χ

1
χ

2
χ

0
χ

v

logKp 1         
Jhetm -0.080 1        
Jhete -0.221 0.946 1       
Jhetp -0.484 0.665 0.746 1      
BAC 0.581 0.614 0.467 0.089 1     
0
χ 0.885 0.008 -0.160 -0.440 0.714 1    

1
χ 0.913 -0.314 -0.453 -0.601 0.460 0.913 1   

2
χ 0.925 -0.152 -0.296 -0.536 0.594 0.950 0.977 1  

0
χ

v 0.726 0.185 0.000 -0.472 0.694 0.800 0.663 0.725 1
1
χ

v 0.782 0.051 -0.131 -0.547 0.614 0.827 0.748 0.783 0.983 
2Xv 0.688 0.186 0.015 -0.427 0.621 0.727 0.610 0.668 0.935 
MR 0.899 -0.061 -0.219 -0.483 0.532 0.834 0.831 0.834 0.825 
Mv 0.738 0.067 -0.120 -0.443 0.653 0.834 0.715 0.755 0.887 
PC 0.777 0.087 -0.091 -0.432 0.649 0.841 0.733 0.786 0.854 
Ir 0.409 -0.313 -0.267 -0.125 -0.235 0.067 0.329 0.239 -0.080 
ST 0.777 -0.107 -0.159 -0.412 0.308 0.559 0.687 0.697 0.388 
Pl 0.881 -0.060 -0.216 -0.464 0.533 0.829 0.822 0.824 0.814 

1
χ

v 2
χ

v MR MV PC Ir St Pl 
1
χ

v 1        
2
χ

v 0.927 1       
MR 0.869 0.781 1      
MV 0.878 0.805 0.897 1     
PC 0.848 0.778 0.878 0.929 1    
Ir 0.039 -0.006 0.309 -0.139 -0.034 1   
ST 0.454 0.400 0.572 0.259 0.398 0.709 1  
Pl 0.856 0.768 0.987 0.896 0.872 0.286 0.544 1 
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Fig. 1. Correlation  of  1st  principal  component  with 2nd   

                principal component  (1a) and 1st and 3rd principal  
          components  (1b)   for  the  factor  spaces  of   the 

               descriptors and  the logarithms of their gas/article   
               partitioning coefficient (logKp). 

0.958 and 0.973 for calibration and prediction, respectively. In 
other words, the three PCs selected by eigenvalue ranking 
procedure can explain at least 95.8% and 97.3% variances in 
logKp for the calibration and prediction, respectively. Model 7, 
which models 3 PCs as well, has  comparable  prediction  R2

CV  

value (0.976) and higher calibration R2
CV (0.966). Model 14,

which models also 3 PCs, has a comparable calibration and          
prediction cross-validation coefficients of determinations 
(0.960 and 0.972, respectively) to those of model 6. Figure 2a 
shows plots of PRESS against ANN model numbers (3-16) for 
training and test sets. This figure demonstrates that the values 
of PRESS for ANN models 6, 7 and 14 are the minima for 
training and test sets simultaneously which allocates them as 
nominees for carrying outing the feature analysis.               
Accordingly, the number of hidden nodes for models 6, 7 and 
14 was optimized and evaluated.  
 In order to optimize the performance of the suggested 
ANN models, we trained the ANN using different number of 
hidden nodes starting from 1 hidden node to 20 hidden nodes. 
Figure 2b shows plots of PRESS against number of hidden 
nodes for training and test sets for ANN model 6. This plot 
shows that the minima on PRESS curves for the test set is  
observed when using 7 hidden nodes while that for the training 
set is detected when using 15 hidden nodes. However, the 
PRESS value for the training set when using 15 hidden nodes 
is slightly lower than that when using 7 hidden nodes while 
the PRESS value for the test set when using 7 hidden nodes is 
slightly lower than that when using 15 hidden nodes. Needless 
to say, the difference between the PRESS values for the   
training or test sets when using 7 or 15 hidden nodes is quite 
small. Furthermore, it is noticed that the PRESS values for the 
external test set, in general, are lower than that for the training 
set. 
 Table 4 shows regression and cross validation parameters 
obtained from optimizing the number of hidden nodes for 
model 6. This table shows that using 7 and 15 hidden nodes 
gives the best cross validation parameters. However,           
recognizing that large numbers of hidden nodes often draw 
attention to the risk of overfitting [40] implies that using 7 
hidden nodes is preferable on using 15. 
 Figure 2c shows plots of PRESS against number of      
hidden nodes for training and test sets of ANN model 7. This 
plot shows that the minima of PRESS curves for both the 
training and test sets take place when using 7 hidden nodes. 
Although the models obtained using 15 and 16 hidden nodes 
are analogous to that obtained using 7 hidden nodes, the later 
number of hidden nodes gives a prediction error (PE) of 
0.472%  while  using 15 or 16 hidden nodes give  a  prediction  
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error of 0.631% and 0.545%, respectively. Therefore, using 7 
hidden nodes is considered the optimal number for this model 
given that the evaluation of the predictive ability of a         
multivariate calibration model is based on determination of 
minimum prediction error [41].  
 Table 4  shows  the  results  for  optimizing  the  number of 

hidden nodes for model 14. An ANN with 7 hidden nodes 
gives a reasonable model with low PRESS/SST ratio (0.034) 
and high correlation coefficient for both the training set 
(0.986) and the prediction set (0.993). This model gives and 
R2

CV of 0.966. Figure 2d shows plots of PRESS against    
number  of  hidden  nodes  for  training  and  test  sets  for  this 

Fig. 2. Correlation  of  PRESS  with: (2a) ANN models  (3-16), (2b) different numbers of hidden nodes for model 6, (2c)  
           different number of hidden nodes for model 7 and (2d) different number of hidden nodes for model 14. Black and  

                  grey columns represent PRESS values for the training and test sets, respectively. 
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model. 
 This figure shows that the minima of PRESS curves for the 
training set is obtained using 7 or 16 hidden nodes (1.824 and 
1.628, respectively) while those for the test set are 0.518 and 
0.585, respectively. However, following the same argument 
used for model 6, the preference is for the model obtained 
using the smaller number of hidden nodes (7 in this case) to 
avoid overfitting risk. Table 4 shows regression and cross 
validation parameters for optimizing the number of hidden 
nodes for model 7. An ANN with 7 hidden nodes gives the 
most reasonable model with low PRESS/SST ratio (0.040) and 
a very high calibration correlation coefficient of 0.981 along 
with the highest prediction correlation coefficient (0.991). 
This model gives an R2

CV of 0.960 and prediction error of 
0.510%. 

 Comparing the cross-validation parameters obtained for 
the three models mentioned above, it can be noticed that these 
models are in close proximity from a statistical point of view. 
Again, as stated in [41], choosing the best model is normally 
achieved by using cross-validation, based on determination of 
minimum prediction error and for the optimal number of    
hidden nodes for model 7 (7 hidden nodes) has the lowest   
prediction error (0.472%) compared with those for models 6
and 14 (0.503% and 0.510%, respectively), model 7 obtained 
using 7 hidden nodes is regarded as the optimal one. This 
model contains the following seven descriptors: 2

χ, MR, ST, 
0
χ, MV Ir, 1χv (see Appendix 1) represented by 3 PCs.  

 Table 5 shows regression and cross validation parameters 
for randomization test that is performed to investigate the 
probability of chance correlation for model 7 obtained using  7 

Table 4. Correlation Coefficients and Cross Validation Parameters for ANN Models 6, 7 and 14 Using Different Numbers  
                      of Hidden Nodes 

Model 6 Model 7 Model 14 

hn#a Rc R2
CV

c Rp PE (%)p  Rc R2
CV

c Rp PE (%)p  Rc R2
CV

c Rp PE (%)p

1 0.958 0.843 0.974 15.054  0.956 0.843 0.974 15.176  0.954 0.844 0.969 15.212 
2 0.970 0.926 0.983 9.430  0.971 0.926 0.983 9.527  0.969 0.921 0.978 9.918 
3 0.965 0.914 0.981 9.405  0.976 0.946 0.987 7.136  0.965 0.918 0.981 10.040 
4 0.970 0.911 0.985 10.869  0.961 0.916 0.977 7.978  0.971 0.942 0.984 7.027 
5 0.970 0.941 0.984 7.588  0.959 0.909 0.982 9.820  0.976 0.951 0.987 6.417 
6 0.969 0.906 0.982 8.686  0.973 0.941 0.988 7.283  0.976 0.948 0.988 6.746 
7 0.982 0.958 0.993 6.136  0.986 0.966 0.993 5.758  0.981 0.96 0.991 6.221 
8 0.963 0.927 0.985 7.698  0.968 0.931 0.975 9.588  0.968 0.914 0.982 7.637 
9 0.968 0.934 0.983 6.966  0.969 0.938 0.982 7.222  0.964 0.926 0.985 9.357 
10 0.961 0.918 0.979 8.112  0.973 0.946 0.982 7.832  0.977 0.941 0.987 6.404 
11 0.971 0.918 0.986 10.564  0.974 0.938 0.985 6.795  0.98 0.955 0.986 8.503 
12 0.963 0. 297 0.98 8.295  0.973 0.933 0.985 9.308  0.979 0.955 0.985 7.515 
13 0.972 0.938 0.983 8.466  0.971 0.939 0.982 7.295  0.979 0.941 0.985 9.930 
14 0.959 0.919 0.986 8.661  0.972 0.931 0.984 11.308  0.982 0.941 0.988 6.270 
15 0.985 0.963 0.988 6.087  0.983 0.963 0.983 7.698  0.979 0.902 0.986 10.991 
16 0.953 0.902 0.969 9.954  0.983 0.965 0.984 6.648  0.984 0.964 0.985 6.612 
17 0.962 0.915 0.977 9.308  0.970 0.938 0.979 8.734  0.975 0.946 0.983 7.478 
18 0.969 0.937 0.980 8.393  0.972 0.936 0.983 6.978  0.980 0.945 0.983 8.686 
19 0.967 0.921 0.985 9.344  0.968 0.925 0.984 8.588  0.971 0.934 0.987 7.881 
20 0.970 0.940 0.983 7.673  0.976 0.951 0.984 7.051  0.971 0.939 0.979 8.088 

              ahn# refers to hidden nods number.
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hidden nodes. This table shows that the correlation             
coefficients obtained by chance are low while PRESS and 
PRESS/SST ratio are high indicating that the proposed optimal 
PCA-ANN model is superior to that   obtained by chance.  
 Figure 3 shows regression between observed and predicted 
logKp as well as their residuals for training, validation and test 
sets of model 7 obtained using 7 hidden nodes.  
 However, the correlation coefficients obtained from MLR 
and ANN analysis are close which lead to the conclusion that 
the linear and nonlinear regressions are equal for this data set. 
Hence, we have carried out PLS analysis to furthermore      
examination of these models. 
  
PLS 
 More on inspection the obtained models, a PLS analysis 
with cross validation was carried out. Model validation was 
achieved through leave-one-out cross-validation (LOO CV) 
and external validation (for a test set), and the predictive    
ability was statistically evaluated through the root mean square 
errors of calibration and validation. The calibration and      
prediction qualities were quantified with R2 (training set) and 
R2

CV (leave one out cross-validation on training set), select the 
LV when the R2

CV has a high number, or determine it  by 
computing the prediction error sum of squares (PRESS) for 
cross-validated models. PRESS is a standard index to  measure 

the accuracy of a modeling method based on the cross-
validation technique. 
 The cross-validation method employed was to eliminate 
only one sample at a time and then PLS calibrate the          
remaining standard descriptor. By using this calibration the 
logKp of the sample, left out was predicted. This process was 
repeated until each standard had been left out once. Figure 4a 
and 4b show the associated PRESS, prediction error (PE%) 
and R2

CV values for each model. Table 2 shows that the    
minimum prediction error (5.365) occurs for model 9. The 
cross validation coefficient of determination for this model is 
the highest (0.958). This model has the lowest PRESS values 
for the training and test sets at the same time and has the     
lowest PE%. While other models have higher R2

CV values but 
also have higher PRESS values for the training set.             
Accordingly model 9 is the best model according to PLS 
analysis. This model has a regression coefficient of 0.980 and 
0.994 for the training and tests sets, respectively. The 
PRESS/SST value for this model (0.034) shows that this is an 
excellent model. 
 Table 6 shows regression and cross validation parameters 
for randomization test that is performed to investigate the 
probability of chance correlation for model 9 using PLS   
analysis. This table shows that the proposed optimal PLS 
model is superior to that obtained by chance. 

 Table 5. Correlation Coefficient and Cross Validation Parameters for Chance Correlation  
                                   Investigation for Model 7 Using 7 Hidden Nodes 

Trial Rtr PRESStr R2
CV

tr Rts PRESSts R2
CV

ts

1 -0.140 52.606 -0.152 0.011 20.094 -0.040 
2 0.517 35.484 0.225 0.649 14.279 0.255 
3 -0.282 71.015 -0.544 -0.511 38.343 -0.702 

4 0.234 45.521 0.003 0.040 20.943 -0.095 
5 -0.911 116.847 -1.510 -0.963 52.538 -1.400 
6 -0.124 50.768 -0.099 0.165 18.294 0.026 
7 -0.479 63.063 -0.365 -0.582 26.993 -0.286 
8 0.421 39.472 0.167 0.773 11.133 0.405 
9 -0.442 77.593 -0.460 -0.633 28.445 -0.467 
10 -0.576 67.892 -0.475 -0.546 27.260 -0.321 
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Fig. 3. Correlation of the predicted logKp against observed one as well as their residues for (3a) training set, (3b) validation  
            set and (3c) external test set of ANN model 7 using 7 hidden nodes. 
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Fig. 4. (4a)  Correlation of PRESS with PLS models (3-16).  
           Black and grey columns represent PRESS values for  
           the    training    and    test    sets,   respectively.  (4b)            

              Correlation of  R2
CV  and PE% with PLS models (3-  

              16): (�) PE%, (�) R2CV. 

 Figure 5 shows regression between observed and predicted 
logKp as well as their residuals for training and test sets of 
model 9 using PLS analysis. This model contains the         
following nine descriptors which are represented by 8 latent 
variables (LV): 2

χ, MR, ST, 0
χ, MV, Ir, 1

χ

v, 1
χ, BAC (see    

Appendix 1). However the optimal models obtained from the 
PLS and ANN analysis are close to each other. 
 The following conditions proposed by Golbraikh and 
Tropsha [42] were applied to conclude that the QSAR model 
has acceptable prediction power if: (1) R2

CV > 0.5; (2) R2 > 
0.6; (3) (R2 - R2

0)/R2 < 0.1 and 0.85 < k < 1.15 or (R2 - 
R'20)/R2 < 0.1 and 0.85 < k' < 1.15, where R2

0 and R'20 are the 
coefficients of determination characterizing linear regression 
with Y-intercept set at zero, the first associated with observed 
vs. predicted values, the second related to predicted vs.       
observed values; k and k' are the slopes of the regression lines 
forced through zero, relating observed vs. predicted and     
predicted vs. observed values. Alternatively, the parameter 
R2

m, where R2
m = R2* (1 - (R2-R2

0)1/2), can be used [43]. This 
parameter, which penalizes a model for large differences   
between observed and predicted values, was also calculated. 
R2

m should be larger than 0.5 for a good external prediction, 
which is the case for model 7 from the ANN analysis (R2

m = 
0.934) and model 9 from the PLS analysis (R2

m = 0.911). If a 
model shows good statistical performance for all these criteria, 
on both the training and the test sets, its reliability and robust-
ness are high as it is achieved in this study. 
 The descriptors used  in  these  models  are  in  consistence 

Table 6. Correlation Coefficient and Cross Validation Parameters for PLS Chance Correlation Investigation for Models 3- 
                16 after 100 Trials 

Statistics  Mod3 Mod4 Mod5 Mod6 Mod7 Mod8 Mod9 
R2 for original Y  0.9371 0.9419 0.9398 0.9401 0.9339 0.9416 0.9598 

Avg 0.0980 0.1110 0.1260 0.1490 0.0760 0.1010 0.0850 R2 for randomized-Y SD 0.0070 0.0130 0.0080 0.0210 0.0180 0.0110 0.0070
Avg 0.0950 0.0980 0.1180 0.1420 0.0730 0.1000 0.0790 R2

cv for randomized-Y SD 0.0080 0.0110 0.0120 0.0170 0.0160 0.0090 0.0050
  Mod10 Mod11 Mod12 Mod13 Mod14 Mod15 Mod16 
R2 for original Y  0.9340 0.9407 0.9441 0.9403 0.9387 0.9377 0.9409 

Avg 0.1440 0.1000 0.1220 0.1480 0.1310 0.1150 0.0880 R2 for randomized-Y SD 0.0070 0.0120 0.0070 0.0040 0.0210 0.0080 0.0140
Avg 0.1390 0.0960 0.1150 0.1440 0.1290 0.1080 0.0810 R2

cv for randomized-Y SD 0.0130 0.0100 0.0070 0.0210 0.0170 0.0150 0.0100
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with the suggested experimental factors to affect the 
gas/particle partitioning. Most of these descriptors depend on 
the pressure and temperature or both of them. The refractivity 
and polarizability can be an indicator of the gas/particle      
partitioning. On the other hand, the surface area depends on 
the particle size. The connectivity indices depend on atoms 
connectivity and racimification of the molecules, which      
correlates with its volume of course.  
 Table 2 shows that the PC-ANN and PLS models are very 
comparable. However, the prediction error for the PLS optimal 
model  (5.365)  is  less  than  that  for  the ANN optimal model  

(6.366) while the correlation coefficient of the prediction set is 
almost the same for both models (0.994 and 0.993 for PLS and 
ANN, respectively). On the other hand, the correlation       
coefficient of the training set for the ANN optimal model 
(0.986) is slightly higher than that for the PLS model (0.980) 
while the cross validation coefficient of determination for the 
ANN optimal model (0.966) is higher than that for the PLS 
optimal model (0.958). The above discussion indicates that the 
ANN optimal model has a slightly improved generalization 
power while the PLS optimal model has a slightly improved         
prediction   power.   However,   considering   the   number   of    

Fig. 5. Correlation of the predicted logKp against observed one as well as their residues for (5a) training set, (5b) external  
              test set of model 9 as observed from PLS analysis. 
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descriptors used in each model, the ANN optimal model with 
the less number of variables (7 descriptors represented by 3 
PC’s) is preferred over the PLS optimal model (9 descriptors 
represented by 8 LV’s). 

Comparison with other Studies 
 Wei et al. [18] have performed a study on some PCBs  
using Partial Least-Squares Regression method (PLS). The 
highest R2 and R2

CV they obtained are 0.987 and 0.985,      
respectively for a set of 20 compounds without using an     
external test set while we obtained R2 around 0.97 and R2

CV of 
0.966 and 0.958 and using an external test set of 14           
compounds from the ANN and PLS analyses, respectively. R2

and R2
CV obtained in this study are lower than those obtained 

by Wei et al. [18] for a smaller size training set where such 
small size of the data set may be a possible sign of an        
overfitted model simply leading to predictions that are far    
beyond the range of the training. However, their model    
represents logKp of one type of compounds while our model 
represents logKp of more than one group of compounds which 
is expected to lower its predictivity power numerically and on 
the other hand, increasing its reliability. 
 The model of Wei et al. [18] contains the descriptors Σq2

C

(sum of squared atom electron densities on carbon atoms in a 
given molecule) and Σq2

H (sum of squared atom electron    
densities on hydrogen atoms in a given molecule) while the 
optimal model suggested in this study contains the following 
nine descriptors: 2

χ, MR, ST, 0
χ, MV, Ir, 1

χ

v, 1
χ, BAC (see  

Appendix 1) which are consistent with the experimental     
results [6,7].   

CONCLUSIONS 

 A quantitative-structural relationship analysis has been 
performed on the logarithm of gas/particle partitioning       
coefficient (logKp) for 70 different semivolatile organic    
compounds by using the PC-ANN modeling method, with 
application of eigenvalue ranking factor selection procedure. 
The PC-ANN gives good regression models with good       
prediction ability using a relatively low number of PCs. The 
optimal models obtained by PC-ANN and PLS analyses are in 
close proximity from the statistical point of view. The results 
obtained  offers  excellent  regression  models  that  hold  good 

prediction ability using a relatively low number of PCs com-
pared with other studies on the same data set of compounds. A 
coefficient of determination around 0.97 was obtained using 
PC-ANN and PLS analysis.  

Appendix 1  
J is Balaban index 
JhetZ is Balaban-type index from Z weighted distance matrix 
(Barysz matrix) 
Jhetm is Balaban-type index from mass weighted distance 
matrix 
Jhetv is Balaban-type index from van der Waals weighted 
distance matrix 
Jhete is Balaban-type index from electronegativity weighted 
distance matrix 
Jhetp is Balaban-type index from polarizability weighted    
distance matrix 
BAC is Balaban centric index 
0
χ is connectivity index chi-0 

1
χ is connectivity index chi-1 (Randic connectivity index) 

2χ is connectivity index chi-2 
0
χ

v: valence connectivity index chi-0 
1
χ

v is valence connectivity index chi-1 
2
χ

v is valence connectivity index chi-2 
MR is Ghose-Crippen molar refractivity 
MV is mean atomic van der Waals volume (scaled on Carbon 
atom) 
PC  is Parachore 
Ir  is index of refraction 
ST is surface tension 
Pl is polarzability 
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