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A distributed cross-layer intrusion detection 
system for ad hoc networks 
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Abstract 

Most existing intrusion detection systems (loss)for ad hoc networks are proposed for 
single layer detection. Although they may apply to other layers of network protocol stack, 
individual layers of  data is still being analyzed separately. In addition, most have not been 
able to emphasize localization of attack source. In this paper, we propose an anomaly-based 
IDS that utilizes cross-layer features to detect attacks, and localizes attack sources within one- 
hop perimeter. Specifically, we suggest a compact feature set that incorporate intelligence 
from both MAC layer and network layer to profile normal behaviors of mobile nodes; we 
adapt a data mining anomaly detection technique from wired networks to ad hoc networks; 
and we develop a novel collaborative detection scheme that enables the IDS to correlate local 
and global alerts. We validate our work through ns-2 simulation experiments. Experimental 
results demonstrate the effectiveness of our method. 

Key words: Radiocommunication, Ad hoc network, Security, Intrusion detection, Modeling, Performance 
evaluation. 

SYSTEME RI~PARTI INTER-COUCHES POUR DI~TECTER 
L'INTRUSION DANS LES RI~SEAUX AD HOC 

R~sum~ 

Le caractbre dynamique, rdparti et auto organis~ des rdseaux ad hoc pr~sente un grand 
dgfi & la ddtection des intrusions. En g~ndral, le systkme de ddtection d'intrusion clans un 
r~seau s'impIdmente ~ la p(riph~rie. Cette solution ne peut pass  'appliquer aux rdseaux ad 
hoc par manque d'une infrastructure prd-existante pour la communication et de centres de 
contrOle. Par ailleurs, les techniques courantes pour ddtecter l'intrusion, qui ont dtd ddve- 
loppdes pour les rdseaux filaires et dtendus, ne peuvent que s'appliquer aux couches indivi- 
duelles dans le protocole de rdseau. Dans cet article, nous prdsentons un systbme de 
d~tection d'intrusion fondd sur un noeud qui arrive ?t ddtecter l'origine d'une attaque et ?z la 
localiser ?tun saut de la p~riph~rie. Nous pr~sentons plus particulibrement un ensemble de 
dispositifs compacts qui associent les informations des couches MAC et r(seau pour profiler le 
comportement des n~euds mobiles. Nous adaptons cette technique pour ddtecter les anoma- 
lies darts les rdseaux filaires et ad hoc. 
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Enfin, nous proposons un nouveau mFcanisme de rFponse ~ l'intrusion qui permet il un 
systkme de lier une alerte locale aux alertes globales collectFes des environs. Nous validons 
notre travail par des expFriences par shnulation ns-2. Les rFsultats des expFriences indi- 
quent l'efficacitF de notre mFthode. 

Mats clrs: Radiocommunication, Rrseau ad hoc, Srcuritd, Drtection intrusion, Modrlisation, l~,valuation de 
performance. 

Contents  

I, Introduction 
II. Related work 

III. The intrusion detection model 
IV. Performance evaluation 

V. Conclusion 
References (38 ref ) 

I. I N T R O D U C T I O N  

An ad hoc network is an autonomous system of mobile nodes connected by wireless 
links. Associations between nodes are established when they are in the vicinity of each other. 
All mobile nodes agree to relay each other's packets, and function as routers that discover 
and maintain routes to other nodes in the network. While the self-organized nature of ad hoc 
networks provides convenient and flexible communication links for end users, they lack per- 
imeter defense mechanisms which enable rogue mobile nodes to freely join them. Through 
these mobile nodes, attackers can mount attacks against different network layers to either 
comprise individual node(s) or degrade the performance of the entire ad hoc network. 

Researchers have proposed a variety of security mechanisms for ad hoc networks, and 
most of them focus at individual layers of the network protocol stack (e.g., [1-6]). Within 
each layer, different defense (proactive or reactive) strategies can be applied. In this paper, 
we attempt to devise an effective IDS, a reactive and distributed defense strategy, for ad hoc 
networks, 

Conventional intrusion detection techniques can be classified into signature-based or 
misuse detection and anomalybased detection. Signature detections are known for high 
detection rates with low false positives, however they are unable to detect novel attacks 
whose signatures are unknown. In addition, signature detection techniques may be inappro- 
priate for ad hoc networks due to the difficulties of distributing and updating signatures of 
attacks. A study has also shown the mobility nature of ad hoc networks impacts the effecti- 
veness of signature detections [7]. Anomaly detections are known for detecting novel attacks. 
In general, anomaly detection techniques depend on the characterization of user/system/net- 
work activities that are considered as normal behaviors. The differences among various ano- 
maly detection techniques reside in the methods for constructing normal profiles. Basically, 
there are two approaches: profilebased detection and specificationbased detection. 

Profile-based detection defines a profile of normal behaviors and classifies any deviation 
of the profile as an anomaly. The assumption of this type of detection is that attacks are 
events distinguishable from normal legitimate use of system resources. Although this type of 
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anomaly detectors are able to detect novel attacks, they are prune to high false positive rate 
[8], [34-37] due to the difficulty of clear segmentation between normal and abnormal activi- 
ties and the use of insufficient or inadequate features to profile normal behaviors. 

Specification-based detection defines a set of constraints that describe the correct opera- 
tion of a program or protocol and monitors the execution of the program with respect to the 
defined constraints [33]. It provides high accurate detection rate, but only effective on those 
attacks whose behaviors can be modelled with the specification system. As a result, it may 
miss out some known attacks. For example, the specification detection model proposed in [8] 
cannot detect attacks caused by malformed packets, such as crashiis [9] (a malformed packet 
that causes Microsoft IIS server to crash). However, this can be easily detected using profile- 
based detection, because there is a clear distinction in behaviors between a server that is up 
or down. 

In this paper, we extend a profile-based anomaly detection technique proposed on wired 
networks [10], and adapt it to ad hoc networks. Surely. the mobility nature of ad hoc net- 
works also raises challenges to anomaly detection schemes. Therefore, instead of taking the 
existing approaches which generally gather information from individual layers, we propose a 
system that provides a more effective detection of attacks through the use of cross-layer 
information. In addition, we develop an algorithm that correlates local and global intrusion 
alerts to expedite the detection of attacks and the localization of malicious nodes. 

The organization of this paper is the following. In Section II, we briefly describe the rela- 
ted work. In Section III, we present the model of our system and describe how anomaly 
detection technique is applied. In Section IV, we provide the simulation results and the per- 
formance evaluation. Finally, we conclude the paper in Section V. 

II. RELATED WORK 

Most of current works on IDS for ad hoc networks target at individual layers of the net- 
work protocol stack. Zhang and Lee [11] proposed the first distributed anomaly-based iDs, 
which can detect attacks at different layers, e.g. the network layer. In their system, local 
detection engine is built on a rule based classification algorithm RWPER [12] and local res- 
ponse is activated when a node locally detects an anomaly or intrusion with high confidence. 
If the confidence is low, it will initiate a global intrusion detection procedure through a 
cooperative detection engine. Yi and Lee [13] extended their previous work on local anomaly 
detection and developed a cross-feature analysis to explore the correlations between each 
feature and all other features using classification decision tree induction algorithm C4.5 [14]. 
As indicated by Han et al. [15], both C4.5 rules and RIPPER do not work well when the num- 
ber of distinguishing features is large. In addition, class labels are required in training data. 
This means attack data may be needed to train the classifiers. However. in anomalybase 
detection, priori knowledge on attacks should be avoided. 

In [13], the authors departed from their original nodebased IDS architecture and proposed 
a cluster-based IDS model to preserve battery power. In this model, a cluster of neighboring 
mobile nodes can randomly and fairly elect a monitoring node, i.e. the clusterhead, for the 
entire neighborhood. Several other works (e.g., [16, 17]) also suggested the use of cluster- 
based IDs architecture. Nevertheless, we believe cluster-based IDS has some limitations in ad 
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hoc networks. Generally, there is no guarantee that the clusterhead is on the attack paths. If 
the attacker and the victim(s) reside within the same cluster, and the clusterhead is not on the 
attack path, extra communications are needed between the clusterhead and the members of 
the cluster in order to detect the attack. But this will reduce throughput and impose pressure 
on the limited bandwidth of ad hoc networks. 

Tseng et al. [18] developed a specification-based ~DS based on manually constructed 
security specifications corresponding to con'ect behavior of the ad hoc on-demand distance 
vector (AODV) routing protocol request-reply flows. The actual behavior of the AODV flows is 
then compared with these specifications, and any deviations are interpreted as intrusions. As 
we stated in the previous section, there is a tradeoff between the accuracy of intrusion detec- 
tion and the complexity of a specification-based tos. 

The closest work to ours is the IDS model proposed in [11]. However, our system is very 
different in aspects of anomaly detection method, feature selection and intrusion response. 

III. THE INTRUSION DETECTION MODEL 

III.1. Assumptions 

The mobile ad hoc network under our study has the following properties: The network is 
fully self organized, which means there is 

• The network is fully self-organized, which means there is no pre-existing infrastructure 
(e.g. central server). Thus, conventional intrusion detection techniques applied to wired 
network gateways or wireless local area network (WLAN) access points are not effective 
in these ad hoc networks. 

• No pre-existing distributed trust model (e.g. central authority or centralized trusted third 
party) is deployed at the network layer. That is to say, any node is free to join the net- 
work. 

• In the ~AC layer, we consider CSMA]CA protocol with no other secure fairness access 
mechanisms, we consider one of the on-demand routing protocols, e.g. AOOV, as the rou- 
ting protocol. In the transport layer, no explicit congestion control method is utilized. 

• All links are bi-directional. Because we assume the use of CSMA]CA at the MAC layer. A 
4-way RTS]CTS]DATA]ACK handshake exchange is used for every data packet transmission 
except for broadcast packets. Bi-directional links also allow a route reply packet to be 
sent by reversing the route in the route request packet. Otherwise, a route reply may 
need a new route discovery process, which becomes very in efficient. 

These assumptions, except the first one, could be relaxed if rendering some secure proto- 
cols or mechanisms. This would add extra layers of defense. Nonetheless, our work intends 
to detect attacks through malicious behaviors of mobile node(s). 
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III.2. Overview of Attacks 

361 

Conceptually, similar to WLAN and wired networks, attacks on ad hoc networks can be 
classified into passive attacks and active attacks. Passive attacks refer to eavesdropping on 
the network traffic, and they are difficult to detect by their very nature. Active attacks, on the 
other hand, are initiated by malicious user(s)/node(s), and they can be carried out against 
mobile node(s), or communication protocol and infrastructure at different layers. 

Active attacks can be further categorized into different classes based on different criteria. 
In the subsequent paragraph, we attempt to provide a list of most commonly studied attacks 
at MAC layer and network layer.They are classified according to their consequences, which 
then are sub-categorized according to attack techniques. 

1) Bandwidth consumption attacks: 
• Flooding: It is a frequently used technique to over-load network and significantly reduce 

the available bandwidth for legitimate use. Basically, any type of packets can be used to 
implement such attack. For instance, attacker can send massive MAC layer control 
frames (e.g., request to send (RTS), clear to send (CTS), and acknowledge (ACK)) or data 
frames to one or a group of victim nodes; attacker can also mount attack on the net- 
work layer by sending considerable network layer control packets (e.g. route request 
(RtReq)) or data packets. 

• Frequency jamming: Because of the open communication medium, a MAC-layer jam- 
mer could jam an RTS packet to prevent a node from accessing the channel. The direct 
result of this attack is denial of service (DOS) to the destination node. However, the 
attack may create more damage to channel bandwidth due to the cascade effect caused 
by the random backoff algorithm [19]. 

• Packet dropping: Similar to the frequency jamming attack, maliciously (or selfishly) 
drop packets may produce cascade effect caused by the random backoff algorithm. 
Researchers in [20] found that different dropping patterns can degrade TCP service to 
different levels, and selectively dropping a small number of packets can result in severe 
damage to TCP performance. 

2) Node resource consumption attacks: 
• Sleep deprivation: An attacker intentionally selects one neighboring node to relay spu- 

rious data. The intention of this attack is to drain battery power and computational 
power of the victim node. 

• Exploiting bugs in software: Exploiting vulnerabilities in software on a mobile node 
can cause sever damages to the victim node, which may include cPu and memory 
consumption. 

3) Information disclosure attacks: 
• Blackhole: An attacker advertises falsified routing control information. For example, in 

an AODV routing protocol, attacker can broadcast itself of having the best path to any 
node. As a result, the attacker intercepts all packets being sent to any destination node. 
The attacker can then retrieve plaintext data in the header field and payload of the inner 
datagram in cleartext. By exploiting the weakness of encryption or its implementation, 
further information may be exposed to the attacker. 

• Grayhole: This type of attack is a special case of blackhole attack, in which an attacker 
selectively drops data packets intended to some of the destination addresses. 
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4) Routing disruption attacks: 
• Wormhole attack: A pair of nodes collude to launch attack by tunnelling messages from 

one end to the other, and these messages may be replayed at the other end. A well- 
placed wormhole can severely disrupt routing. Attacker could convince nodes who 
would normally be multiple hops from a base station that they are only one or two hops 
away via the wormhole [21]. 

• Routing protocol attack: An attacker targets against routing protocols by rushing routing 
control packets [4], poisoning routing table, injecting or replicating packets to the net- 
work layer. Note that routing disruptions can also increase network bandwidth 
consumption and decrease network throughput. 

5) Other attacks: 
• Byzantine (insider) attack: Compromised intermediate nodes collusively conduct 

attacks such as blackhole, packet dropping and create routing loops [22]. 
• Spoofing attack: An attacker creates misleading context to trick the victim node into 

making an inappropriate security-relevant decision. MAC address spoofing and IP address 
spoofing are the common types at the MAC and network layer. 

Because of the scarcity of resources in ad hoc networks, we focus our attention to 
resource consumption (node and network) related attacks. Example attacks include flooding, 
malicious packet dropping, blackhole, deprivation, and various routing disruption attacks. 
We should point out that our IDS cannot detect spoofing attacks, in view of the fact that the 
attacker's networking behavior can be quite normal in this case. This type of attack can be 
detected using authentication techniques. 

We propose an anomaly detection technique to detect these attacks. A fundamental chal- 
lenge to an anomaly-based ad hoc IDS is how to distinct between normal behaviors and 
abnormal behaviors of a mobile node. We utilize a rule-based data mining technique to 
profile normal behaviors of a mobile node, along with a collaborative detection scheme that 
uses Bayesian network to mitigate the uncertainty between normal and abnormal bounda- 
ries, and hence increases the effectiveness of detection. 

Another challenge to an ~DS is the efficiency of detection. Conventionally, different IDSS 
are deployed at each individual layers of the network protocol stack. This could limit detec- 
tion effectiveness and increase the cost of defense. Our approach of circumventing this set- 
back is to incorporate features from crosslayer intelligence, and use them as a guide to collect 
audit data. Therefore, in our model, one set of audit data is able to detect attacks from both 
the MAC layer and network layer. 

111.3. The Model Architecture 

The proposed IDS employs a nodebased, distributed architecture. This is because ad hoc 
networks in general lack of central monitoring mechanism, thus centralized ios is inap- 
propriate. Figure l shows the conceptual model architecture of our rDS. In particular, it com- 
prises of the following four components: 
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Decision module 
[Globalalert ~ ( - ~  Localalert I 

4 
Detection module . / . Anomaly I ~  

-I detection engine 

I oormalactivity I I rea"timeaotivity 
profiling/rules profiling/rules 

Profile module ~ Data preprocessing ' ~ 
_ 1. 

Data collection module 

FIG. 1 - -  The proposed model architecture. 

Le modOle d'architecture proposF. 

1) Data Collection Module: Mobile nodes in ad hoc networks are usually thin clients 
owing to the power consumption limits, and they are unlikely to utilize rich system 
logging facilities, thus audit data from single nodes are unsuitable for applying ano- 
maly detection techniques. In the proposed system, according to a prespecified feature 
set, audit data is collected from a given network within its observable radio transmis- 
sion range. Although, open medium provides an easy ground to gather data from the 
network, real-time data collection still faces resource constraints. Besides competing 
for the limited energy in a mobile node, a large data set may reduce efficiency and 
accuracy of detection. Hence, selecting a minimal and near-optimal feature set is parti- 
cularly important for ad hoc networks. Obviously, this is not an easy task. We discuss 
features of interests in the subsequent subsection. 

2) Profile Module: This module has two subsystems. One subsystem is a pre-processor, 
where audit data is transformed into market basket fo~xnat for profiling process. The 
other subsystem is a profiler, where a rule-based data mining technique is used to find 
association patterns from given data. Training data is collected in relative long time 
intervals. In our simulation, training data is collected in 1000 seconds and 2000 
seconds intervals. Once collected, the training data is segmented into intervals of short 
time, which are usually the same as test data intervals. We choose 50 seconds as the 
duration of each data segment. Sliding windows of 50 seconds with 5 seconds overlap 
are used in the segmentation process. Overlapping can effectively capture patterns 
across the segmentation boundaries. Association rules extracted from each training 
data segment are pruned using maximal frequent itemset (MFI) [23], and then are 
aggregated into a rule set which is considered as a normal profile. In the aggregation 
process, each rule is recorded with a minimum and maximum support and confidence 
levels. During test phase, test data is collected at a 50 seconds interval window, also 
with 5 seconds overlap. The rules extracted from test data are then compared with the 
normal profile rule set. 
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Detection Module: Essentially, anomaly detection is to detect deviance from the norm. 
In this module, test data profiles are compared with the expected normal profiles. Any 
new rule or rule with deviations beyond the corresponding support and confidence 
threshold intervals [min imum - e ,  m a x i m u m  + e] is considered as an anomaly rule. 
Here e denotes a tolerance level for classification errors. 
Decision Module: Any defending node may trigger local alert based on the support 
and confidence levels of anomaly rules produced from the detection module. In order 
to reduce the number of false alarms, we use Bayesian network to incorporate the 
intelligence gathered from neighboring nodes with the local alerts detected from its 
own IDS, and make collaborative detection accordingly. If the probability of attack 
from a suspicious node deviates from a threshold, the victim node can send a global 
alert to its neighboring nodes. 

III .4 .  F e a t u r e s  o f  I n t e r e s t s  

Various intrinsic features from the MAC layer and network layer are obtainable, however, 
some could be useless for intrusion detection. For instance, dura t ion  in a MAC frame contri- 
butes little for intrusion detection due to the dynamic nature of ad hoc networks. Our objec- 
tive is to obtain a compact set of features. 

We base our feature selection on the MAC layer, and add an additional feature Packe t  Type 
from the network layer. Similar to the MAC layer, there are various routing control packets, 
such as Route Request (RtReq), Route Reply (RtRpy), Route Error (RtErr), and routing Data 
packet (routingDataPkt). We combine all routing control packets into one category as routing 
Control packet (routingCtrlPkt). An example of feature set and its value space is illustrated in 
Table I, and an example audit data set using features specified in Table I is shown in Table II. 

TABLE I. -- Features of interests and their value space. 

Caractbres intdressants et leurs espaces de valeurs. 

Dimension Value Space 
Flow direction SEND, RECV, DROP 

Send_node sai, V i ~ node set S 
Recv_node daj, ~ ~ node set S 

MACPktType RTS, CTS, DATA, ACK 
I routingDataPkt, routingCtrlPkt RoutingPktType* 

* This feature applies to MAC DATA packets only. 

In [11], multi-layer integrated intrusion detection and response has been discussed. In 
their approach, detection or weak evidences on one layer may activate the intrusion detection 
module on another layer to further investigate the possible attacks. However, the intrusion 
detection module at each layer still functions individually. 
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TABLE II. -- An example DATA SET using features specified in table I. 

ExempIe de donn~es avec les caractbres sp(cifi(s dans le tableau 1 

365 

Timestamp Flow dir Send addr Recv addr MACPktType RoutingPktType 

50.0469 
50.0472 
50.0519 
50.0522 
50.0529 
50.0532 
50.0579 

50.1350 
50.1400 

52.3793 
52.3793 

RECV 
RECV 
RECV 
RECV 
RECV 
RECV 
RECV 

SEND 
SEND 

RECV 
DROP 

7 
1000" 

7 
16 
16 

1000 
16 

22 
22 

21 
21 

16 
7 
16 
7 
9 
16 
9 

1 

RTS 
CTS 

DATA 
ACK 
RTS 
CTS 

DATA 

RTS 
ACK 

DATA 
DATA 

routingDataPkt 

routingDataPkt 

routingCtrlPkt 
routingCtrlPkt 

* Refers to a non-exist address, since CTS packet does not require send _ddr **Refers to a broadcasting packet. 

111.5. A n o m a l y  detect ion 

In the subsequent paragraphs, we provide a brief overview of association analysis. 
Association rule describes associations of  features (attributes) within transaction records 

of an audit data set. Given a set of n transaction records denoted as T = {T v T 2 ..... Tn}, and a 
set F = {F 1, F 2 . . . . .  F k} of k features defined over T, a transaction record is a collection of 
k-tuple items whose value assignments corresponding to the k features, we denote it as T i = 
{fl, f 2  . . . . .  fk } ,  where fk represents a value from the k-th feature F k. Let A and B denote two 
disjointed item subset in T/. Let the support of A, denoted by sup(A), represents the percen- 
tage of transactions containing A in T, and the support of  both A and B, denoted by 
sup(A w B). An association rule is [24] 

(1) A ~ B, (s, c), 
sup(Aw B) where s = sup(Au B) is the support value of the rule, and c = is the confidence. sup(a) 

The rule holds if s > minsup, and c >minconf,  where minsup and minconfdenote predefined 
minimum support threshold and confidence threshold, respectively. 

As shown in Table II, each transaction record is a packet-level event. An example asso- 
ciation rule is (sa7, routingDataPkt ~ dal6,  RECV), (0.2, 1). This rule describes an event pat- 
tern related to the RECV flows of  the monitoring node (e.g. node 22). That is, 20% of  
transaction records matches the pattern of "node 7 sends data packets to node 16", and when 
the node 16 receives data packets, they are 100% of the time from the node 7. 

Common strategies of  finding association patterns between different features of a tran- 
saction record involve two steps: frequent itemset generation and association rule generation. 
The first step is considered computationintensive. Its complexity and efficiency depend on 
the traverse method of finding the frequent itemsets. A priori algorithm [24] is known for 
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using breadth-first method, where all frequent itemsets of size-1 within the data set are dis- 
covered first, followed by all frequent itemsets of  size-2, and so on. The limitation of using 
Apriori for our intrusion detection engine is that large number  of  frequent itemsets (and 
hence association rules) may be produced from a data set due to the large number of  packet- 
level transactions in the MAC layer and network layer. 

An alternative to a priori is to traverse itemsets using depthfirst method, in which if an 
itemset of  size-l ,  say {A}, is frequent, the next step is to search a frequent itemset of  size-2, 
of  which one of the two items is {A }, for example {AB }, and the search continues with {ABC} 
until it reaches an infrequent itemset. Then the search backtracks to another itemset, and so 
on. The depth-first method is often used to find maximal frequent itemsets. A maximal fre- 
quent itemset (MFI) is defined as a frequent itemset for which none of  its immediate supersets 
is frequent. 

Generating association rules pertaining to MFIS dramatically reduces the size of  normal 
rulebased profile, yet it can still capture frequent association patterns from a data set. Figure 
2 illustrates a comparison of number of  association rules generated from Apriori and MFI 
algorithms. The data set has 1000 seconds time interval with RECV flow only and recv_addr 
matches with the monitoring node itself. The data is segmented into 21 intervals by using a 
50 seconds sliding window with an overlap of 5 seconds. The rules are extracted from each 
segment using support threshold of 0.1 and confidence threshold of 0.6, and then aggregate 
into a rule set. 

Once association rules are extracted and aggregated from a given training data set, they 
are then considered as the basis for behavior profiles. 

111.6. I n t r u s i o n  R e s p o n s e  

Here intrusion response refers to associating anomalies with alerts. In particular, a detec- 
ting node can send a global alert to its neighboring nodes when it detects anomaly rules with 

2503001 ............. p . . . . . . . . . . . . . .  e q ~  

!o / / :  

/ 

2 4 6 8 10 12 14 
N~e = (so,l~ by the number ol rulesl 

FIG. 2 - A comparison of the number of rules generated from a priori and MFI. 

Comparaison du nombre de rbgles engendrEes par a priori et MF/. 
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high support and confidence levels. On the other hand, when support and confidence levels 
are low, the detecting node can make collaborative decision by gathering intelligence (global 
alerts) from its neighboring nodes. We use Bayesian network to correlate the local and global 
alerts in the decision module of the proposed los, and make collaborative decision accordin- 
gly. 

Bayesian network is a powerful and popular tool for probabilistic inference from obser- 
vations [25, 26]. Recently it has been applied to network intrusion detection and vulnerability 
analysis [27-30]. A Bayesian network is defined by a directed acyclic graph (DAG) over nodes 
representing random variables and arcs signifying conditional dependencies between pairs of 
nodes. In our model, we define a Bayesian network with a set X = {X l . . . . .  Xn} of variables 
that represents a monitoring node and a set of neighboring nodes. Each variable X i takes on a 
binary value, where a true state corresponds to "being attacked" (for monitoring node) or 
"attacking" (for neighboring node), and a false state corresponds to the opposite. Let S be a 
graph that encodes the conditional relationship between variables in X, and P is a set of local 
probability distributions associated with each variable. The posterior distribution with respect 
to S is 

(2) ,. (HI o) ~ p (o I th x e (u), 

where H denotes a set of subjective beliefs that we are interested in, and P (H) is the set of 
prior probabilities on S. O = {X 1 = x I .. . . .  X = xn} denotes a set of observations (evidences) 
on X. P (O I H) is called marginal likelihood of O. Here, subjective beliefs in our model can 
be one or a set of attacking nodes (that are suspicious or interesting to evaluate). 

Here we briefly illustrate our collaborative detection scheme through an example net- 
work. As shown in Figure 3, A and E are not in the vicinity of each other, but A adjoins three 
neighboring nodes B, C, and D, E is neighboring with D. The attacker A stages a flooding 
attack by sending spurious data packets against B, C and D. Suppose D learns an anomaly 
rule: (D, routingDataPkt ~ A, RECV),  (0.4, 1) from its local detection module, in which 0.4 
is the support value of this rule, B and C likewise may learn the similar rule with different 

~ H ~ .  G Iob le  ale, ' ;  

~- Local alert 

P (BIA) f ~ (  
P 

J 

p(BIA)=O2 

( 

| P [D undergoes a~tack lrom A ] A B, C) 

%'% P (CIA) 
% 

"SA' 

/ __~ .Pu(o~ucdergoes attack, A is atlacklng) 
= sup ( C, routmgDataPkt  -> A, R E C V  ) 
= 0 , 5  

Attacker 

FIG. 3 - Threat alert aggregation and intrusion response at node D. 

Agrdgation des alertes de menaces et rdponse it l 'intrusion au noeud D. 
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support values, e.g., 0.2 and 0.5 respectively. Because the support value of an anomaly rule 
indicates the frequency of occurrence of this anomaly within a transaction record T, it is a 
nature indicator of the possibility that this anomaly (or attack) was intentionally staged by the 
source. We then take these support values as the marginal probabilities in a Bayesian net- 
work, e.g. P (B ]A), P (C ]a), and P (D ]a). We call such marginal probability as direct local 
alert because they are regarding nodes within one hop range. These local alerts can be further 
propagated to other nodes, and we call these forwarded local alerts as global alerts. 

Within the decision module, each node maintains an intrusion response matrix M. An 
example matrix at node D is illustrated in Table III. The first column records the attacker 
identification; the second column records direct local alert that computed from its own detec- 
tion engine; the third column records neighboring alert(s), each in turn is a pair of (s, p), 
where s represents the MAC address of the neighboring node who sends the global alert, and p 
is the global alert (a probability) from this node; finally, the 4th column records the updated 
local alert value by computing the probability of union set of the local alert and the incoming 
global alert(s). That is, 

(3)  p(x i= 1 ] P a i ) =  1 - I - l .  ( 1 -  p(x i= l l x j ) ) ,  
J 

where X/denotes a detecting node and Pai represents the set of corresponding parent nodes, 
and p(x  i = 1 Ix i) is a local or global alert. The nodes in the above Bayesian network J E Pai, 

d 

are similar to the noisy-oR nodes in [25]. 

TABLE III. -- Intrusion response matrix at node D in figure 3. 

Matrice de rdponses it l'intrusion au nceud D dans la figure 3. 

attackFrom 
A 

A 

A 

directLocal globalAlert updateLocal 
0.4 0 0.4 

0.4 (B, 0.2) 0.52 

0.4 (B, 0.2), (C, 0.5) 0.72 

Suppose at node D, its direct local alert for attacker A is 0.4, and it also receives two glo- 
bal alert: (B, 0.2) and (C, 0.5), then D can update its local alert P (D IA, 8, C) by equation 
(3). 

In addition to the four column fields in M, an extra column fie/d, totalTimeLive (TTL), is 
necessary to keep the information in M up-to-date. 

In order to avoid massive global alerts, we piggyback a global alert with a CTS packet, and 
the global alert could either be the value in the directLocal column or updateLocal column 
depending on whether the requesting node (i.e. the sending node of RTS packet) is in the 
neighborAlert column. The collaborative detection algorithm is described as in Algorithm 1. 
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A l g o r i t h m  1 Collaborative Detection Algori thm 
1: /* receive global alert */ 
2: if  receive CTS with a global alert (attacker_id = 

a, send_addr = s ,p ( s [ a )  = p) then  
3: if attackFrom[a] ¢ NULL then  
4: if  s is in neighborAtert[a] then  
5: discard the global alert 
6: else 
7: add (s,p) to neighborAlert[a] 
8: end  if  
9: else 

10: add a new entry (a,s,p) in the intrusion response 
matrix M 

1 l: end if  
12: end i f  
13: /* update local alert */ 
14: for  each a in M do 
15: if  attackFrom[a] # NULL then 
16: if  ncighborAlert[a] = 0 then  
17: updataLocal[a] = directLocal[a] 
18: else 
19: compute updataLocat[a] using equation (3) 
2o: end if 
21: end if 
22: end for 
23: /* send global alert */ 
24: for each a in M do 
25: .qlobalAlert[a] = 0 
26: end for 
27: if receive RTS from node s then 
28: for each a in M do 
29: if  .s is in neighborAlert[a] then  
3o: globaIAlert[a] = directLocal[a] 
31: else 
32: globaIAlert[a] = updateAlert[a] 
33:  end if 
34: end for 
35: end if  

Once an attacker carries out an attack, several neighboring nodes of  the attacker may 
detect anomalies about the attacker. From Algori thm 1, we see that the aggregated intrusion 
alert becomes more vivid and can quickly converge at all the neighboring nodes of  the attac- 
ker. Therefore, the attacker can be identified within one-hop perimeter. 
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Bayesian network is also being utilized to evaluate multiple attack sources. Suppose, in 
Figure 3, node D detects anomalies from A, B, and C simultaneously, and P (D I A), P (D I B), 
and P (D [ C) are known from the anomalies rules. 

The trick is that only A is the true attacker. Both B and C unconsciously forward packets 
from A to D. In such a scenario, we would be interested in computing the posterior probabi- 
lities P (A, B, C ID = 1). One common difficulty is to assess the prior probabilities of A, B 
and C, i.e. P(A), P(B) and P(C). The detecting node D usually needs to apply domain know- 
ledge about the attackers in the assessment of priors. Fortunately, as each node maintains an 
intrusion response matrix, which contains a list of attacker profile. The priors can be estima- 
ted from this list if it keeps sufficient history records of most neighboring nodes. Each node 
can then use a threat matrix to estimate prior probabilities of maliciousness of neighbor 
nodes. Within the threat matrix, each row can represent an alert level, and each column can 
represent a level of confidence about an attacker according to its duration of stay in the intru- 
sion response matrix. The categorical levels of alert and confidence can be quantized into 
probabilities (e.g. high = 0.9, medium = 0.5, low = 0.3). 

Now assume that the prior probability distributions of A, B and C can be estimated as 
previously described, then for the aforesaid example, we would expect P (A =1, B = 0, C = 
0 I D  = 1) is the largest posterior probability from all 8 combinations of A, B, and C, i.e., 
when D undergoes attack, it is likely that A is the attacking node. (For details on how to com- 
pute posterior probabilities, please see [26] which provides a collection of papers on Baye- 
sian network inference and learning.) 

IV. PERFORMANCE EVALUATION 

IV.1. Simulation Environment 

The simulation is conducted on the platform of Network Simulator ns-2 [38]. All the 
attacks discussed in this work are implemented on us-2. The simulation purpose is to eva- 
luate the performance of the proposed IDS over several attacks. 

In the simulated network, there are 30 nodes with a fixed number of traffic flows. The 
source/destination pairs are randomly selected from the entire node set. For each flow, the 
transmission rate is 2 packets per second with a packet size of 512 bytes. A fixed 64-packet 
send buffer is maintained at each node for the packets waiting for available routes. 

An important property of a mobile ad hoc network is the dynamic network topology. 
Since every node can move arbitrarily, the network topology changes from time to time, 
and the communication links between mobile nodes break frequently. To simulate the node 
movements, we assume a random waypoint mobility model [38] in a rectangular field with a 
dimension of 500 x 500 square meters. 30 mobile nodes and their initial locations are ran- 
domly assigned at the beginning of the simulation. During the simulation, each node ran- 
domly selects a destination in the field and move to that destination at a speed that is 
randomly selected from the range [0, maxspeed]. When the destination is reached, another 
destination location is chosen after a certain pause time. By adjusting the variables of max- 
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speed and pause time, the dynamic of the network topology can be adjusted to generate dif- 
ferent mobility scenarios. To prevent all flows start at the same time, each source node 
chooses a random start time of sending packets from the range of [0, stime], where stime is 
set to 10. 

We simulate two sets of data on two different network setups, one has the maxspeed of 
5 m/s with a total of 15 traffic flows, and the other has the maxspeed of 10 m/s with a total 
of 25 traffic flows. In each network setup, five different pause times are selected. For the 5 
m/s network, we simulate a normal training data of 1 000 seconds for each of five different 
pause times, and for the 10 m/s network, we simulate a 2000 seconds for each of five diffe- 
rent pause times. The pause times are 0, 10, 30, 60, 1000/2 000 seconds for the two network 
setups, where 0 indicates the max mobility, i.e. all nodes are always moving, and 1000/2000 
indicates a static network for the 5 m/s network and the 10 m/s network respectively. For 
test data, we simulate 10 test data of 100 seconds for each of five different pause times in 
the 5 m/s network, and we simulate 10 test data of 200 seconds for each of five different 
pause times in the 10 m/s network. The pause times are pause time of 0, 10, 30, 60 and 
100/200 seconds, where 0 indicates an alwaysmoving network, and 100/200 indicates a sta- 
tic network for the 5 m/s network and lO m/s network respectively. We remove the initial 
50 seconds from all simulated data in consideration of the initialization process in ns-2 
simulations. 

IV.2. Simulated Attacks 

• Flooding attack: Flooding attacks may be classified according to network layers, e.g., 
the MAC layer and network layer flooding. We can also categorize them from the pers- 
pective of routing schemes, e.g., single-path and multi-path flooding. We simulate a net- 
work layer, singlepath flooding with one attacker node and one victim node. If  the 
victim is not in the vicinity of the attacker, the spurious data packets generated by the 
attacker may be delivered through two to three hops, and they may also take various 
paths. 

• Blackhole attack: In this attack simulation, an attacker advertises as having the best (e.g. 
shortest) path to any node in the network. After the neighboring nodes receive the adver- 
tisement, they update their routing tables and redirect all packets to the attacker. Once 
the attacker intercepts the data packets, it either forwards the packets according to the 
destination or drops all of the packets. 

• Sleep deprivation attack: In this attack simulation, an attacker advertises spurious rou- 
ting control information about one of its neighboring node, i.e. the victim node. For ins- 
tance, the attacker tell everyone that the victim node has the best path to any destination 
node. As a result, the victim node suffers sleep deprivation attack. 

• Packet dropping attack: We simulate this attack with two dropping patterns. One is that 
an attacker drops all data packets passing through it; the other is that an attacker selecti- 
vely drops data packets passing through it. In both cases, the attacker continues to 
respond to its neighbors' RTS packets to show its existence. 
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IV.3. Data Preprocessing and Feature Selection 

Without a shred of doubt, the efficiency and accuracy of instruction detection is greatly 
influenced by the quality of data preprocessing. In our work, we apply domain knowledge to 
collect data packets from an ad hoc network according to a prespecified feature set, their flow 
direction and destination node address. Specifically, we preprocess data with the following 
two steps: 1. each node i collects only receiving flow packets, i.e. every transaction record 
collected should match the pattern ( f low_dir  = R E C V  ); 2. each node i collects packets 
destined to itself, i.e. every transaction record collected should match the pattern (flow_dir = 
R E C V ,  recv_addr = dai). Note that step 2 is an extended pruning phase of step 1. 

The logic behind the above two steps is based on where a victim node stands relatively to 
an attacking node. If the victim node does not stand in (or behind) the attacking path, e.g. 
blackhole attack, the data set produced from step 1 can capture such attack through mali- 
cious behavior pattern of a neighbor attacker. If the victim node is a destination node of the 
attack or is on the path toward to a destination node, e.g. flooding attack, the data set produ- 
ced from step 2 is able to detect such attack with high accuracy since irrelevant data items are 
pruned before pattern association analysis. In addition, we also remove the highly frequent 
items such as RECV in each data set produced from step 1 and 2, in order to reduce the unne- 
cessarily large number of association rules related to them. 

We observe that the total number of transaction records in step 2 has large variations com- 
pared with the one from step 1. This is due to the bursty behavior of the sending nodes in the 
network. Because the support value of an association rule is directly influenced by the total 
number of transaction records in each training or test data interval, a data set with a small 
number of transactions is likely to produce rules with large support values. When these sup- 
port values are used in a global alert, they may mislead the neighboring nodes, since we asso- 
ciate them with marginal probabilities in Bayesian network of the decision module. Hence, 
when using data set from step 2 as input, the detection module is activated only if the total 
number of transactions in the data set from step 2 is reached a certain percentage (e.g. 5%) of 
the total number of transactions in the data set from step 1. This condition largely reduces the 
false alarm rate. 

IV.4. Detection of the Simulated Attacks 

In this subsection, we show our experimental results over the simulated attacks. Here, 
detection (i.e. true positive) rate is defined as the ratio of the number of attacks being 
detected correctly to the total number of attacks occurred during a particular time frame. If  an 
attack takes multiple hops, then every intermediate node involved also consider itself being 
under attack. False alarm (i.e. false positive) rate is defined as the ratio of the number of 
attack-free events falsely being identified as anomalies (and raise local alerts) to the total 
number of normal events. Because most resource-consumption attacks occur over a time per- 
iod, we use a sliding window (e.g. 50s) of data intervals to determine whether an attack takes 
place. Similarly, false positive rate is determined as the ratio of the number of misclassified 
abnormal data segments to the total number of data segments being tested. 
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The main difference of our method with the commonly used ones such as in [31, 32] is 
that we do not use the rules from the normal profile to directly classify each individual test 
event (or record). This requires considerable amount of processing time and computation 
power, which seems not practical for ad hoc networks. Instead, we test the normal rules 
against the rules produced from each test data segment, and then the test data segment is 
classified as normal or abnormal. Anomaly rules are used to further identify the type of 
attacks and attack source(s). 

To simplify the simulations, we calculate detection rate and false alarm rate (during tes- 
ting) using the statistics from the entire simulation network. That is, when an attack is carried 
out in the network, the victim nodes are used to verify the detection rate, meanwhile these 
nodes together with all the rest of nodes are used to verify the false alarm rate. 

Table IV shows the experiment results of all simulated attacks, i.e. flooding, blackhole, 
sleep deprivation and packet dropping ALL data packets) on networks with maxspeed = 5 and 
maxspeed = 10, respectively. The detection rate and false alarm rate is the average value for 5 
different mobility levels as described in Section IV-A. From the results shown in Table IV, 
we can see that mobility has a significant effect on detection rate. When mobility increases, 
detection rate in general will decrease. We should point out that we are unable to detect 
selective packet dropping attack if the dropping rate is relatively low. In such situation, there 
is no clear separation between normal behavior and abnormal behavior. 

All the simulated attacks require one-hop detection except the flooding attack, where one 
or more hops may be involved during the attack. We can identify the attack on the majority of 
the hops involved. An example is shown in Figure 4. This means if the one-hop victims take 
countermeasures, the damage of the attack could be confined within one-hop perimeter. 

The selection of support and confidence threshold values can greatly affect detection rate 
and false alarm rate. However, to determine a best minimum support and minimum 
confidence is a common challenge to association rule mining for classification. Many resear- 
chers have proposed methods to tune thresholds to improve the accuracy of classification, 
and most of them rely on iterative approach [31, 32]. In our work, we select these thresholds 
through a heuristic approach. Because our [DS is an anomaly-based iDS, we do not use any 
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simulated attack segments to tune these thresholds. Instead, only normal training data seg- 
ments are used. Our merely assumption is that normal training data is available (i.e. no attack 
occurs during the normal data collection intervals). Specifically, we use false positive rate to 
determine the thresholds as follows. 

First, we set the false positive rate to a reasonable low rate, e.g. 1%. Then, we select a 
threshold pair, e.g. s = 0.01 and c = 0.06 to mine each data segment (e.g. 50 seconds of inter- 
val) of both normal training data sets and normal test data sets. Rules of training data seg- 
ments are aggregated into a normal profile. Rules of each test data segment are compared 
with the normal profile and abnormal segment is determined by whether it contains anomaly 
rules. The abnormal data segments are used to calculate the false positive rates. If it's higher 
than the target goal, we increase the support value by 10%. If there are no false positives at 
all, we decrease the support value by 10% to make sure that no other lower thresholds could 
reach the same false positive. After both lower bound and higher bound of the threshold 
interval are determined, we continue by selecting the middle value of the interval until rea- 
ching the desired false positive rate. We consider this false positive rate as training errors, and 
false positive anomaly rules are added into the normal profile. 

Table V illustrates example anomaly rules for detecting the corresponding simulated 
attacks. In the table, node 15 is the misbehaving node. In flooding attack, all three rules indi- 
cate node 15 is sending large amount of data packets to the monitoring node. In blackhole 
attack, the first two rules indicate that there are suspiciously large volume of data packets 
destined to dal5. The third rule suggests that data packets from several neighboring nodes 
are destined to the attacker dal5. In sleep deprivation attack, because of the incorrect route 
advertisement by the attacker, the victim node (i.e. node 15) may not have valid route to 
some of the destination nodes. This causes the victim node broadcasting Route Error infor- 
mation, as indicated by the first rule. Node 15 is also a forwarding node, hence rules related 
to both sal5 and dal5 are expected. It should be noted that if the attacker drops all of the 
intercepted data packets, the first rule is not expected. Instead, only the second and third rules 
are accountable to detect such attack. In packet dropping (ALL) attack, the monitoring node 
can observe whether its neighboring node (e.g., node 15) is forwarding its data packets by 
examining whether the expecting rule is learned. 

TABLE IV. - Experiment results for the simulated attacks. 

Rdsultats expdrimentaux pour les attaques simuldes. 

Attack Type Detection Rate 
5m/s 

False Alarm Rate 
5m/s 

Detection Rate 
10m/s 

False Alarm Rate 
10m/s 

Flooding 100% 2.78% 91.78% 0.25% 

Blackhole 99.3% 0.3% 71.34% 0.4% 

Sleep Deprivation 90% 0.7% 40.6% 0.31% 

Packet Dropping (ALL) 93% 0.5% 77.56% 0 
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TABLE V. - Example of anomaly rules. 

Exemple de rdgles d'anomalie. 

375 

Attack ~l~pe Anomaly Rule Samples 

(routingDataPkt -~ sal5 DATA), (0.45, 1) 
Flooding (DATA -~ sa15 routingDataPkt), (0.43, 0.92) 

(RTS ~-~ sal5), (0.44.0.93) 

Black_hole (dal5 routingDataPkt --~ DATA), (0.10, 1) 
(da 15 DATA -~ routingDataPkt), (0.10, 0.98 ) 
(saj ---) dal5), (0.05, 0.99) j ~ neighbor nodes 

Sleep Deprivation (routingCtrlPkt -4 dal sal5 DATA ), (0.08, 0.72) 
(dal5, routingDataPkt ~ DATA), (0.15, 1 ) 
(sal5 routingDataPkt --+DATA ), (0.07, 1) 

Packet Dropping (ALL) (dal5, routingDataPkt --+ DATA), (0.2, 1) 
(dal5, DATA --+ routingDataPkt), (0.2, 0.98) 

expecting rule: (sal5, routingDataPkt --~ DATA) 

IV.5. Discussion 

From our experiment results, we conclude that the feature set described in Table I is 
sufficient for a monitoring node to profile behavior patterns of its neighboring nodes. Our II~S 
is effective to detect most of the simulated attacks. In addition, our IDs can quickly identify a 
malicious node within onehop range, especially when the decision module is enabled. Mobi- 
lity can significantly decrease the detection rate and increase the false positive rate. We have 
a very good performance when the maxspeed is set to 5 m/s, which is a practical environment 
considering the radio transmission rate is 250 rn/s. 

Because there is no standard attack simulation environment for ad hoc networks, it is hard 
to make direct comparisons of our detection results to other related works. For resource 
consumption, conceptually our IDs could consume more resource than those which only use 
routing table information (e.g. Zhang and Lee [13]), because our IDS also collects informa- 
tion from MAC layer. However, the advantages of our proposed crosslayer IDS are evident. 

• Cross-layer feature set provides the capability to identify attack source node using MAC 
address and to localize it within one-hop range. On the contrary, most of the other works 
did not address this problem. In [13], postdetection analysis (by using statistics of inco- 
ming and outgoing packets of certain nodes) is proposed to identify the Iv address of attack 
source. This approach would cause a critical delay in developing countermeasures. 

• Cross-layer feature set allows each mobile node to monitor both the MAC and network 
layer simultaneous, extends the detection capabilities to both layers. In our experiments, 
all of the simulated attacks are launched against the network layer, and we are able to 
detect most of these attacks with MAC layer features. Although for 10 m/s network, some 
of the attack detection, e.g. deprivation attack, is low. But one .more step of data prepro- 
cessing (i.e. by removing the frequent RtDataPkts) could bring the detection rate up to 
90-100%. In fact most of the network layer attacks will cause immediate effects at MAC 
layer, and detection at MAC layer can be more direct and more prompt. 
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• Cross-layer feature set can detect attacks that are unable or hard to detect by using 
single layer information. For example, it is very hard to detect our simulated blackhole 
attack using only the information from network layer, because after the attack source 
broadcasts the falsified routing information, all neighbor nodes update their routing 
table accordingly. From a neighbor node point of view, this routing change is quite nor- 
mal. 

Lastly, from our experiments, we conclude that that association rule mining can be effecti- 
vely used to detect most of the resource consumption attacks as described in Section Ill-B, if 
a good feature set is used along with appropriate data preprocessing. This is because associa- 
tion rules can capture interesting patterns from frequently enough (i.e. about minsup) item- 
sets in the data that is being mined. 

V. CO N CLU S IO N  

We have presented an anomalybased IDS for ad hoc networks using association rule mining 
technique. The IOS is devised for individual nodes in a given network, and monitors network 
data within radio transmission range. We have proposed a compact crosslayer feature set, 
which enables mobile node to monitor the MAC layer and the network layer simultaneously. 
The advantages of using cross-layer information include the capability of identifying and 
localizing attack sources, and the ability of detecting attacks that are unable to be detected by 
using single layer information. We have also developed a novel collaborative detection 
scheme that integrates local intrusion alerts with global intrusion alerts. This facilitates the 
proposed IDS to effectively detect a malicious node beyond onehop perimeter. Simulation 
results demonstrated that our method is effective with respect to the simulated attacks. 
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