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Generalising arifllmetic structures is seen as a key to developing algebraic 
understanding. Many adolescent students begin secondary school with a 
poor understanding of the structure of arifllmetic. This paper presents a 
theory for a teaching/learning trajectory designed to build mathematical 
understanding and abstraction in the elementary school context. The 
particular focus is on the use of models and representations to construct an 
understanding of equivalence. The results of a longitudinal intervention 
study with five elementary schools, following 220 students as they 
progressed from Year 2 to Year 6, informed the development of fllis theory. 
Data was gathered from multiple sources including interviews, videos of 
classroom teaching, and pre- and post- tests. Data reduction resulted in the 
development of nine conjectures representing a growth in integration of 
models and representations. These conjectures formed the basis of the 
theory. 

F rom 2002 to 2006 we  c o n d u c t e d  a long i tud ina l  in te rven t ion  s tudy,  the 
Early Algebraic Thinking Project (EATP). This project  fo l lowed  the 
d e v e l o p m e n t  of algebraic  th inking  of s tudents  in five e l emen ta ry  schools  in 
Queens l and ,  Austral ia ,  as they  p rog re s sed  f r o m  Years 2 to 6 (6 to 11 years  
old). The f r a m e w o r k  for the in te rven t ion  was  based  on  our  k n o w l e d g e  and  
beliefs at the t ime. These  inc luded  a s t ructura l  v i ew of  ma thema t i c s  (Sfard, 
1991) and  a cogni t ive perspec t ive  on learning (English & Halford ,  1995; 
Hieber t  & Carpenter ,  1992). We  also took  into account  s tuden t s '  difficulties 
wi th  var iables  and  the cogni t ive  gap  b e t w e e n  ar i thmet ic  and  a lgebra  
(Linchevski  & Herscovics ,  1996; Usiskin, 1988). Similar to the theoret ical  
v iews  of Dienes  (1961), Skemp  (1978) and  Usiskin (1988), we  v i ewed  algebra  
as an abstract  sys tem in wh ich  in teract ions  reflected the s t ruc ture  of 
ar i thmetic  and  w h e r e  its p r i m a r y  impor t ance  lay in the w a y  it r ep resen ted  
these s t ruc tures  (e.g., ba lance  principle,  field and  equiva lence  class 
proper t ies)  and  genera l i sed  ar i thmetic .  We  did  no t  cons ider  aspects  such as 
factor isat ion and  s implif icat ion as the essence of algebra,  bu t  ra ther  v i ewed  
algebra  as a sys tem character ised  by  i n d e t e r m i n a c y  of objects, an analyt ic  
na ture  of th ink ing  and  symbol ic  w a y s  of des igna t ing  objects (Radford ,  2006). 

Reflecting the foci of Scandura  (1971), we  cons idered  a lgebra  as 
consis t ing of two  core approaches ;  re la t ionships  and  change.  In the first, 
opera t ions  can be ei ther  relat ional  or static (e.g., 3 + 4 = 7, three and  four  is 
seven) wi th  equals  as equiva lence  or " s a m e  va lue  as". In the second,  
opera t ions  can be t r ans fo rmat iona l  or  d y n a m i c  (e.g., 3 + 4 ~ 7), three 
changes  by  a d d i n g  four  to give seven) wi th  equals  as a two  w a y  m a p p i n g  
f rom one side of an equa t ion  to the o ther  (Linchevski ,  1995). This 
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perspective mirrors two of Kaput 's  (2006) three core strands: algebra as a 
s tudy of structure and systems abstracted from computations and relations; 
and algebra as a s tudy of functions, relations and joint variation. We utilised 
Malara and Navarra 's  (2003) distinction of arithmetic thinking focusing on 
product, and algebraic thinking focusing on process, in order to move from 
one to the other in classroom practice as the need arose. At times we needed 
arithmetic to support algebraic thinking (e.g., generalising the compensation 
principle of arithmetic) while at others we needed algebraic thinking to 
support arithmetic (e.g., adding 3 to 2 is the same process as adding 3 to 82, 
3 to 1012, 30 to 20, and so on). We concurred with Mason's (2006) claim that 
the power of mathematics lies in the intertwining of algebraic and arithmetic 
thinking, each enhancing the other as students become numerate. 

This paper uses one aspect of the development of the EATP students '  
abilities to generalise arithmetic structure to think algebraically, as indicated 
by their comprehension of equivalence of expressions and equations. The 
results from this intervention illustrate a theory of how structured sequences 
of models and representations effectively assist students to construct 
mathematical understanding and abstraction. In part, the paper is a 
reanalysis of the teaching sequences described in more detail in Warren 
(2008). 

This paper has three sections. Firstly, it describes the basis of the 2002 - 
2006 EATP intervention in terms of theoretical perspectives, teaching 
approaches, methodology,  and overall findings. Secondly, it analyses the 
progress of the intervention to illustrate major conjectures with regard to 
using models and representations. And thirdly, it reflects on the conjectures 
in the light of new literature to delineate a theory that emerges from the 
EATP teaching. 

Background 

EATP." Theoretical Position on Models and Representations 
At the time, our teaching of mathematical structures was based on the 

general consensus that mathematical ideas are presented externally (as 
concrete materials, pictures/diagrams,  spoken words, and written symbols) 
and comprehended internally (in mental models or cognitive 
representations). From this perspective, mathematical understanding is 
exhibited by the number  and strength of connections in the students '  
internal network of representations (Hiebert & Carpenter, 1992), and the 
development of an understanding of mathematical  structure involves 
determining what  is preserved and what  is lost between specific structures 
which have some isomorphism (Gentner & Markman, 1994; Halford 1993). 

Therefore, to access algebraic thinking, we constructed our intervention 
around models and representations. Models are ways of thinking about 
abstract concepts (e.g., balance for equivalence) and representations are 
various forms of the models (e.g., physical balances, balance diagrams, 
balance language, equivalence as balance). Given the paucity of literature 
concerning the development of algebraic thinking at the elementary level, 
Bruner's theory (1966) was utilised to assist us in selecting representations 
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for the intervention lessons. Our selection broadly  followed the enactive to 
iconic to symbolic sequence unless another  imperat ive intervened.  We 
considered mathematical  deve lopment  as cumulat ive rather than 
replacement and thus integrated various representat ions from different 
levels (e.g., an iconic picture of balance and enacting the number  line). Based 
on our  belief that no single model  or system of representat ions would  
provide all of the insights, we used comparison of and transition between 
models  and representat ions to support  the emergence of algebraic thinking 
(e.g., using the balance and number-l ine models  in unison). In this process 
we were influenced by three factors. The first was the four-step sequence 
proposed by Dreyfus (1991): (1) one representation, (2) more than one 
representat ion in parallel, (3) linking parallel representations, and (4) 
integrating representations. Second was Duval 's  (1999) argument  that 
mathematics comprehension results f rom the coordination of at least two 
representational  forms or registers: the multifunctional  registers of natural 
language and f igures /d iagrams,  and the mono-functional  registers of 
notation systems (symbols) and graphs. Third was Duval 's  contention that 
learning involves moving from treatments to conversions to the 
coordination of registers. From our  perspective, representat ions assist us in 
arriving at a mathematical  certainty concerning the situation we are 
investigating. As Smith (2006) states, the representat ion becomes part of the 
knowledge  of the learner; it is an integral component  of the objectification 
process. 

Models, particularly in their physical or concrete representat ional  form, 
are endowed  with two fundamenta l  components ,  namely, translation and 
abstraction (Filloy & Sutherland, 1996). Translation encompasses moving 
from the state of things at a concrete level to the state of things at a more 
abstract level, with the model  acting as an analogue for the more abstract. 
Abstraction is believed to begin with explorat ion and the use of processes or 
operations per formed on lower-level mathematical  constructs (English & 
Sharry, 1996; Sfard, 1991). However ,  as Filloy and Sutherland (1996) argue, 
models  often hide what  is meant  to be taught and present problems when  
abstraction from the model  is left to the pupil.  Thus teacher intervention is a 
necessity if the deve lopment  of detachment  from the model  to construction 
of the new abstract notion is to ensue. As we implemented  the models  and 
representations, we engaged in classroom inquiry-based discourse with the 
young students and continually explored new signs that would  assist the 
students to extract the essence of the mathematics embedded  in the 
exploration. We used Radford 's  (2003) notion of semiotic nodes. Gestures 
and language were seen as essential to this exploration as they revealed 
subtle shades of meaning that arose from the students '  thinking (Tall, 2004). 
Thus, EATP was based on a socio-constructivist theory of learning, inquiry- 
based discourse and the simultaneous use of mult i-representat ions to build 
new knowledge  (Warren & Cooper,  2008). 

Teaching Equivalence and Equations in the EA TP 
Past research has provided  evidence that young  students possess a 

narrow and restricted knowledge  of the equals sign. They persistently 
interpret it as either a syntactic indicator (i.e., a symbol indicating where  the 
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answer should be written) or an operator  sign (i.e., a stimulus to action or 
"to do something")  (Behr, Erlwanger & Nicols, 1980; Carpenter,  Franke, & 
Levi, 2003; Saenz-Ludlow & Walgamuth,  1998; Warren  & Cooper,  2005). 
Instead it should be interpreted as quantitat ive "sameness" (i.e., both sides 
of an equation are the same and information can be obtained from either 
direction in a symmetrical  fashion) (Kieran & Chalouh, 1992). This 
misunders tanding of the equals sign leads to many  students believing that 2 
+ 3 = 5 + 2 not 3 + 2 (Saenz-Ludlow & Walgamuth,  1998; Warren & Cooper,  
2005). This incorrect unders tanding of the equals sign appears to continue 
into secondary and tertiary educat ion (Baroody & Ginsburg, 1983; Steinberg, 
Sleeman & Ktorza, 1991), affecting mathematics learning at these levels. 

The balance and number-l ine models  were chosen for the equivalence 
and equation component  of EATP. Both models  are based on measurement  
ideas: the balance modell ing mass and the number  line modell ing length. 
The balance model  p redomina ted  initially in the instructional sequences, 
with physical balance scales representing equivalence and weights 
representing numbers  and operations. This model  later progressed to 
diagrams of balances, with balance representing equivalence and numbers  
and operations representing themselves.  The number-l ine model  was used 
to demonstra te  the identi ty and inverse principle for expressions. A typical 
activity involved students starting at a r andom point  on the number  line, 
walking forwards  along the number  line a certain distance to represent  
addit ion (e.g., 3 steps for adding 3), and walking back the same number  of 
steps to reverse addition, thus returning to their starting position. 

All models  have advantages and limitations. While past research has 
indicated that the balance model  is limited by its inability to model  
subtraction equations or unknowns  as negative quantities (Aczel, 1998), we 
aspired to ameliorate this by having a diagram represent a "mathematical  
balance" which could include all operations and numbers.  The advantage of 
the balance model  is that (a) it considers both the right hand and left hand 
sides of equations, (b) it is not directional in any way (Pirie & Martin, 1997), 
and (c) it copes with the need to attend to the equation as an entity rather 
than an instruction to achieve a result. The advantage of the number  line 
model  is that it allows the modell ing of both addit ion and subtraction 
situations. Its limitation lies in its s imultaneous representat ion of unknowns  
as unknown  lengths and numbers  as known lengths, a visual that incorrectly 
encourages students to find the length of a unit f rom the known and apply 
this thinking to solve the unknown.  

The language utilised during the teaching phase reflected the balance 
model.  Expressions used in teaching included: "Equal  is balanced, having 
the same value on each side of the balance scale." "Unequal  is unbalanced, 
having different values on each side of the balance scale." The symbols used 
were '='  and '4'. Equations were represented horizontally,  often with more 
than one value following the equal sign. 

Methodology 
The methodology  adopted  for EATP was longitudinal  and mixed- 

method  using a design research approach,  namely a sequence of teaching 
experiments that fol lowed a cohort of students over a five-year period (Year 
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2 to Year 6). In line with this approach,  during and between lessons 
hypotheses  were conceived "on the fly" (Steffe & Thompson,  2000). 
Modifications in the design were responsive to observed actions and 
unders tanding of the teacher / researcher  and the students. For example, 
many  of the instructional tasks were generated prior to the teaching phase. 
During the lessons tasks were modif ied according to classroom discourse 
and interactions. New representat ions were in t roduced in order  to challenge 
the students '  thinking and to encourage them to justify their responses. 

EATP was based on a re-conceptualisation of content and pedagogy  for 
algebra in the e lementary school. In particular, for this paper,  it sought to 
identify the fundamenta l  cognitive steps crucial for an unders tanding of 
equivalence and expressions. 

Participants 
The participants were a cohort of students and their teachers f rom five 

inner city, middle  class Queensland schools. During the study, the cohort of 
students progressed from Year 2 to Year 6. In total, 220 - 270 students and 40 
teachers part icipated in the study. All schools were following the Patterns 
and Algebra strand from the new Queensland Years 1-10 Mathematics 
Syllabus (Queensland Study Authority,  2004). 

Procedure 
All lessons were taught by  one of the researchers. (For a description of 

the lesson components,  please see Warren, 2008.) Although the teachers 
were well credentialised (all had 4-year training, in line with Queensland 
policy), the mathematics component  of their training was limited and, like 
most e lementary teachers in Queensland,  they were not confident in 
teaching mathematics (Nisbet & Warren,  2000). In addit ion to this limitation, 
algebraic thinking is a new content area in the e lementary classroom, 
requiring thinking and pedagogy  that has not previously been explored in 
practice. Participating teachers in the research were accordingly unsure  as to 
how to conduct  lessons focusing on this new content area. 

Data were collected from multiple sources, including videos of 
classrooms during the teaching phase. All lessons were videotaped using 
two cameras, one fixed on the teacher and the class as a whole and the other 
moving around the classroom, focusing on students '  activity of interest. 
Data also included interviews with teachers and a randomly  selected group 
of students, pre- and post-tests of algebraic thinking, field notes writ ten by 
observing researchers, and artefacts (lesson plans, examples of students 
work). Detailed description of the EATP teaching utilised across Years 2 to 6 
to develop algebraic thinking with regard to equivalence and equations is 
reported in Warren (2008). 

Results 
As described in Warren (2008), the EATP findings on equivalence and 

equations indicated that: (i) early and middle  years students can learn to 
unders tand the powerful  mathematical  structures if instruction is 
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appropriate; (ii) connections between representations, conversions using 
different representations, and flexible movement between representations at 
opportune times enhance learning; (iii) a teaching focus on structure is 
highly effective for achieving mathematical goals. Five key aspects of 
equivalence and equation were highlighted: (i) equations as equivalence, (ii) 
the balance principle, (iii) the sign systems for unknowns (and variables), 
(iv) identity and inverse (for all operations), and (v) finding solutions and 
generalisations about real world problems involving more than one 
unknown. Both younger and older students were found to be capable of 
engaging in discussions involving simultaneous equations and principles 
associated with the equivalence class and field structures. 

EATP assisted the students to gain a broader understanding of 
equality and arithmetic and showed that the intertwining of arithmetic 
thinking and algebraic thinking (as defined by Malara and Navarra) 
certainly had "pay offs" for both (Mason, 2006), with the students capable of 
searching for generalisations in computational contexts. The balance and 
number-line models were effective in the way sequences of representations 
were used to facilitate language and symbols. Students could act out with 
materials such as beam balances, cloth bags with objects and their 
accompanying pictures, walking games, paper strips and large number 
lines. Learning was also enhanced by creative representation-worksheet 
partnerships. These worksheets consisted of pictures and directions that 
reinforced understanding and highlighted principles. However, 
fundamental to the learning process was the role of the teacher assisting in 
the appropriate detachment and abstraction from the model to objectifying 
the mathematics inherent in the representation (Filloy & Sutherland, 1996). 
In particular, the results indicated that very young students can represent 
equivalence in equation form in un-numbered and numbered situations and 
they can generalise the equivalent class principles for equivalence. It was 
also evidenced that they are capable of generalising the balance principle for 
simple equations. The results also indicated that older students can 
represent equivalence with unknowns in equations form, generalise the 
balance principle for all operations, and use the balance principle to solve 
unknowns in linear equations, including equations with unknowns on both 
sides (see, Warren, 2008). 

Conjectures and Findings 
For the purpose of this paper, we re-analyse these descriptions to 

identify conjectures with respect to the use of models and representations. 

Conjecture 1: Effective ini t ial  models/representations show underlying 
structure. 

EATP began its development of equivalence and equations in Year 2 
with unmeasured or unnumbered models (in line with Davydov, 1975; 
Dougherty, & Zilliox, 2003), using a physical balance and a collection of 
groceries. Students were asked to identify what was the same and what was 
different, a language building activity: They weigh the same, they are the same 
shape, they are the same colour. Students were then asked to identify two 



82 Warren & Cooper 

objects that had the same (equal) mass and different (not equal) mass. They 
checked their guesses by placing the objects on either side of a balance scale 
and verbally shared: the mass of the pasta plus the rice is the same as (equal to) 
the mass of the salt plus the baked beans, and the mass of the beans plus the flour is 
different from (not equal to) the mass of the sugar and the pasta. Cards marked 
with "=" and "#" were placed on the balance scales so that equations could 
be easily read. The students wrote their findings as simple equations (see 
Figure 1). 

pasta + rice = salt  + beans  

Same = 
Equal 

beans  + f l our  # sugar  + pasta 

Different ¢ 
Not equal 

Figure 1: Mapping real world weight relationships 

While these equations were not correct in terms of the mathematical  
symbol system, as it is a relationship between masses and not grocery types, 
they did serve as an effective model  for revealing the under lying structure of 
equations. This model  also suppor ted  informal discussions concerning the 
equivalent class properties.  In particular, the symmetric property,  for 
example, pasta + beans = sugar means that sugar = pasta + beans, was easily 
shown by rotating the physical balance through 180 degrees. 

Conjecture 2: Effect ive  sequences of mode l s / represen ta t ions  must be nested. 

EATP progressed to numbered  situations in Year 2 by replacing the 
groceries with blue and green glass seashells all of the same mass (see Figure 
2). As Warren (2008) describes, s tudents '  abilities to discuss and 
comprehend the equivalence class propert ies  diminished because they 
believed, f rom previous  arithmetic, that they should place the answer to an 
addit ion after the equals sign and "join" materials when  adding (i.e., they 
saw equals as a syntactic indicator and an operator sign) in line with Saenz- 
Ludlow & Walgamuth  (1998), Behr et al. (1980), Carpenter  et al. (2003), and 
Warren (2006). For example, one student saw the result of 2 + 2 = 2 + 2 as 8 
(by grouping all of the materials), while another  student argued that 3 + 4 
6 + i because 3 + 4 # 6. 

In logical terms, equations of the form 3 + 4 = 7 are a subset (or are 
nested within) equations of the form 3 + 4 = 6 + 1, which in turn are a subset 
of the more general "pasta + rice = sugar + soap". One difficulty experienced 
here when working within regular classrooms, was that the researchers '  
activity with unnumbered  and numbered  equations followed the teachers '  
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activity with arithmetic, tn other words,  the particular preceded the general. 
When the particular models  and representat ions did not fit within the 
superstructure of the general, conflict developed between particular and 
generalised schemata. 

3 + 2 = 4 + i  5+ i -¢3+2  

Figure 2: Mapping real world numerical  relationships 

Conjecture 3: Effec t ive  models  eas i ly  extend to new components and expand 
to new appl ica t ions .  

In Year 3, numbered  activities cont inued with physical balances, but  
with the shells being replaced with 125gram cans of baked beans and 
spaghetti. The aim was to introduce the balance principle and the unknown 
into the discussion about addit ion situations and to investigate solving for 
the unknown.  For the balance principle, the focus of the lessons was on 
"keeping the scales balanced" and the balance generality: if you add or 
subtract any number from one side of the balance scale, you need to add or subtract 
the same number from the other side to keep the scales balanced. For the unknown,  
cans were secretly placed inside a cloth bag printed with question marks to 
enable equations with unknowns  to be model led with the balance. The 
balance principle was used with the bags to solve linear equations. All 
students found it easy to solve equations such as ? + 2 = 5 (see Figure 3). 

9 + 2 = 5  
Figure 3: Mapping real world relationships to equations 

A typical s tudent discussion was as follows. 

Oscar: If you take tile bag from one side then you keep taking cmls from tile 
other until it is balanced That is tile unknown 

Jill: Take 2 cans from both sides so the unknown is 3 
Although students initially relied on number  facts to solve for the 
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unknown,  most  were  able to justify results by  using the balance principle 
(al though some still wanted  to add all of the numbers ,  result ing in ? = 7 in 
Figure 3). A few students  could extend their knowledge  and solve situations 
like ? + ? + 2 = ? + 5 even though solving this type of equat ion had not been 
taught.  This p rob lem solving indicated the ease in which the model  and the 
physical  representa t ion could be extended to equat ions with u n k n o w n s  (a 
new component )  and expanded  to solving these equations (a new 
application). 

Conjecture 4: Ef fec t ive  sequences of models  and rep resen ta t ions  move  
towards  abs t rac t ion  by  re t a in ing  prev ious  models '  structures but a l lowing  
g rea te r  f l ex ib i l i t y .  

In the Year 4 EATP, the balance model  representa t ion changed f rom a 
physical  balance to a movab le  dynamic  d iagram of a balance with magnet ic  
numbers  and magnet ic  shapes with question marks  to represent  the sides of 
the equations.  This change was  made  to enable the model  to include 
discussions about  subtraction. The focus was on developing a new sort of 
balance, a "mathemat ics"  balance, in which all operat ions  were  al lowed 
(thus compensa t ing  for l imitations in earlier representation).  Figure 4 
illustrates the new model .  A typical s tudent  ' teacher  discourse was  as 
follows. 

Mat: You could add three to both sides. 

T/R: How many would you have on this side (pointing to the LHS)? 

Mat: Unknown. 

T/R: How many on this side (pointing to the RHS) 

Mat: 9. 

6 

Figure 4. Materials used for subtract ion situations 

The d iagram of the balance was  constructed f rom magnet ic  strips to allow 
students  to move  the balance up  and d o w n  as they added  or subtracted 
numbers  f rom each side. This mainta ined the me taphor  of m o v e m e n t  up  
and d o w n  indicating balance or imbalance (equal or not equal). It enabled 
the model  to be extended beyond  addi t ion and al lowed equat ions to be 
represented in a similar way  to the physical  model .  This p roved  to be more  
flexible but  was  less real, a trade-off  as we m o v e d  towards  abstraction. 

Conjecture 5: Use of m u l t i p l e  models  enables  complex procedures  to be 
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f a c i l i t a t e d  and student d i f f icul t ies  to be overcome. 

Solution of linear equations using the balance principle is a complex 
activity with three difficulties. It requires students (i) to see the equals sign 
as a balance (and not to close prematurely);  (ii) to unders tand  inverse of 
operations in order  to isolate the ?; and (iii) to be able to unders tand  that 
balance and inverse require a metaphor of opposites. It encompasses what  
EATP calls a compound difficulty (Cooper & Warren, 2008). Using the balance 
strategy to solve equations such as ? + 8 = 12 requires the inverse operat ion 
(subtracting 8) to isolate the "?" and the same operat ion (subtracting 8 from 
both sides) to balance the equation. EATP tackled this compound difficulty by 
introducing new models.  

First, to counter  the propensi ty  by some students to close on the 
equations (i.e., to add all the numbers),  EATP under took  activities based on 
a same-value model  to teach equals as equivalence. These activities assisted 
students to create addit ion and subtraction problems that involved 
comparing two situations to ascertain if they were equivalent (see Figure 5). 
The creation of the stories did not involve finding answers but  rather 
focussed on whether  the contexts were equivalent.  This procedure  appeared 
to assist students to move  beyond  the continual need to close addit ion and 
subtraction situations and to construct a new mental  model  that 
incorporated addit ion and subtraction situations that were equivalent.  This 
finding supports  our  conjecture that using more than one model  assists 
unders tanding of complex procedures.  It also supports  Conjecture 2 that 
models  and representat ions are best developed in nested sequences. We 
conjecture that, for max imum effectiveness, these equivalence stories should 
precede the arithmetic stories such as "3 and 2 makes 5" (as equivalence 
stories include arithmetic stories). 

Second, to build students '  unders tanding of inverse, EATP students 
initially added and subtracted the same number  of counters f rom groups of 
counters, again using a same-value/balance  model.  This procedure  was not 
successful with some students and could not be applied to situations where 
the number  being subtracted was larger than the number  in the initial 
group.  To continue building the idea of inverse, and to counter  the 
compound  difficulty, EATP introduced the students to a number-l ine model  
and the open number-l ine representation. This number-l ine representat ion 
allowed modeling of addit ion and subtraction (as moving backwards  and 
forwards on the line) and unknowns  (as a point identified by a question 
mark). This model  was successful for most s tudents (see Figure 6 for two 
typical responses). The first example illustrates the student 's  unders tanding 
of how subtracting 6 from and adding 6 to an u n k n o w n  requires counting 
back and on 6 from an unkno w n  point  on the number  line. 
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Figure 5: An equivalence story 

3(a) Mark [ ] - 6 a n d  [ - ~ + 6  . ~  

3 (b) Mark ['-~- t0 and ~ + 8 "~L., . 

" I 0  . . . . . . . . . . . .  [ ~  ?+8" 
Figure 6. Examples of students' Worl~ With open number lines and 
unknowns 

Conjecture 6: Complex situations and compound difficulties may require 
development of larger structures (superstructures) into which conflicts can 
be nested. 

The compound difficulty, using the inverse operation for isolating the 
unknown and the same operation to solve for the unknown, was difficult for 
some students to understand. As a result, EATP introduced the term 
expression (not used in the Queensland syllabus), related it to equation (i.e., 
"an equation is an equivalence of expressions") and discussed how both 
expression and equation can be left unchanged. This placed the solving of 
linear equations for an unknown within a superstructure which included 
understanding the different ways in which equations and expressions 
remain unchanged (i.e., same operation to both sides of the equation and 
inverse operation for expressions). 

This conjecture was also supported by activities looking at the co- 
variational relationship between two unknowns (Fuji, 2003). The equations 
? + ??= 8 and ? + ? = 8 (where ? and ?? represent different unknowns) were 
modelled with a balance, using boxes labelled "?" and "??" for the 
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unknowns  and marbles to represent  the numbers.  Most students could 
begin to explore the co-variational relationships be tween two unknowns  and 
also extend this thinking to situations involving rational numbers.  However ,  
some students could show numbers  to solve ? = 4 and ?? = 4 but  not ? + ?? = 
8, while others believed that the unknown  in ? + ?= 8 could be, for example,  
3 and 5 as well as 4 and 4. 

Conjecture 7: Often,  for models  to be effect ive ,  t h e y  need to be r e l a t ed  to 
real  world  s i tuat ions  through language, acted out k i n a e s t h e t i c a l l y  and 
visual i sed .  

The balance, se t / same-va lue  and number- l ine-models  (respectively 
Figures 4, 5 and 6) were all initially developed in relation to real world 
situations, acted out kinaesthetically and then imagined visualised? Having 
the students act out being a balance with their bodies with plastic bags 
containing mass material hanging from their arms, was effective in the 
earlier years and in later years was utilised as an image we could draw upon  
(e.g., What happens if we change something in our right hand? How do we get back 
into balance?). Obviously,  as described under  Conjecture 5, the se t / same  
value activity of Figure 5 was also in strong relation to real world situations 
and had an effect upon  mental  models. 

The number-l ine activity however  was the most illuminating. Initially 
some students experienced difficulty with the Figure 6 activity. It was not 
until we drew an unmarked  number  line on the floor, had students 
physically stand on the ' unk n o w n '  spot, then walk three paces forward then 
three paces back that they began to realise that addit ion is the 
reverse / inverse  of subtraction and subtraction is the reverse / inverse  of 
addition. In these lessons, the EATP underes t imated  the importance of 
kinaesthetic movement  and gestures in the deve lopment  of mental  models.  
As Radford (2006) succinctly claims, the perceptual  act of noticing unfolds in 
a process mediated by multi-semiotic activity (e.g., spoken words,  gestures, 
and drawings). The EATP experience showed that kinaesthetic movement  is 
also an important  element in the deve lopment  of visual-mental models. In 
fact, at the completion of the lessons many  students engaged in a process of 
walking up and down the number  line until they were satisfied that they 
unders tood the relationship between addit ion and subtraction and the 
notion of identity. 

Conjecture 8: Di f fe ren t  models  ach iev ing  the  same outcome build deep 
understanding and abstraction.  

In order  to re-examine the compound  difficulty students experienced 
with the balance and inverse principles, EATP decided to use the number-  
line model  for solving linear equations for an unknown.  

In the first stage, students were encouraged to write stories involving 
unknowns,  model  these stories with strips of paper,  and write these stories 
as equations (see Figure 7 for two typical addit ion and subtraction stories 
and number-l ine illustrations). The success of this approach also suppor ted  
Conjecture 7. 
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(a )  An addition story 

~arb}~s +h~n 6h~ 
Io6+ ~-5, ~obo S½~ hoJ.. 

22-V~ 

i - -  

(b) A subtraction story 

m 

t 

Figure 7. Two number line representations and accompanying stories for 
addition and subtraction. 

. 

Task (a) 

~ - 5 = 9  

9 

Solution (b )  

~- s-vG= c 

Figure 8. Use of number line to solve an equation; (a) a typical  task, (b) a 
student's solution. 

Most students could successfully model addit ion and subtraction 
problems using the number-line model. It appeared to integrate well wi th  
previous work with  the balance model, faci l i ta t ing correct application of 
inverse and balance to solve linear equations wi th  unknowns (see Figure 8). 
It proved useful as an iconic representation for the 'melding' of the two 
conflicting principles (i.e., applying the opposite to isolate the unknown 
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and the  same to keep the  equat ion balanced)  suggesting t h a t  in tegrat ing 
models results in a grea ter  unders tanding of concepts. It a p p e a r e d  to remove 
d i f f icul t ies  even when  the  ba lance  model  was reused in the  next year .  

Conjecture 9: Effect ive  models  h a v e  sequences of representa t ions  t h a t  
move from the  phys i ca l  to the  abstract.  

In Year 6, EATP utilised the balance model  and appropriate  
representat ions to solve complex linear equations where the unknown  
occurred on both sides (the didactic cut). For example,  students were 
capable of modell ing equations such as 5 x ? + 22 = 7 x ? - 2 using the 
magnetic diagram of a balance, shapes with question marks, and operations 
and numerals  (see Figure 9) and able to solve for the unknown  using inverse 
and balance principles. 

Figure 9. Representation of a complex linear equat ion 

Although there was some difficulty in extending the balance principle to 
such complex equations, students successfully moved  from this 
representat ion to a representat ion where 5 x ? + 22 and 7 x ? - 2 were placed 
on either side of a drawing of a balance, and finally to one where  5 x ? + 22 = 
7 x ? - 2 was given in horizontal,  symbolic equat ion form. This activity 
appeared to develop a mental  model  of the balance principle that assisted 
students in seeing arithmetic in a way that al lowed them not only to solve 
algebraic equations but  also to justify their actions. This result also 
suppor ted  Conjecture 3 that effective models  allow extension and expansion 
(and compensate  for limitations in earlier representations). 

Emerging theory 
The reanalysis of the descriptions of equivalence and equation activities 

from Warren (2008) has resulted in nine conjectures. Because of the novelty 
of the material being taught, there was little research to inform EATP's 
practice, and so a combination of what  worked  in other mathematical  
concepts plus analysis of the mathematical  structures behind equivalence 
and the equations formed a backbone for the conjectures. Those that seemed 
to work  appear  in this paper  and their implications for teaching and 
learning theory are discussed in the next section. Thus the following section 
is truly conjectural, and is designed to explore theoretical possibilities. 
However ,  prior to sharing our  hypothesising, the relationship between 
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learning and teaching and mathematics' structure and abstraction is 
explored. 

Learning, Learning-Teaching, Abstraction, and Generalisation 
The literature presents two differing perspectives on the ontology of 

student learning, namely the learning trajectory and the learning-teaching 
trajectory. While both perspectives have many commonalities, the main 
differences lie in their emphasis on the act of teaching in the learning 
process, and the prescriptiveness of the resultant curriculum. From the first 
perspective, learning consists of a series of natural developmental 
progressions identified in empirically-based models of children's thinking 
and learning (Clements, 2007). Teaching is secondary to the act of learning 
and consists of the implementation of instructional tasks designed to 
engender this development. The resultant curriculum consists of diagnostics 
tests, learning hierarchies and purposely-selected instructional tasks. 

In contrast, the learning-teaching trajectory has three interwoven 
meanings each of equal importance: (1) a learning trajectory that gives an 
overview of the learning process of students; (2) a teaching trajectory that 
describes how teaching can most effectively connect with and stimulate the 
learning process; and (3) a subject matter outline, indicating which core 
elements of the mathematical curriculum should be taught (Van den 
Heuvel-Panhuizen, 2008). It is believed that the learning-teaching trajectory 
provides a mental education map that can help teachers make didactical 
decisions as they interact with students' learning and instructional tasks. It 
serves as a guide at the meta-level. The resultant curriculum tends to be 
more open and flexible, with teachers choosing and adapting activities in 
order to enhance student learning. 

It is the second perspective that has greatest resonance with the research 
presented in this paper. EATP was designed to identify not only key 
transitions in student learning in the domain of early algebra, but also to 
identify particular teaching actions that support these transitions. As such, it 
was based on a belief that the act of teaching is as important as the act of 
learning, and that learning is not necessarily a step-by-step process 
progressing through hierarchical levels. 

As argued in Cooper and Warren (2008), mathematical structure and 
abstraction is based on students' ability to generalise from particular 
examples to general rules and from real-world situations to abstract 
representations. This is particularly applicable to the balance principle. 
Initially the principle is discussed in terms of removing two cans from each 
side of a physical balance but eventually becomes a general rule 
encompassing all numbers and operations. For such generalisation EATP 
reflects English and Halford's (1995) mapping instruction approach which 
focuses on teaching to identify similarities between isomorphic procedures 
(e.g., what is the same in the processes for "34 -16" and "3 weeks 4 days 
subtract 1 week 6 days"). This approach is the basis behind integrating the 
different models and representations when solving linear equations with 
unknowns (Conjectures 5 and 8); the commonality between the models 
encompasses the kernel of the mental model that is the outcome of the 
teaching. 
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Modern research by Radford (2003, 2006) suggests that generalisation 
emerges from factual (gesture and rhythm driven) and contextual (language 
driven) activities as well as symbolic activities, requires students to perceive 
the particular and use this to conceive the general; and involves two 
components, grasping and expressing. This complexity is evident in 
Conjecture 7 where a return to real world and kinaesthetic activities were 
required for generalisations to be comprehended.  Expressing generalisations 
tends to follow a sequence from quasi-variable in terms of a variety of 
numbers (Fuji & Stephenson, 2001) to language to symbols. This progression 
was evident within the sequence of activities across the five years, and in the 
comprehension of the balance and inverse principles within Years 3 and 4. 

Theoretical Framework 

The nine conjectures identified in the development of equivalence and 
equations knowledge reflected a growth in the abstraction of ideas and 
complexity of tasks that was inversely related to the reality (physicality) of 
representations. They also represented a growth in the integration of models 
and representations. From a reappraisal of their relationships, the following 
emerges as a basis of a theory for a teaching/learning trajectory designed to 
build abstraction. 

Theory hypothesis 1: Translation to abstraction occurs not within a model 
or representation but across models and representations that follow a 
structured sequence. This hypothesis is a consequence of all conjectures. 
There appears to be no "magic bullet"; abstraction is built from model to 
model and representation to representation. 

Theory hypothesis 2: Effective models and representations show the 
underlying structure of the mathematical ideas and easily extend to new 
components and expand to new applications. This hypothesis encompasses 
Conjectures 1 and 3. It begins the teaching trajectory by providing the 
following criteria for determining effective models: (i) strong isomorphism 
between the desired internal mental model and the initial external model 
that covers the important  aspects of the mental model, (ii) lack of distractors 
that draw attention away from isomorphisms; and (iii) many options in 
terms of representations that enable the model to extend to new components 
(such as variables) and expand to new applications (such as finding 
solutions to problems). Both the balance and number-line models have these 
attributes; the number-line model is stronger in representing inverse 
relations; whilst the balance model provides a more powerful portrayal of 
equivalence. 

Theory hypothesis 3: In an effective sequence, models and representations 
develop in three ways: (i) increased flexibility, following the general 
sequence concrete to dynamic diagram to static diagram to symbols; (ii) 
decreased overt structure, following the general sequence of structure in 
action, to structure alluded to in visuals, to structure visualized in the mind; 
(iii) increased coverage, where later representations compensate for 
limitations in earlier representations; and (iv) connectedness to reality, 
always relating the form of the representation to real world instances. This 
hypothesis encompasses Conjectures 4 and 7. The balance model is 
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particularly powerful  in terms of its sequence of increased flexibility as it 
moves from physical to diagrammatic representations. 

Theory hypothesis 4: Sequencing should ensure consecutive steps are 
nested. This hypothesis encompasses Conjecture 2 and is particularly 
important.  Difficulties and conflicts arise if later models and representations 
are not subsets of earlier ones. This problem was most clearly evidenced by 
the closure created by teachers giving prominence to arithmetic computation 
before equivalence was taught. This hypothesis is also important because it 
implies that the engagement  with unnumbered  situations before numbered 
enables students to effectively attend to mathematical structure, thus 
reinforcing Hypothesis 2. 

Theory hypothesis 5: Complex procedures can be facilitated by integrating 
more than one model; however, such integrations can give rise to compound 
difficulties which require the development of superstructures. This 
hypothesis encompasses Conjectures 5, 6 and 8. It is most relevant to 
learners in their later years. It is best evidenced by the way balance and 
number  line-models were used together at the point of solving linear 
equations with an unknown.  The notion of superstructures is not well 
developed in the literature, especially with regard to integrating models to 
develop deep understanding of concepts. 

Theory hypothesis 6: Abstraction is facilitated by comparing different 
representations of the same mental model to identify commonalities that 
encompass the kernel of the mental model. This hypothesis is an extension 
of Conjecture 9. It reflects the success of using the number  line and balance 
models for the same purpose (solving the equation), particularly in terms of 
the extension to variables on both sides of the equation and simultaneous 
equations. It also implies that effective structured sequences of models and 
representations are dual, built around at least two models that act as a spine 
for the development of the mathematical idea. 

Conclusions 
The hypotheses described above offer promise as the beginning of a 

theory about the use of models and representations in learning-teaching 
trajectories for abstraction and generalisation. They are supported by our 
data showing the development of functional thinking and equivalence in 
EATP. The role of superstructures cannot be underestimated.  These were 
particularly evident as we grappled with the students '  compound difficulty. 
In the later years, EATP found it more effective to introduce functional 
thinking before equivalence and equations within each year. It appeared that 
function activity built a strong superstructure around the inverse and 
identity principles, which assisted in the solution of linear equations with 
one unknown and prevented conflict between inverse and balance and the 
development of compound difficulties in the solution process. 
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