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Recent educational research has turned increasing attention to the 
structural development of young students' mathematical fllinking. Early 
algebra, multiplicative reasoning, and spatial structuring are fllree areas 
central to fllis research. There is increasing evidence that an awareness of 
mathematical structure is crucial to mathematical competence among 
young children. The purpose of fllis paper is to propose a new construct, 
Awareness of Mathematical Pattern and Structure (AMPS), which 
generalises across mathematical concepts, can be reliably measured, and is 
correlated with general mathematical understanding. We provide 
supporting evidence drawn from a study of 103 Grade I students. 

V i r t u a l l y  a l l  m a t h e m a t i c s  is based  on p a t t e r n  and structure. As W a r r e n  
(2005) asserts,  "The  power  of m a t h e m a t i c s  l ies  in r e l a t ions  and 
t r ans fo rmat ions  w h i c h  g ive  rise to p a t t e r n s  and genera l i sa t ions .  
Abs t rac t ing  pa t t e rn s  is the  bas is  of s tructural  knowledge,  the  goal  of 
m a t h e m a t i c s  learn ing"  (p. 305). 

The re  are m a n y  indica t ions  t h a t  an unders tanding  of p a t t e r n  and 
structure is impor t an t  in ea r l y  m a t h e m a t i c s  learning.  For example ,  one of 
our ea r l i e r  s tudies examined  the  structural  cha rac t e r i s t i c s  of t h e  
r ep resen ta t ions  of va r ious  numerical  s i tua t ions  m a d e  by  students f rom 
Grades  2-5 (Mull igan,  Mi tche lmore ,  Ou th red ,  & Russell,  1997). Low 
a c h i e v e r s  consistent ly produced poor ly  organised p ic to r ia l  and iconic 
r ep resen ta t ions  lacking in structure w h e r e a s  h i g h  a c h i e v e r s  used abs t rac t  
nota t ions  w i t h  w e l l - d e v e l o p e d  structures f rom the  outset (Mull igan,  2002). 

O t h e r  m a t h e m a t i c s  educa t ion  research  p rov ides  fu r the r  evidence.  
Studies  focused on imagery  and a r i t h m e t i c  h a v e  ind ica ted  t h a t  s tudents 
w h o  recognise the  structure of m a t h e m a t i c a l  processes and represen ta t ions  
acquire deep  conceptual  unders tand ing  ( P i t t a - P a n t a z z i ,  G r a y  & Chr is tou ,  
2004; Gray ,  P i t t a ,  & Tal l ,  2000; T h o m a s  & Mul l igan ,  1995). Students  w i t h  
lower  numerical  a c h i e v e m e n t  repor ted  de sc r ip t i ve  and id iosyncra t ic  
images;  t h e y  focused on n o n - m a t h e m a t i c a l  aspects  and surface 
cha rac te r i s t i c s  of v i sua l  cues. V i s u a l i s a t i o n  ski l ls ,  w h i c h  f requent ly  
invo lve  recognit ion of p a t t e r n  and structure, are p o s i t i v e l y  cor re la ted  w i t h  
m a t h e m a t i c a l  a c h i e v e m e n t  (Arcavi ,  2003; Booth & Thomas ,  2000) and 
ana log ica l  reasoning (English, 2004). And psycholog ica l  r esearch  h a s  
r e p e a t e d l y  shown  t h a t  scores on m a t h e m a t i c s  a c h i e v e m e n t  tests cor re la te  
m o d e r a t e l y  h i g h l y  w i t h  scores on intel l igence t e s t s~ -wh ich  i n v a r i a b l y  
include p a t t e r n  recognition tasks.  
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Despite all this evidence, there have been remarkably few studies t ha t  
have attempted to describe general characteristics of structural 
development in young children's mathemat ica l  understanding (Mulligan & 
Vergnaud, 2006). The purpose of this paper is to propose a new construct, 
Awareness of Mathematical Pattern and Structure (AMPS), which generalises 
across early mathemat ica l  concepts, can be reliably measured, and is 
correlated with  mathemat ica l  understanding. It is our belief tha t  a focus 
on AMPS could bring more coherence to our understanding of mathemat ica l  
development. 

Pattern and Structure in Early Childhood Mathematics 
A mathemat ica l  pattern may be described as any predictable regularity, 

usually involving numerical, spatial  or logical relationships. In early 
childhood, the patterns children experience include repeating patterns 
(e.g., ABABAB ...), spatial  structural patterns (e.g., various geometrical 
shapes) and growing patterns (e.g., 2, 4, 6, 8 . . . .  ). Repeating patterns are 
part icularly important, since they recur in measurement (which involves 
the i teration of identical spatial  units) and multiplication (which 
involves the i teration of identical numerical units). 

In every pattern, the various elements are organised in some regular 
fashion. For example, in the growing pattern of square numbers 0, 1, 4, 9 . . . . .  
the numbers increase by 1, 3, 5 .... the sequence of odd numbers. In a circle, all  
the points on the circumference are the same distance from the centre. We 
define the way a mathemat ica l  pat tern is organised as its structure. 
Mathematical  structure is most often expressed in the form of a 
generalisat ion--a numerical, spatial  or logical relationship which is 
a lways true in a certain domain. 

As an example of pat tern and structure in early mathematics  learning, 
consider the rectangle shown in Figure 1. The pattern of 3 x 5 squares is 
obvious to adults, but not to young students (Outhred & Mitchelmore, 2000). 
They apparently do not perceive its implicit structure: three rows of five 
equally sized squares (or five columns of three) wi th  their  sides aligned 
vert ical ly and horizontally.  Repetition (of individual  rows or columns) 
and spatial  relationships (congruence, paral lels  and perpendiculars) are 
the essential structural features here. 

(a) (b) I I I I I I (c) 
l l l l l l  
l l l l l l  

Figure 1. Rectangular grid perceived as (a) 3 x 5, (b) 3 rows of 5, (c) 5 
columns of 3. 
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Awareness of the structure of such grid patterns can faci l i ta te  the 
learning of many mathemat ica l  concepts. For example, counting the squares 
as composite units leads to skip counting (e.g., 5, 10, 15 by fives and 3, 6, 9, 
12, 15 by threes) and thence to multiplication as a binary operation (e.g., 3 
times 5). Perceiving a composite unit of five or three squares is critical to 
the emergence of two-dimensional structure (R. Lehrer, personal 
communication). The calculation of volume is based on a similar structure, 
this time involving layers in three dimensions. An understanding of grid 
patterns can also help early learning of division and fractions. 

Finding the structure of patterns is often regarded as pre-algebraic 
thinking.  It is easy to see why.  For example, the al ternat ive 
decompositions shown in Figure 1 lead to the commutativity of 
multiplication, later expressed in the generalisation ab = ba. In the 
sequence of multiples of 3 (i.e., 3, 6, 9, 12, 15...), each number is simply 3 
times its position in the sequence (e.g., the 4th number is 3x 4), a 
relationship tha t  may later be expressed as t = 3n. Again, children might 
calculate the number of squares around the perimeter of the rectangle as 5 + 
5 + 3 + 3 and realise tha t  the corners should notbe counted twice (regardless 
of the size of the rectangle). This insight may later be expressed as P = 2x + 
2y-4.  

The Role of Pattern and Structure in Early Mathematics 
Learning 

The study of pat tern and structure is embedded in a diverse range of 
studies of mathemat ica l  development in pre-school and the early years of 
schooling. 

Number 
Many studies have implicit ly or explicitly examined the role of 

pattern and structure in young children's understanding of number concepts 
and processes such as counting, subitising, partitioning, and numeration 
(Wright,  1994; Young-Loveridge, 2002). In their  studies on numeration, 
Cobb, Gravemeijer, Yackel, McClain, and Whitenack (1997) described first 
graders' coordination of units of 10 and 1 in terms of the structure of 
collections. Similarly,  Thomas, Mulligan, and Goldin (2002) identified 
structural elements of the base ten-system (such as grouping, partitioning, 
and patterning) found wi thin  students' images and recordings of the 
numbers 1 to 100. In a study of partitioning, Hunting (2003) found tha t  
students' abil i ty to change focus from counting individual  items to 
identifying the structure of a group or unit was fundamental to the 
development of their  number knowledge. Van Nes (2008) also found a 
strong link between developing number sense and spatial  structuring in 
Kindergartners' finger patterns and subitising structures. Studies of 
partit ioning and part-whole reasoning (Lamon, 1996; Young-Loveridge, 
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2002) indicate the importance of unitising and spatial  structuring in 
developing fraction knowledge. 

Extensive research on addit ion and subtraction concepts has 
h igh l igh ted  young students' strategies in recognising the structure of word 
problems (Mulligan & Vergnaud, 2006) as well  as structural relat ionships 
such as equivalence, associativity,  and inversion (Warren & Cooper, 2003). 
Moreover, studies of mult ipl ication and division have  indicated tha t  
composite structure is central to mult ipl icat ive reasoning (Confrey & 
Smith, 1995; Steffe, 1994). In a longitudinal study of second graders' 
intuitive models of mult ipl ication and division, Mulligan and 
Mitchelmore (1997) found that  the intuitive model employed to solve a 
particular word problem did not necessarily reflect any specific problem 
feature but ra ther  the mathemat ica l  structure that  the student was able to 
impose on it. Many students used only addi t ive  strategies, but other 
students had acquired more sophist icated strategies based on an equal- 
groups structure and their calculation procedures reflected this structure. 

English (1999) investigated ten-year-olds'  structural understanding of 
combinatorial problems, another mult ipl icat ive field. Whi l e  the majority 
could solve the problems, they often had difficulties explaining fully the  
two-dimensional structure of the Dproblems and could rarely identify the  
cross-multiplication feature. Students' symbolic representations for the  
three-dimensional problems also suggested that  they  lacked a complete 
understanding of the combinatorial structure. 

Measurement and Space 
Several researchers have studied young students' understanding of 

spatial structuring, defined by Batt is ta  (1999) as: 
the mental operation of constructing an organization or form for an object 
or set of objects. It determines the object's nature, shape, or composition by 
identifying its spatial components, relating and combining these 
components, and establishing interrelationships between components and 
the new object. (p. 418). 

For example, Batt ista,  Clements, Arnoff, Batt is ta ,  and Borrow (1998) and 
Outhred and Mitchelmore (2000) studied the development of spa t ia l  
structuring in rectangular figures and arrays in the elementary grades. 
Both studies found that  most students learn to construct the row-by-column 
structure of rectangular arrays by about Grade 4 and have by this time also 
acquired the equal-groups structure required for counting rows and layers in 
multiples. 

Some curriculum projects have approached mathemat ica l  development 
through measurement ra ther  than number concepts. The Measure Up 
project (Slovin & Dougherty, 2004) develops early mathematics  through 
establishing measurement units and symbolic representations that  focus on 
structural characteristics such as patterns and relationships, ra ther  than 
superficial features of problem-solving situations. 
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Early Algebra and Modelling 
Recent studies of early algebra (Carraher, Schliemann, Brizuela, & 

Earnest, 2006) have found that,  given appropriate opportunities, young 
students can learn to make generalisations and develop abstract 
mathemat ical  skills tha t  reflect mathemat ica l  structure. Complementary 
studies support the notion that  young students can develop functional 
thinking (Blanton & Kaput, 2005). Other studies with young students have  
h ighl igh ted  the importance of structural relat ionships in the  
development of analogical reasoning (English, 2004). 

Mathemat ical  modelling provides rich opportunities for students to 
integrate their mathemat ica l  knowledge and use pattern and structure. 
English and Watters  (2005) successfully focussed 8-year-olds'  attention on 
structural characteristics such as patterns, interactions and relationships 
among elements of data  ra ther  than using superficial features in modelling 
problems. 

The development of pat tern and structure also features in studies of 
data  modelling and statistical reasoning. In designing instruction to 
support learning through data  exploration, Lehrer (2007) highl ights  the  
"challenges of imposing structure on data, of choosing displays to 
h ighl ight  aspects of structure, and of making judgments about phenomena 
in light of var iab i l i ty  and uncertainty" (p. 23). 

Development of a General Construct: Awareness of 
Mathematical Pattern and Structure (AMPS) 

Each of the research areas reviewed above approaches the study of 
single topic-specific domains (although studies of mathemat ica l  
modelling have tended to integrate several domains). An advantage of 
such an approach is the creation of an explicit knowledge base from which 
to formulate learning frameworks or developmental trajectories. A 
disadvantage is tha t  it does not al low for the possibil i ty that  learners 
may develop common structural understandings. Given the similari t ies in 
the results for different areas, the question natural ly arises: Is there such a 
general construct as awareness of  mathematical pattern and s tructure (AMPS) 
that  can be observed across a range of concept areas in early mathematics  
learning? 

Many researchers have proposed structural theories tha t  can be 
appl ied to mathemat ica l  development. For example, Piaget 's  stages of 
cognitive development (sensorimotor, preoperational,  concrete operations, 
and formal operations) were derived from an analysis of the structure of 
students' responses (Piaget, 1970). The Structure of Observed Learning 
Outcomes (SOLO) taxonomy (Biggs & Collis, 1982), based on Piaget 's 
theory, focuses explicitly on student responses. Our application of SOLO to 
young students' concepts of mult ipl ication and division (Mulligan & 
Watson, 1998) drew our attention to the ikonic features and structural 
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characteristics of mathemat ica l  responses. However, we found that  these 
general theories did not provide sufficiently fine-grained categories for 
classifying mathemat ica l  structure in specific mathemat ica l  content areas. 

In Goldin's (1998) model, mathemat ica l  representational systems 
develop through three broad stages: 

1. An inventive/semiotic stage, in which characters or configurations 
are first given meaning 

2. An extended stage of structural development 
3. An autonomous stage, where the new system of representation can 

function flexibly in new contexts. 

In collaboration with Goldin, we developed more explicit descriptions of 
the structural features of children's representations of the base-ten 
numeration system (Thomas et al., 2002). This analysis, which focussed on 
pictorial, ikonic, and symbolic characteristics of children's 
representations, would appear to be applicable to a wider range of 
mathemat ical  concepts. 

Mason (1996) believes tha t  the roots of mathemat ica l  thinking lie in 
detecting sameness and difference, in making distinctions, in classifying 
and labelling, or simply in algorithm seeking. Our studies have led us to 
conjecture tha t  young children who have learned to look for mathemat ica l  
similarit ies and differences wi thin  and between patterns are l ikely to 
develop an understanding of the structure of those patterns. Moreover, they  
will tend to look for similari t ies and differences in new patterns and 
broaden their structural understanding accordingly. By contrast, students 
who tend not to notice salient features of structure (for whatever  reason) 
are l ikely to focus on idiosyncratic, non-mathematical features in all 
situations. We thus consider AMPS to have two interdependent 
components: one cognitive (knowledge of structure) and one meta-cognitive 
(a tendency to seek and analyse patterns). Both are l ikely to be general 
features of how students perceive and react to their  environment. 

Multiplicative structures (from patterning in pre-school, through 
multiplication, numeration and fractions in middle school, to ratio and 
proportion, scales and trigonometry in secondary school) are central to the 
school curriculum. All involve processes such as repetition, grouping, 
partit ioning and unitising, and all require spatial  structuring in visualising 
and organising their structure. Mult ipl icat ive structures are therefore 
l ikely to feature strongly in any attempt to investigate AMPS in young 
children. 

Research Questions 
We aimed to find whether  AMPS could be described and measured as a 

general construct tha t  applies across a number of mathemat ica l  concepts 
and processes. In particular, we posed the following three research 
questions: 
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1. Can the structure of young students' responses to a wide var ie ty  of 
mathemat ical  tasks be reliably classified into categories tha t  are 
consistent across the range of tasks? 

2. Do individuals demonstrate consistency in the structural categories 
shown in their responses? 

3. If so, is the individual student's general level of structural 
development related to their mathemat ica l  achievement? 

Although we believe tha t  AMPS may be applicable across the age 
span, we restricted the init ial  investigation to Grade i students. 

Method 

The Assessment Instrument (PASA) 
Our strategy was to select a wide range of tasks, reflecting the Grade 1 

curriculum, which seemed to require primari ly conceptual ra ther  than 
procedural understanding. We gave preference to tasks which we felt, on 
the basis of previous research, were l ikely to show structural development 
in students' responses. 

In selecting tasks, we consulted a wide range of empirical research on 
early mathematics  learning and assessment (in particular, Clements & 
Sarama, 2007; Doig, 2005; Howell & Kemp, 2005; Wright,  1994). Several 
key processes were identified: subitising, unitising, partitioning, 
repetition, spatial  structuring, mult ipl icat ive and proportional 
relationships, and transformation. We also included some of our earlier 
tasks on mult ipl icat ive reasoning (Mulligan & Wright,  2000) tha t  had  
subsequently been incorporated into the statewide Schedule for Early 
Number Assessment (NSW Department of Education & Training, 2001). 

Thirty-nine tasks involving key mathemat ica l  processes were devised. 
Each task required students to identify, visualise, represent, or replicate 
elements of pat tern and structure. Table 1 lists the various tasks, 
categorised under Number, Measurement, and Space, in what  we shall  call 
the Pattern and Structure Assessment  (PASA). It may be noted tha t  some of 
the tasks extend beyond state curriculum expectations (e.g., constructing a 
pictograph). Such tasks were included in order to yield a wider range of 
responses than might otherwise be expected. 
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Table 1 
Pattern and Structure Assessment (PASA) tasks 

Mulligan & Mitchelmore 

Number Measurement Sp ace 

Subitizing: quantify 
2x3 and 3x3 arrays 
wi th  and without  
par t ia l  screening 

Rote counting (oral): 
multiples of 2, 5 and 3 
to 30 and beyond. 

Perceptual counting: 
multiples of 2, 5 and 3 
to 30 and beyond. 

Symbolic counting: 
represent multiples of 
2, 5 and 3 onnumeral 
tracks to 30 and beyond 

Base ten: use composite 
unit wi th  currency (10 x 
10c coins, 10 x $1.00 
coins) 

Partitioning: part i t ion 
two 2 x 4 rectangular 
grids simultaneously in 
problem context 

Length: demonstrate 
and describe length of 
model. Explain and 
use informal, equal- 
sized units to 
delineate length of 
stick 

Length/fractions: 
part i t ion in halves,  
thirds, quarters using 
continuous materials  

Length: draw features 
on an empty ruler. 

Area/symmetry/uni t i  
sing: visualise and 
calculate area of 
rectangles and 
triangles (sides 2, 3 
and 4 units) using a 
single unit 

Area: complete 
drawing of units in 3 x 
3 and 3 x 4 rectangular 
par t ia l  grids 

Volume: visualise and 
calculate area of boxes 
(4, 9, 12 units) using 
one unit wi th  2D net 
and box 

Patterns: model /draw 
self- generated 
patterns. Replicate 
self-generated 
patterns using other 
modes or invented 
symbols using model 
and from memory 

Pat tern/visual  
memory: reconstruct 
and draw triangular 
pat tern of six dots; 
extend, symbolise and 
explain pattern 

2-dimensional Space: 
identify and visualise 
properties of 2D 
shapes, nets and boxes 

Angles: identify and 
represent comers of a 
square using model 

Pictograph: complete 
par t ia l  horizontal 
pictograph from 2- 
way  table using grid 
lines 
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Pa r t i t i on /quo t i t i on :  
share  and group 6+2 
and 6+3 w i t h  and 
w i thou t  models. 
Reformula te  fa i r  
shares  

Combinator ia l :  f ind all  
possible combinations 
(2x3 ,  3x3 ,  3x4 )  and 

~ l a i n  s t ra tegies  

Mass /weigh t :  
calculate  and compare 
units of mass by 
comparing single and 
composite units (stack 
of 10 coins) 

Time: d raw 8 o'clock 
on an empty  clock face 

Pic tograph:  Construct 
hor izon ta l  p i c tog raph  
a l igned  w i t h  2-way 
table .  

Sample and Procedures 
The  PASA was adminis te red  in ind iv idua l  in terv iews to 103 f irs t  

graders  (55 girls and 48 boys), ranging from 5.5 to 6.7 years  of age. 
Pa r t i c ipan t s  were  d rawn from nine s ta te  p r i m a r y  schools, chosen from six 
admin i s t r a t i ve  distr icts  in me t ropo l i t an  Sydney.  Th e  sample  represented 
a wide  range of m a t h e m a t i c a l  ab i l i t i es  as wel l  as cultural,  l inguistic and 
socio-economic backgrounds. All  in te rv iews  were v ideo taped .  

Data Analysis 
Responses were i n i t i a l l y  coded as correct, incorrect, or non-a t tempt .  A 

composite score was then  compiled for each  ind iv idua l ,  t r ea t ing  non- 
a t t emp t  as incorrect. 

Next ,  students '  responses to each  of the  39 tasks were  examined in order 
to iden t i fy  t he i r  expl ic i t  structural features.  These  response categories 
were then  ordered in terms of the  degree of structure, and students '  
responses were coded accordingly. W h e r e  mul t ip le  responses were given, 
t he  student 's  most soph i s t i ca ted  and accurate response was coded. 
Videotapes ,  in te rv iew transcripts ,  in te rv iewer  notes and students '  d rawn 
and wr i t t en  recordings were all  consulted in order  to obtain the  most v a l i d  
coding. 

F ina l ly ,  the  var ious  categories for each task were  examined to see if a 
common structural ca tegor isa t ion  could be r e l i ab ly  app l i ed .  

Results 

The Total PASA Score 
Total  PASA scores ranged from 3 to 33 out of 39, w i t h  a Cronbach a l p h a  

of 0.86. To inves t iga te  the  v a l i d i t y  of the  to ta l  PASA score, the  e igh t  
lowest-scoring and the  e igh t  h ighest -scor ing students were iden t i f i ed .  
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The i r  teachers ,  w h o  were  not informed of the  PASA scores, were  then  
asked  to comment on the  s tudent ' s  l eve l  of m a t h e m a t i c a l  a c h i e v e m e n t  in 
school. Teache r s  used w h a t e v e r  assessment d a t a  t h e y  h a d  at hand ,  w h i c h  
included the  s t a t e w i d e  Schedule  for Ea r ly  Number  Assessment (SENA)  
( N S W  D e p a r t m e n t  of Education,  2001), t h e i r  own classroom observat ions ,  
and in some cases a s t a n d a r d i s e d  m a t h e m a t i c s  test. Al l  the  students w h o  
scored h i g h e s t  on the  PASA to ta l  score were  unambiguously  c lass i f ied  as 
h i g h  ach iev ing ,  and al l  the  students w h o  scored lowest  were  
unambiguously c lass i f ied  as low ach iev ing .  

The  to ta l  PASA score was  the re fo re  judged to be a v a l i d  and r e l i ab l e  
measure  of conceptual unders tanding  of m a t h e m a t i c s  in Grade  1. 

Structural Categorisation of Items 
A to ta l  of 9.6% of the  responses were  non-a t t empts .  The  researchers  

were  able to c lass i fy  a l l  o the r  responses into the  fo l lowing  four broad  
s tages of structural  deve lopment :  

1. Pre-structural stage (PRS). Represen ta t ions  lack any  ev idence  of 
numerical  or s p a t i a l  structure. Most examp le s  show id iosyncra t ic  
features .  

2. Emergent (inventive-semiotic) stage (ES). Represen ta t ions  show some 
r e l evan t  e lements  of the  g iven  structure, but t he i r  numerical  or s p a t i a l  
structure is not represented.  

3. Partial structural stage (PS). Represen ta t ions  show most r e l e v a n t  aspects  
of numerical  or s p a t i a l  structure, but the  r ep r e sen t a t i on  is incomplete.  

4. Stage of structural development (S). Represen ta t ions  correctly in teg ra te  
numerical  and s p a t i a l  s tructural  features .  

These  categor ies  are ve ry  s im i l a r  to those  we iden t i f i ed  in our e a r l i e r  
research  on students '  r ep resen ta t ions  of base - t en  numerals  (Thomas  et al. ,  
2002). 

Figure 2 i l lus t ra tes  the  four stages for t h ree  selected PASA tasks:  
complet ing a 3 x 4 rec tangular  grid,  d r awing  8 o'clock on an e m p t y  clock 
face,  and d rawing  a t r i angu la r  p a t t e r n  of dots f rom memory.  (All  d r awings  
were  m a d e  by  d i f fe ren t  students.)  The  s i m i l a r i t y  in the  s t ructural  
cha rac te r i s t i c s  of the  d rawings  at each  s tage  is appa ren t .  

The  resea rchers '  coding for a r andom 20% of the  students was  r e v i e w e d  
by  a research  ass is tant ;  an in te r - ra t e r  r e l i a b i l i t y  of 94% was  found. For 
each  task ,  t he r e  were  responses at a l l  four stages. The re  was  a l w a y s  a 
clear  moda l  response wh i ch ,  however ,  v a r i e d  f rom task  to task.  In o the r  
words,  a l t h o u g h  the  student  responses to the  va r ious  tasks  could be 
r e l i a b l y  c lass i f i ed  into categor ies  t h a t  were  consistent across tasks,  t h e  
t a sks  were  not consistent in the  structural  s tage  t h a t  t h e y  ind ica ted .  T h i s  
was  to be expected: Put s imply ,  some tasks  were  eas ie r  t h a n  others .  
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Figure 2. Typica l  Grade  i students '  responses at four structural stages. 

Structural Consistency Within Students 
Each student 's  responses did not show the  same structural stage across 

al l  39 tasks. This  was not unexpected,  g iven  the  v a r i a b l e  level  of 
d i f f icu l ty  of the  tasks. However ,  for each student, t he re  was a clear  mode 
in the  structural stages of t he i r  responses: The  frequency of the  modal  s tage 
was at least  twice the  frequency of each  o the r  stage. Moreover,  except for 
two students, the  modal  frequency was at least  50%. Each student could 
the re fo re  be unambiguously and confident ly  assigned to a single broad 
stage of structural development .  These  broad stages were d is t r ibuted  as 
follows: PRS: 11%, ES: 38%, PS: 27% and S: 24%. 

It was not iceable  t h a t  the  responses from the  ES students showed 
grea ter  v a r i a b i l i t y  across tasks t h a n  in the  o the r  groups. The  qua l i ty  and 
type  of structural fea tures  shown were not consistent; for example ,  equal  
sized units were  used d i f fe ren t ly  in area and length tasks. Th is  v a r i a b i l i t y  
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may wel l  indicate  the  existence of sub-categories represent ing d i f ferent  
forms of emergent structure t h a t are content dependent .  

Relation of Structural Level to General Understanding 
Figure 3 is a box and wh i ske r  p lo t  showing the  r e l a t ion  between 

students '  overa l l  stage of structural deve lopment  and the i r  to ta l  PASA 
score. 
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Figure 3. Range of PASA tota l  scores by stage of structural deve lopment  

There  was a r emarkab le  corre la t ion  between the  two: W i t h  only one 
exception, the  to ta l  PASA scores w i t h i n  each  of the  four groups of students 
fel l  into discrete ranges: PRS: 3-9, ES: 10-19, PS: 20-25, S: 26-33. Th is  
represents an almost perfect  corre la t ion  between students '  conceptual 
understanding of m a t h e m a t i c s  (as measured by PASA) and the i r  stage of 
structural development .  

Discuss ion  

Our results show convincingly t h a t  student responses to a w ide  range of 
conceptual tasks sui table  for 5-6 y ea r  olds can be r e l i ab ly  categorised 
according to the i r  m a t h e m a t i c a l  structure (Research Question 1). About 
90% of responses from 103 students to 39 r ep resen ta t ive  tasks could be 
assigned to one of four categories (pre-structural ,  emergent  structural,  pre-  
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structural and structural) which  represent significant development in 
students' understanding of mathemat ica l  pa t tern  and structure. 

Moreover, we have  found that ,  a l though individual  students react 
differently to different tasks, they  tend to show the same structural stage 
in their  responses to the majority of tasks (Research Question 2). This 
finding is the first indication tha t  there  may indeed be a general student 
characterist ic tha t  we have  called Awareness of Mathemat ica l  Pat tern 
and Structure (AMPS) which  applies across a wide range of ea r ly  
mathemat ica l  concepts. 

There is also good evidence that  AMPS may be associated, as predicted, 
wi th  mathemat ica l  achievement (Research Question 3). In this study, 
there  was an almost perfect correlation between students' general 
mathemat ica l  understanding (as measured by the total PASA score) and 
the structural stage most frequently shown in their  responses. This is, of 
course, a l imited finding because the same instrument was used to measure 
both variables.  However,  independent evidence is provided by the fact 
tha t  eight students who gave predominantly structural responses were 
judged by their  teachers as h igh ly  competent at mathemat ics  and eight  
who gave predominantly pre-structural responses were judged to be 
mathemat ica l ly  weak. 

Furthermore, in a follow-up study (Mulligan, Mitchelmore & Prescott, 
2005), we found tha t  the eight h igh-achievers  made such progress in the 
following school year  tha t  a new category, Advanced Structural, had  to be 
constructed to represent their  increased AMPS. Conversely, the eight low- 
achievers still tended to focus on non-mathematical  features of special 
interest to them and several remained in the pre-structural stage. 

We may conjecture several mechanisms tha t  could explain why  students 
wi th  high levels of AMPS would have  developed mathemat ica l  thinking 
more than those with low levels of AMPS: 

• Students wi th  high levels of AMPS would become knowledgeable 
about spat ia l  structures such as rectangular arrays tha t  incorporate 
equal sized units at an earl ier  age. 

• Through thei r  awareness of these structures (in particular,  equal 
grouping and unitising), they would more easi ly  learn basic 
properties of number, space and measurement. 

• They would have  a tendency to look for pat terns and to explore 
similari t ies and differences between them. They  would hence learn 
new structures more easily (Mason, 1996). 

• They would be aware of wha t  constitutes a mathemat ica l  pat tern  and 
would hence ignore irrelevant features when learning new concepts. 

Taken together, the findings of this study demonstrate tha t  AMPS is a 
construct tha t  could provide new insights into ear ly  mathemat ics  learning. 
Unlike other,  more general theories of structural development, AMPS 
promises to provide a unified lens through which to view mathemat ica l  
development--a  lens tha t  focuses on deep understanding ra ther  than 
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procedural skills. In particular, research on the proposed learning 
mechanisms could lead to valuable insights into how children develop 
early algebraic thinking. 

Implications for Curriculum and Assessment 
We can also use the AMPS lens to examine the early mathematics  

curriculum, its pedagogy, and its assessment in a new light. 
The questions that  natural ly  arise from the study just described are: Can 

AMPS be taught? Would student achievement in mathematics be improved 
as a result? We have some reason to believe, on the basis of further several 
exploratory studies, tha t  the answer to both questions is 'Yes'. For 
example, we have found that  a pre-school intervention focused on 
patterning can lead to a significant improvement in mathemat ica l  
outcomes at the end of the following year (Papic & Mulligan, 2007). A 
year-long professional development program across Years K-6 of a NSW 
primary school, in which various teaching tasks designed to teach AMPS 
were developed, led to what  teachers judged were substantial 
improvements in mathemat ica l  achievement (Mulligan, Prescott, Papic & 
Mitchelmore, 2006). From this experience, a Pattern and Structure 
Mathematics Awareness Program (PASMAP) was constructed and tested 
wi th  10 low-achieving Kindergarten students during 15 weekly teaching 
episodes; again the students showed impressive growth (Mulligan, 
Mitchelmore, Marston, Highfie ld ,  & Kemp, 2008). We are currently 
engaged in a systematic evaluation study of an entire Kindergarten 
curriculum based around PASMAP, sited in two schools in Brisbane and two 
in Sydney (Mulligan, English, & Mitchelmore, 2008), which should 
provide definit ive answers to the two questions posed at the start of this  
paragraph.  

There seems to be a recent search for greater integration in the 
mathematics curriculum. For example, some research groups have 
advocated equal importance of geometric and measurement concepts t ha t  
can support number concepts (van Nes, 2008), and some argue tha t  
measurement, which may incorporate geometry and spatial  reasoning, can 
provide an al ternative p a t h w a y  to mathematics learning (Slovin & 
Dougherty, 2004; Lehrer & Lesh, 2003). Others advocate an approach to 
early mathematics  learning focused on algebraic thinking, mathemat ica l  
modelling, and data exploration tha t  often cuts across other curriculum 
areas (Carraher et al., 2006). AMPS could provide the necessary unifying 
construct and a common framework wi th in  which to organise teaching and 
learning experiences as well as the assessment of mathemat ica l  
understanding. 

Despite the recent inclusion of "patterns and algebra" in elementary 
mathematics curricula around the world, we know of no school syllabus 
tha t  includes pattern and structure as a fundamental organising 
framework. Curriculum and assessment generally consider paral le l  content 
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s t r a n d s  (u sua l ly  number ,  space ,  m e a s u r e m e n t ,  d a t a ,  and  p a t t e r n s  and  
a l g e b r a )  and  do not encourage  t e a c h e r s  to seek  i m p o r t a n t  connect ions 
b e t w e e n  d i f f e r e n t  concepts  and  processes .  An a l t e r n a t i v e  s t ructure ,  w i t h  
A M P S  as t h e  core and  t h e  v a r i o u s  top ic  s t r a n d s  bu i l t  a round  it, could p r o v e  
much  more  e f f e c t i v e .  
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