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There is evidence that spontaneous learning leads to relational understanding and 
high positive affect. To study spontaneous abstracting, a model was constructed by 
combining the RBC model of abstraction with Krutetskii's mental activities. Using 
video-stimulated interviews, the model was then used to analyse the behaviour of 
two Year 8 students who had demonstrated spontaneous abstracting. The analysis 
highlighted the crucial role of synthetic and evaluative analysis, two processes that 
seem unlikely to occur under guided construction. 

I became interested in spontaneous learning as a secondary mathematics teacher. 
I wondered why students sometimes became so engaged in tasks that they lost 
all sense of time, self, and the world around them, were completely focused on the 
task at hand, reported developing a deep understanding of the mathematics they 
explored, and displayed indicators of pleasure during the process. I wanted to 
increase the likelihood, and number, of students experiencing this phenomenon. 
To do this, I needed to explore the learning process in more detail, in particular 
looking for examples of abstraction (Dreyfus, Hershkowitz, & Schwarz, 2001). 

Spontaneous abstracting may be more easily identified than abstraction 
resulting from guided construction due to body language indicators of the high 
positive affect I have just described. For this reason, study of spontaneous abstracting 
could provide a useful way to learn more about other forms of abstraction. 

Spontaneous Learning 
The term spontaneous has previously been used to denote student learning that is 
not caused by the teacher: 

We do not use spontaneous in the context of learning to indicate the absence of 
elements with which the student interacts. Rather we use the term to refer to the 
non-causality of teaching actions, to the self regulation of the students when 
interacting ... we regard learning as a spontaneous process in the student's 
frame of reference. (Steffe & Thompson, 2000, p. 291) 

Steffe and Thompson's expression "in the student's frame of reference" is crucial 
to understanding the nature of spontaneous learning, as I will show below. 

Creative mathematical activity during the spontaneous development of new 
mathematical concepts has been identified in secondary and elementary 
classrooms (Barnes, 2000; Cobb, Wood, Yackel, & McNeal, 1992) and linked to 
positive affect (Barnes, 2000; Liljedahl, 2006; Williams, 2002a). In these studies, 
students were working above their present conceptual level on a self-set 
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intellectual mathematical  challenge that was almost out of reach 
(Csikszentmihalyi & Csikszentmihalyi, 1992; Williams, 2002a). 

Spontaneous abstracting has been described as a process of progressively 
discovering complexities (Williams, 2000a). A student (or group of students) 
discovers a mathematical complexity that was not evident at the commencement 
of the task and decides to explore it. To facilitate this exploration, students 
spontaneously formulate a question about this complexity and engage in 
complex mathematical thinking in order to answer it. Students use the "smaller" 
concepts and ideas they have developed during exploration of earlier 
complexities to assist in unravelling later ones. 

This type of thinking during the development of new conceptual knowledge 
is described in different but consistent ways by other researchers (Krutetskii, 
1968/76, p. 292; Chick, 1998, p. 17; Csikszentmihalyi, 1997, p. 65). It is described 
as "not only choosing the cues and concepts - -  and often unexpected cues and 
concepts - -  but even the very question" (Chick), and "not so much direct 
attempts at solving the problem as a means of thoroughly investigating it, with 
auxiliary information being extracted from each trial" (Krutetskii). 
Csikszentmihalyi (1997) described the cumulative effect of the small discoveries: 

You may have only one big insight, but as you try to elaborate, as you try to 
explain what the insight is, you have small insights coming up all the time too. 

The process of spontaneous abstracting thus involves posing questions to 
explore, in order to gain increased knowledge about a mathematical complexity, 
and synthesising aspects of these new understandings during the process of 
developing insight. 

Making connections between mathematical concepts in the process of such 
thinking develops relational understanding (Skemp, 1976) - -  a connected form 
of understanding where students know why mathematics is relevant and are 
able to select and use it in unfamiliar situations. Relational understanding enables 
flexible thinking and opportunities for future learning of associated topics (Sfard, 
2002) and for making sense of the world (mathematical literacy) (Kilpatrick, 
2002). Local and international concerns about low mathematical literacy highlight 
the need to develop relational understanding (Kilpatrick, 2002; Skemp, 1976). 

The RBC Model of Abstraction 
According to Dreyfus, Hershkowitz, and Schwarz (2001), abstraction is an 
activity of "vertically reorganising previously constructed mathematical  
knowledge into a new structure" (p. 377). The term "vertical" refers to forming a 
new mathematical structure as opposed to strengthening connections between a 
mathematical structure and a context ("horizontal"), following a distinction 
initially made by Treffers and Goffree (1985). 

The genesis of an abstraction passes through (a) a need for a new structure; 
(b) the construction of a new abstract entity; and (c) the consolidation of the 
abstract entity by using it in further activities with increasing ease (Dreyfus, 
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Hershkowitz, & Schwarz, 2001). Through analysis of the dialogue of participants 
as they undertake the social process of critical inquiry, the cognitive elements of 
the process of abstraction (recognising, building-with, and constructing) are 
made visible. Recognising involves identifying a context in which a previously 
abstracted mathematical entity applies, or identifying mathematics relevant to a 
context (Hershkowitz, Schwarz, & Dreyfus, 2001). To recognise the usefulness of 
mathematics in a new context, the student must understand the relationship 
between the mathematics and the context. Building-with involves using a 
mathematical procedure the student has recognised in a context in which it has 
previously been used or in a new context. It can involve using mathematics that 
has been recognised in a new sequence or combination. Constructing involves 
integrating abstracted entities to develop new insight. Recognising and building- 
with are often nested within constructing. In other words, during constructing, 
other previously abstracted mathematical  entities may be progressively 
recognised and built-with to support constructing. 

Branching is a variation of constructing that occurs when constructing 
separates into two different directions to study two different aspects of the 
mathematics involved and then later rejoins unexpectedly (Dreyfus & Kidron, 
2006). Consolidating can occur when students work with familiar mathematics, 
and also when students use a newly abstracted entity as part of further 
abstracting (Dreyfus & Tsamir, 2004). 

Krutetskii's Mental Activities 
Krutetskii (1968/76) studied the problem-solving activity of students who 
thought out loud as they solved unfamiliar problems individually. He identified 
various mental activities (cognitive activities) that were initiated and controlled 
by the high ability students and not the interviewer. From least complex to most 
complex, these activities included analysis, analytic-synthesis, synthesis, and 
evaluation. The hierarchical nature of these thought processes is implicit in 
Krutetskii's descriptions and supported by his empirical data (Williams, 2000b, 
p. 18). These four activities are important components of spontaneous learning. 

Krutetskii described analysis as an initial process of examining a problem 
element by element, commenting that "to generalise mathematical relations one 
must first dismember them" (p. 228). Since, as I will show, types of analysis also 
entered into other activities, I will call this process element-analysis. 

Krutetskii called the simultaneous analysis of several elements analytic- 
synthesis, but since this is a more complex type of analysis, I prefer to call it 
synthetic-analysis (Williams, 2002b). This process is "more or less drawn out in 
time" (p. 231) for different students or the same student at different times. 
Sometimes, it occurs almost instantaneously; Krutetskii called this flash of 
inspiration analytic-synthetic vision. At other times, it progresses from perceiving 
an unfamiliar problem in terms of "its separate mathematical elements [where] 
'going outside' the limits of the perception of one element often means 'losing it'" 
(p. 229) to "connecting the mathematical elements of the problem" (p. 229). 
Krutetskii called this process analytic-synthetic orientation. 
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Students in Krutetskii's study who encountered difficulties were refocused 
on elements of the problem by the interviewer who asked, for example, "Well, 
how do you solve this group of examples you have selected in contrast to the 
other group? Compare the course of solution" (p. 236) and "Look carefully at the 
previous example ... doesn't it suggest anything to you?" (p. 241). These students 
were not undertaking synthetic-analysis because the processes was externally 
directed rather than self-initiated. The interviewer told the students what 
mathematics to focus on (external control) and what to do with it (external 
elaboration), whereas other students in the study spontaneously pursued their 
own pathways and evaluated the reasonableness of their mathematics as they 
explored. I call this externally directed process guided element-analysis. 

Krutetskii described synthesis as the identification of "generality hidden 
behind various particular details" where students " 'grasp' what was main, basic, 
and general in the externally different and distinctive [and find] elements of the 
familiar in the new" (p. 240). In other words, synthesis involves recognising 
something that is already known integrated within something new. 

Evaluation was identified by Krutetskii as a continual checking of 
consistency of the mathematics developed during the abstracting process, or the 
recognition of a mathematical entity just abstracted for another purpose. 
Evaluation included progressively reflecting on the situation as a whole for the 
purpose of recognising inconsistent information, or reflecting upon the process 
of problem solution for the purpose of identifying its limitations or applications 
to other contexts. It also involved reflecting upon the solution pathway 
developed and its possible contribution to generic mathematical processes for 
future use. This activity was illustrated by Dreyfus, Hershkowitz, and Schwarz 
(2001), where the student-pair recognised algebra as a tool for justifying. 

Krutetskii briefly discussed the case of students who did not undertake 
evaluation but who considered whether their mathematics was correct after the 
solution had been obtained. This process can involve considering or checking 
ideas after a pattern had been identified, or after an answer had been found, or 
deciding about a prediction that had been made, or deciding on the relative 
elegance of solution pathways. I call this activity evaluative-analysis (Williams, 
2002a). It is a more complex process than synthetic-analysis (Williams, 2002a) 
because it involves synthetic-analysis for the purpose of making a judgment. But 
it is also less complex than synthesis. 

To summarise: Spontaneous problem solving includes the following five 
mental activities. These are (from least to most complex): 

• Analysis: 
• Element-analysis: isolating parts and examining them one by one 
• Synthetic-analysis: simultaneously examining several elements 
• Evaluative-analysis: synthetic-analysis for purposes of judgement 

• Synthesis: identification of generality 
• Evaluation: reflection on mathematics progressively developed and 

results obtained 
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The Spontaneous Abstracting Model 
In an attempt to describe the abstracting that takes place in spontaneous 
abstracting, I have integrated the RBC model of abstraction with my extension of 
Krutetskii's mental activities to create the Spontaneous Abstracting Model 
illustrated in Figure 1 (Williams, 2002b). The three ellipses representing 
recognising, building-with and constructing are to be seen as lying in parallel 
planes, and the vertical arrows represent the nesting of the cognitive elements 
within each other. 

Notice that all subcategories of analysis are contained within building-with 
and constructing contains synthesis and evaluation. Only processes associated 
with spontaneous learning (so not guided element-analysis) are included in the 
Spontaneous Abstracting Model. 

The study to be described below was designed to answer the research 
question: 

• Is the Spontaneous Abstracting Model sufficient to describe thought 
processes that occur during spontaneous abstracting? 

Answers to this question could assist teachers to identify thought processes and 
make informed decisions about how to promote spontaneous abstraction during 
problem solving. 

Constructing 

Building-with 

Synthetic-analysis E'~ 

S£ontaneous Recognising 

Figure 1. The Spontaneous Abstracting Model. 
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Research Design 
This paper reports on the spontaneous abstracting of two students selected from 
a broader study (Williams, 2005). This study was itself embedded in the 
Learner's Perspective Study (Clarke, 2006), which investigated students '  
perspectives on their teaming in a variety of Year 8 classrooms in nine different 
countries including Australia and the USA. In order to capture the creative 
development of new mathematical knowledge by students, and to examine the 
social elements in more detail, three cameras simultaneously captured the activity 
of the teacher, a different pair of focus students each lesson, and the whole class. 
A mixed video image produced during the lesson (with two focus students at 
centre screen and the teacher as an insert in the comer) was used to stimulate 
student reconstruction of their thinking in individual post-lesson interviews. The 
students used the video remote to identify parts of the lesson that were important 
to them, and discuss what was happening, and what they were thinking and 
what they were feeling. Interview probes were informed by findings from Ericsson 
and Simons (1980) on how to generate high quality verbal data about cognitive 
activity. The interviewer did not ask questions that included constructs the subject 
has not previously reported, so the subject was not likely to "generate answers with- 
out consulting memory traces" (p. 217). Instead, the subject spontaneously "described 
one or more specific sub-goals, and these were both relevant to the problem and 
consistent with other evidence of the solution process" (p. 217). A sketchpad and 
pen were provided to facilitate communication for students who were unable to 
express their newly developed knowledge in verbal form (Ericsson & Simons, 1980). 

Although this design allowed a detailed study of the focus students' 
thinking, there was a high likelihood that spontaneous abstracting would take 
place among students who were not being videotaped by the student camera. 
Therefore, non-focus students who displayed evidence of high positive affect in 
one lesson were frequently focus students the following lesson. The subsequent 
interview then focused on the lesson in which the abstracting might have 
occurred as well as the lesson in which the student was a focus student. Both 
students in this article were interviewed in the lesson following their 
spontaneous abstracting. 

The classroom videos and the subsequent interviews were used to 
determine whether the focus students' thinking was or was not spontaneous. 
The crucial determinant was whether the students developed their ideas 
themselves or whether there was mathematical input from others. Of the 86 
students studied, 5 were found to have been spontaneously abstracting on 8 
separate occasions. On only 5 of these occasions were the students focus 
students. There was no evidence of non-spontaneous abstracting. 

The two students whose spontaneous learning is described below, Kerri 
(USA) and Eden (Australia), came from similar situations. Both classes contained 
students with higher than average mathematical abilities, and student 
interactions were integral to the teaming process. Both of the lessons where 
spontaneous abstracting took place involved learning about linear functions, and 
both teachers commenced the topic with a hands-on activity. Both students could 



Abstracting in the Context of Spontaneous Learning 75 

read and plot Cartesian coordinates before the lesson. However, there were also 
a number of differences between the two situations. 

Kerri's class was composed of students identified as gifted. Before the 
research period, they had found equations to linear graphs by plotting two 
points, generating the line on graph paper, drawing a "slope triangle", 
measuring the lengths of the two smaller sides of the triangle, finding the y- 
intercept by inspection, and substituting the gradient and the y-intercept into the 
general equation for a linear function. Eden's class was the top stream (track) of 
non-accelerated students in a school with an acceleration program. They had not 
studied linear functions, but Eden had met them when accelerated by his Year 7 
teacher. Eden had forgotten most of this work and if he had encountered the term 
gradient and the associated concept, he did not remember it. The first time he 
recollected an awareness of the concept of gradient was in the lesson where he 
abstracted: He did recognise that he had used the concept of gradient without 
knowing the term: "I sort of ... used them [gradients] except I wasn't - -  didn't  
know what exactly they were." Neither student knew how to substitute values 
into an equation to find the values of the constants. 

Although analysis of these two students' thinking was hindered because 
they were not captured continuously on the student camera while they were 
abstracting, each student contributed sufficiently to class discussions during 
subsequent lessons to demonstrate they had abstracted the relevant concepts 
before they were formally taught. Further, although Eden was not a focus 
student in the lesson in which his abstracting was inferred, he was seated beside 
a focus student (Darius). Darius' computer screen was visible and was the focus 
of joint attention by Eden and Darius several times, and the focus of Eden's 
individual attention just prior to his exploratory activity. During the seven 
minutes from when Eden formulated his spontaneous question and began to 
explore it, he was also visible on the whole class camera. He then rolled his chair 
back towards Darius and his exclamation was captured. 

Each student's activity will now be reported through a narrative summary, 
an analysis of their relevant cognitive and social activity, and a diagrammatic 
representation of each student's spontaneous abstracting activity. 

Kerri's Spontaneous Abstracting 
Narrative Summary 
The teacher reminded the class of the previous lesson before teaching her class 
how to find the equation to a line without plotting the graph: "[Remember you 
were] drawing a graph using the slope triangle and estimating where the graph 
crosses the y-axis." In her interview, Kerri confirmed that she had already learnt 
how to do this: 

Interviewer: Oh, okay. So now this, um, procedure that you showed me 
here - -  you already knew that before today? 

Kerri: Well I didn't like know it like formally introduced, but I was 
doing that .... It was during a test. And it said graph, and I 
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didn't have any graph paper .... If you find the slope and the 
... difference of the points and ... then we can substitute, oh 
perfect. So I just wrote the equation. 

Kerri described h o w  she recognised a slope triangle " 'cuz  you  can picture a line 
in a little right triangle on it". She then used her  knowledge  of the Cartesian 
coordinate system to find the lengths of the horizontal  and vertical sides in this 
triangle by subtracting the appropriate  coordinates of the two points (a n e w  idea 
for her), and then applied the rule she had  previously  learnt to find the gradient.  
Next she realised (another n e w  idea) that the y-intercept (b) could be found by 
substi tuting the gradient  and the x value and y value of a point  on the line into 
the equat ion y = m x  + b. The interviewer  acknowledged  the novel ty  of this 
mathematics  for Kerri: "It 's very  impressive that you  f igured out the substi tution 
thing on your  own."  

While doing her  h o m e w o r k  after the test (using the teacher 's  plott ing 
method) ,  Kerri general ised the spontaneous  bui ld ing-wi th  she had  unde r t aken  
in the test: 

I was doing my graph - -  and then I like realised like - -  really solidly, ... I got the 
same answer [as] if you do the subtraction. 

Kerri 's reflection led to a n e w  insight: The graph  was  not  needed ,  the ordered 
pairs could always be operated on instead. 

Kerri also recognised another  use for her  discovery: She could find the 
length of a segment  on the line by applying Pythagoras '  theorem to the 
differences in the ordered pairs: 

We had to find the distance between the two plots, [we were] supposed to graph 
them too - -  I was using the Pythagorean theorem .... You're really finding- ... 
like if you make it a right triangle, it's the hypotenuse, not just the distance. 

Evidence of Kerri 's previous construct ing activity was  found dur ing  the lesson. 
When  the teacher used a slope triangle d iagram to demonst ra te  f inding the 
equat ion wi thou t  graphing,  saying "You w o u l d  graph  (3, 4) and (4, 6) and d raw 
a little slope triangle",  Kerri queried the teacher 's  process: "You still g raphed  it." 
After the teacher explained the n e w  work ,  the other students in Kerri 's group 
buil t -with previously  k n o w n  ideas by  plot t ing graphs and measur ing  intervals. 
In her  interview, Kerri art iculated the differences be tween  h o w  she and the other 
students approached the exercise: 

[It] said graph and find the distance, and most people would graph the line, and 
then do the little thing [slope triangle]. But I would find what - -  see that'd be 
two and then one [subtracting y values and x values], so you do um, a squared 
plus b squared equals c squared. 

The other s tudents  did not  recognise the significance of the coordinates in 
el iminat ing the need  to plot graphs,  even though  this had  been discussed in the 
lesson and they were  considered gifted students.  
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Kerri's Abstracting Process 
Figure 2 represents Kerri's spontaneous abstracting process. Her inferred 
thought processes are numbered in the order in which they occurred. Within 
each constructing process, smaller numbers are generally associated with 
recognising and building-with and larger magnitude numbers with constructing. 
Nesting of recognising within building-with and recognising and building-with 
within constructing is represented through the dotted arrows. 

She constructed three new insights, two of which (t~ and 7) relied upon the 
constructing of the first (o 0. The lower half of Figure 2 is a version of Figure i that 
represents the abstraction of Insight o~. The additional two versions of Figure 1 
positioned above this and side by side represent branching into two abstracting 
processes. These two smaller RBC diagrams share the same recognising ellipse 
containing Insight o~, and the final constructing processes for Insights t~ and 7 also 
draw from the original recognising ellipse that includes cognitive artefacts 
possessed before the test. Kerri's branching differs to that previously identified 
(Dreyfus & Kidron, 2006) because the two branches do not rejoin but result in 
two separate insights. 

Figure 2 shows further features of the Spontaneous Abstracting Model. In 
Step 8, in the lower building-with ellipse, Kerri analysed her newly developed 
procedure and her teacher's method (synthetic-analysis) and then compared 
them (evaluative-analysis). Synthesis is represented within the constructing 
ellipse above it, when she recognised the equivalence of the numerical and 
graphical representations of length (Step 10). Kerri's abstracting led to 
curtailment (Krutetskii, 1968/76) because she no longer needed to consider a 
sketch first. Her realisation of the elegance and generality of her method led to 
spontaneous evaluation. Insight o~ led to further development above that. 

Processes associated with Step 11 were not studied in detail, but there is 
sufficient data to suggest that it constitutes building-with other cognitive 
artifacts rather than analytic-synthetic vision (cf. Figure 1). It is difficult to know 
what cognitive artefacts Kerri relied upon in Step 11. [From her interview, it 
would appear that Kerri understood gradient as more than a rule because she 
discussed that rise over run was convention but that the convention could just as 
easily have been run over rise. She stated she would need to think about that a 
little further]. Further synthesis occurred when she combined Pythagoras' 
Theorem (Step 6) with her new mathematical structure (Step 10), to create Insight o~. 
In developing Insights t~ and 1', Kerri built-with Insight o~ (an example of 
consolidation during spontaneous building-with (Dreyfus & Tsamir, 2004). 

Kerri's activity shows the significance of synthetic-analysis and evaluative- 
analysis in enabling constructing. Without the opportunity to compare her newly 
developed procedure with the teacher's procedure, she may not have recognised 
the equivalence of the numerical and graphical representations of length and 
made decisions about the value of her method. When she recalled her realisation 
of the crystallisation of her learning after she had worked with the homework 
problems, Kerri expressed high positive affect. 
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12. Insight B: Two points on a line provide 
information about its gradient --  the ratio 
of the difference in y values to the difference 
in x values: gradient = (Y2- yl)/(x2- Xl) 

C 

13. Insight ~. With the distance between two points on a 
Cartesian plane, Pythagoras' theorem can be thought of 
using co-ordinates, without drawing the slope triangle: 
P1P2 2 = (Y2-YO 2 + (x2-xO 2 

side lengths 

11. Other cognitive 
artefacts 
recognised 

N Available R 

8. Compare lengths 
from both methods for 
purpose of judgment 

7. Own method: 
Subtrad y-lengths 
to find rise " 

6. Own method:" 
Subtract xvalues 
to find run 

10. Insight cc The difference in xand yvalues (respecti 
length of the horizontal and vertical sides of a slope tri 

\ lengths can be found by operating on relevanl 

Buitding-with 

Originally Av~ 

.ly) are equivalent to the 
~gle for that line. So side 
Ltributes of ordered pairs 

5. Find lengths 
by measuring 

9. Pythagoras' 
Theorem relates 
to the lengths of 

sides in right-angled 
/ triangles 

1. A "little slope triangle" 
can be made using the 
two points given 

2. Gradient is the ratio of 
the amount of rise to the 
amount of run in the 
slope triangle 

3. Cartesian axes system 
provides information about 
lengths of vertical 
and horizontal lines 

4. Teacher's method 
of finding lengths of 
lines by drawing 
graphs and measuring 

Figure 2. Kerri's spontaneous abstracting processes. 
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Eden's Spontaneous Abstracting 
Narrative Summary: Eden 
Eden's class experimented with Green Globs, a computer game that randomly 
displays globs on a Cartesian coordinate plane for students to "hit" with linear 
functions. In this game, the score depends on how many globs are hit in a turn. 

Eden and his friend Darius, working side by side, had different goals in this 
lesson. Eden's main focus was on making sense of the generation and positioning 
of "angled" lines (Eden's term). Eden's interaction with Darius showed he was 
aware that Darius was only using trial and error. When Eden asked Darius, 
"What's the rule for that [sloping line on Darius' screen]? That's the sort of angle 
...', he took Darius' answer "Two x plus three" literally and wondered why 
nothing happened when he entered the term 2x + 3 into the computer. This 
supported his interview statement that he did not remember much about linear 
equations. When Eden entered y = 2 + 2 soon after (probably omitting the x by 
accident) and generated a line crossing the y-axis at 4, he exclaimed, "Oh I get it 
- -  if you do two plus two is four", suggesting that he was unaware that constant 
terms can be collected together in equations. 

Some time later, Darius generated a family of parallel lines coming closer 
and closer to points he wanted to hit (Figure 3). Eden moved across to Darius, 
remaining motionless as he watched the display evolve on Darius's computer 
screen. He asked Darius, "I don't  know how you get that" but Darius did not 
respond. Eden's interview response afterwards suggested that he was asking 
himself, "How are the x and the y co-ordinates of points on a line related, and 
why are they related this way?" 

Eden suddenly returned to his own computer and worked intently for seven 
minutes before making an almost inaudible statement, "y is the cross with x'.  In 
his interview, he was initially unable to communicate his ideas, but then he used 
the sketchpad and explained as he sketched. He had found a relationship 

"Globs" 
4 
3 

~ 2 
~ ] 

r 

Numbers 
beside lines 
indicate the 
order in 
which they 
were 
generated 

Figure 3. Lines that appeared progressively on Darius's computer screen. 
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b e t w e e n  the x and  y co-ordinates  of po in ts  on  linear graphs .  He  tr ied to explain  
w h y  the line s loped  as it d id  and  h o w  this was  related to the presence  of the x in 
the equat ion,  in par t icular  w h y  some  equat ions  gave s loping  lines and  others  
hor izonta l  lines: 

Eden: ... if it's just y equals minus one (pause) it's gunna be (pause) 
horizontal - -  I am not quite - -  I have forgotten (pause) why it [the 
diagonal line] just is (pause). The x makes it - -  makes the rule more 
complete sort of ... 

Interviewer: Okay 

Eden: ... because it actually (pause) crosses over with x. 

Exactly w h a t  Eden  m e a n t  is unclear. He might ,  for example ,  have  been  t ry ing  to 
convey  that  the y va lue  relied u p o n  the value  of x, or that  the presence  of an x in 
the equa t ion  m o v e d  the y va lue  so the line crossed over  the hor izonta l  line 
fo rmed  w i t h o u t  the x. But he t h o u g h t  his explanat ions  were  clear, and  was  
surpr i sed  w h e n  the in te rv iewer  p r o b e d  again. "Didn ' t  I tell y o u  that  a l ready?" he  
asked. 

Green Globs p r o v i d e d  a w a y  for Eden  to evaluate  his ideas as he w o r k e d  at 
his o w n  c o m p u t e r  w i t h o u t  ma themat ica l  i npu t  f rom other  s tuden ts  or the 
teacher. He  d id  no t  discuss "ang led  lines" w i th  others  after this. Eden ' s  c o m m e n t  
"y is the cross w i th  x" coup led  wi th  the in tensi ty  of his behav iou r  just  p r ior  to 
that  and  his act ions in the  s u b s e q u e n t  lesson,  were  cons i s ten t  w i t h  his 
deve lop ing  n e w  knowledge .  In the next  lesson, Eden  was  the first to explain that  
the equa t ion  could  be f o u n d  us ing  the re la t ionship b e t w e e n  e lements  of o rdered  
pairs  for po in ts  on the line. W h e n  an exercise was  set, Eden  immed ia t e ly  
recognised  that  all quest ions  were  of the same type.  W h e n  the s tuden t s  seated on 
ei ther side of Eden  (Darius and  Marius)  exper ienced  difficulties wi th  the exercise 
later in the lesson, they  asked and  received Eden ' s  assistance. Both of these 
s tuden ts  usua l ly  p e r f o r m e d  equal ly  as well  as Eden.  

Eden's Abstracting Process 
In his in te rv iew,  E d e n  d r e w  a g r a p h  of his o w n  c h o o s i n g  to assist  in 
c o m m u n i c a t i n g  his ideas. After  the in te rv iewer  indica ted  she n e e d e d  to k n o w  
more  about  w h a t  he  was  saying,  he  conver t ed  this g r aph  into a table of values.  
Eden  po in t ed  to cells w i th in  the table as he  expla ined  the re la t ionship  he had  
f ound  b e t w e e n  the x and  y values:  

You've got (pause) a little table like x and y ... y is minus - -  starts off on minus 
three (pause) minus two (pause) minus one (pause) and zero (pause) .... 

Then it's minus one to minus two, zero to minus one and then it keeps going 
like that (pause) so it [x] is always one ahead .... 

And then (pause) one (pause) and then the rule (pause) is ah (pause) would be 
(pause) um (pause) y (pause) equals (pause) x (pause) minus one. 
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Eden was clearly attempting to express in words the algebraic relation y = x - 1. 
His hesitations suggested he was working out this equation as he spoke, and that 
his new knowledge was fragile. 

When the interviewer asked him to summarise what he had found, he stated 
that the graphs on the Green Globs screen were all that was provided to assist in 
finding the equation to the line: "The graph's drawn up already (pause) for you 
to look at - -  that's the only help you get to answer". His comment suggests that 
during his intense focus on Darius's screen he came to realise that the pattern he 
could see within the coordinates was also expressed in the algebraic 
representations of the linear function at the bottom of the computer screen. 

Eden's interview explanations, considered in conjunction with his lesson 
activity, suggest that his constructing process followed the sequence shown in 
Figure 4. As before, the smaller numbers represent recognising activities and the 
highest number constructing. 

Eden's recognition of the pattern linking the x- and y-coordinates of points 
on a line (Step 7) constituted spontaneous element-analysis. In using the 
dynamic visual display on Darius' screen to simultaneously consider different 
representations of the pattern he had generated (Step 8), he was performing 
synthetic-analysis. During this action, he displayed intense interest. When he 
returned to his own computer, he undertook evaluative-analysis to judge the 
reasonableness of ideas he had developed (Step 9). His final exclamation about y 
crossing over with x indicated that he had constructed a mathematical insight 
(Step 10). Eden realised he no longer needed the graphical, tabular or verbal 
representation to describe linear functions because this information was "hidden 
inside" the algebraic representation and could be unpacked and explained as 
required. He was satisfied with what he had found and knew why it occurred. 

Although the mathematical structure Eden developed was still primitive in 
that it provided information about slope but not yet position, the relational 
understanding he developed (Skemp, 1976) was a good foundation for learning 
further aspects of linear functions. The quality of his understanding was evident 
in the way he moved flexibly between representations when explaining his new 
knowledge. 

Discussion 
Each student developed a different "tightly structured and connected knowledge 
base" (Skemp, 1980, p. 535) associated with linear functions through their 
idiosyncratic foci. Each student's "frame of reference" related to what they had 
decided they needed to know (Steffe & Thompson, 2000, p. 291) and was 
influenced by the resources they had available at the time. Kerri wanted to 
answer the test question and Eden wanted to find mathematics that would assist 
him in gaining high scores in the computer game. Each student searched for a 
way to proceed and identified a mathematical complexity that they had not 
previously been aware of. Kerri identified a link between graphical and 
numerical representations, and Eden identified a pattern linking the x and y 
value for points on a line. 
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10. Synthesising: An algebraic equation is an elegant way to express the relationships found in other representations 
and can be unpacked to elaborate these other representations as needed. 

Constructing 

8. Synthetic-analysis: Activity associated with the pattern 
considered simultaneously in graphical, tabular, verbal, 
and algebraic representations 

Building-with 

9. Evaluative-analysis: 
Data not available. 

Checked something 
using the Green Globs 

application before 
he appeared sure. 

Could have asked himself 
questions like "Does 

this always work? 
Do my pattern and the 
equation always look 

the same?" 

7. There is a pattern linking the 
x and y coordinates for each/ 
point on the line 

1. Relationships 
can exist ~ 
between 
numbers 

6. The equation of a 
' straight line is 

y=mx+c 
as a rule without 

meaning 

2. Points in axis systems 
can be described using 
their x and y values 

3. x and y values of a 
point are expressed 
as coordinates 

4. Relationships between 
numbers can be expressed 
orally as patterns 

5. Relationships between 
numbers can be expressed 
using algebraic symbols to 
stand generally for numbers 

Figure 4. Eden's spontaneous abstracting process. 
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Kerri's activity when completing her homework would outwardly have 
looked like practice, but it was actually more complex. Sfard and Linchevski 
(1994) identified the potential of practice with exercises to contribute to the 
abstracting process. Kerri's activity raises questions about what might be 
happening during practice. Kerri practised her homework exercises as she 
simultaneously attended to her recently developed method. She undertook 
synthetic-analysis and evaluative-analysis as she compared the processes and 
found equivalent attributes. These more complex types of thinking within 
building-with finally resulted in synthesis. The type of interconnected 
conceptual understanding Kerri developed has previously been identified by 
Schoenfeld, Smith, and Arcavi (1993) in the way mathematicians think: 

[Mathematicians link] manipulations in the algebraic world, in which m is 
simply calculated by the formula (Y2 - Y l ) / ( x 2  - Xl), and the graphical world, in 
which m has graphical entailments. (p. 58) 

Kerri judged the numerical operations as an elegant way to find gradients and 
subsumed the other representations into her mathematical structure. She 
generalised these numerical operations into algebraic manipulat ions of 
coordinates. She did not just apply rules (empirical generalisations), she was 
aware of the meanings behind the procedures she applied (theoretical 
generalisation) (Davydov, 1972/1990). She realised that the Cartesian coordinate 
system could be used as a tool to find lengths. Other students in her group did 
not develop theoretical generalisations. Their activity supported Davydov's 
(1972/1990) research on the need for mental reorganisation to develop insight, 
and the inadequacy of teacher transmission in achieving this. 

Eden considered his activity of generating and checking his pattern 
simultaneously with the algebraic symbolisation, and this process led to his 
insight. This "dual use of symbolism as process and concept" has been 
recognised previously (Gray, 2002, p. 205). Symbols that evoke these dual 
processes have been referred to as "procepts" (Gray & Tall, 1994). Proceptual 
thinking provides the student with "far greater power and flexibility" providing 
"a process to do mathematics and as a concept to think about it" (Gray, 2002, p. 
206). Eden displayed this duality in his interview by encapsulating his concept of 
function in the activity of recognising and building-with the numerical 
relationship between the elements of the ordered pairs as he described the 
function. He displayed "economy of thought"  by using the algebraic 
representation to encapsulate the relationship he recognised (Davis & Tall, 2002, 
p. 139), and an ability to recognise his new structure with increasing ease 
(consolidation) when he exclaimed that the questions in the exercise were all of 
the same type (Hershkowitz, 2004; Hershkowitz, Schwarz, & Dreyfus, 2001). 

It is helpful to compare Eden's learning with that of IN, a bright, articulate, 
high achieving sixteen year old interviewed by Schoenfeld, Smith, and Arcavi 
(1993) as she used Black Blobs (from which Green Globs is derived). IN had 
difficulty commencing her exploration and the interviewer provided her with a 
great deal of help but generally did not allow her any control over what she 
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focused upon. He often told IN what to use (control over recognising) and how 
to use it (control over selection of procedures to build with). She did not have 
opportunity to trial ideas and decide whether or not they were productive. For 
example, the interviewer quashed IN's attention to the x-intercept because he 
considered a graph to be determined by its y-intercept and gradient (p. 59). She 
did not have opportunity for evaluative-analysis because an external source 
queried the moves she made and provided his explanation and elaboration. IN 
did not develop relational understanding (Skemp, 1976) over the six lessons 
using Black Blobs: 

The simple conclusion that "she had it right when she left" is deceptive. IN's 
knowledge of slope was not tied in any deep way to an understanding of the 
mathematical structures that compels lines of positive slope to move up to the 
right. (Schoenfeld, Smith, & Arcavi, 1993, p. 99) 

Eden also needed extra information to enable him to start his explorations, 
namely information about the general equation, what information the computer 
application required, and how another student had positioned his graphs. The 
answers were sufficient for Eden to begin to explore how and why linear 
equations positioned sloping lines. His exploratory activity and the 
mathematical structure he developed were consistent with what Schoenfeld, 
Smith, and Arcavi (1993) valued: 

Learning even simple knowledge in a complex domain means making connections, 
that is, a piece of knowledge is robust and stable to the extent that it is connected 
to other pieces of knowledge. (p. 99) 

Consistent with Davydov's (1972/1990) findings, the high quality of the 
mathematical understanding developed by Eden contrasted to the fragmented 
understanding of rules displayed by IN. Had the mathematical structure of the 
equation been explained to Eden, it seems very likely that he would not have 
reached such a deep level of understanding. 

The outcomes of interactions with Green Globs/Black Blobs by Eden and IN 
demonstrated that learning about linear functions through the attributes that are 
formally presented in many texts (gradient, y-intercept) does not necessarily lead 
to a rich understanding. IN (compared to Eden) was in a higher year level, 
studying more complex mathematics, had a wider mathematical vocabulary and 
interacted with the program over several sessions. Eden explored linear graphs 
using unconventional characteristics and developed relational understanding of 
linear function without  knowing the standard terminology. His only 
mathematical advantage was his sound basic understanding of the Cartesian 
coordinate system. 

The cognitive processing undertaken by Kerri and Eden included the same 
processes. Through simultaneous consideration of more than one representation 
(synthetic-analysis), these students checked whether  the ideas they had 
developed were reasonable and considered their relative elegance (evaluative- 
analysis). Kerri undertook evaluative-analysis when she used the teacher's 



Abstracting in the Context of Spontaneous Learning 85 

measuring method to simultaneously check her newly developed method of 
mentally calculating lengths. During this process she realised "really solidly" 
(Kerri's comment in her interview) what she could achieve without needing the 
graph. She developed an elegant method that did not necessitate plotting and 
measuring lengths on graphs. Eden undertook evaluative-analysis when he 
developed an algebraic representation of his pattern and checked its equivalence 
to the general form of a linear function that had previously had no meaning for 
him (synthetic-analysis nested in evaluative-analysis). He then judged the 
respective elegance of these representations for retaining knowledge. The 
crystallisation of his elegant way to conceptualise his new knowledge involved 
subsuming representations within each other so that thinking could be 
undertaken through the most elegant representation (synthesis during 
constructing). Transition from evaluative-analysis to constructing becomes more 
transparent when the activities of these two students are considered: 
Mathematical structures developed through subsuming of representations 
within others when equivalent attributes were found through evaluative- 
analysis. This raises questions about the relative quality of mathematical 
structures developed with and without evaluative-analysis. 

Eden and Kerri used different cognitive artefacts and were situated in 
learning contexts that differed in some respects. One was technology assisted 
(Eden) and the other involved individual work (in a test and at home). Even so, 
both students simultaneously considered various elements of the mathematics 
involved (synthetic-analysis) and checked the developing ideas (evaluative- 
analysis). Using the same types of thought processes, they developed different 
insights about linear functions. 

Conclusions 
The Spontaneous Abstracting Model was found sufficient to describe and 
elaborate the spontaneous abstracting processes employed by Kerri and Eden, 
and to illuminate the commonalities between them. The diversity of these two 
cases supports the robustness of the model. This study confirms that deep under- 
standing can result from spontaneous abstracting and suggests that this type of 
learning could lead to more connected understandings than guided learning. 

The question arises of how to provide classroom environments in which 
opportunities for spontaneous learning occur. What we do know is that "heavy" 
guiding (e.g., in IN's case) inhibits the types of thinking associated with 
spontaneous learning (e.g., recognising, evaluative-analysis) and results in 
fragmented learning. But, what are the effects of "light" guiding where decisions 
made or answers gained are simply affirmed by an external source? This study 
suggests that affirming activity could reduce opportunities for developing 
connected understandings because affirming decreases the need for evaluative- 
analysis, and evaluative-analysis was integral to connecting representations. 

This study suggests that increasing opportunities for looking-in activity 
could support spontaneous learning (Williams, 2006). Looking-in is an activity 
that can occur when students do not possess appropriate cognitive artefacts to 
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progress their exploration. To compensate for this, they examine artefacts 
generated by others and extract mathematics that was not explicit within them 
(e.g., as Eden observed Darius's display). 

Each of these cases indicates that spontaneous learning can increase student 
interest in mathematics. High positive affect accompanied self-initiated 
recognising and synthesising for Kerri, and Eden's synthetic-analysis and 
evaluative-analysis was accompanied by an intense focus on the mathematics. 

Study of these two cases of spontaneous abstracting has assisted in 
elaborating the social elements associated with spontaneous abstracting, lightly 
guided constructing, and heavy guidance. The findings could inform teachers 
and teacher educators making decisions about interventions during student 
learning. Study of other cases of spontaneous abstracting would test the 
generalisability of the Spontaneous Abstracting Model and assist in elaborating 
it further. Further research also is required to find ways to promote spontaneous 
learning and to find whether tasks that provide opportunities for looking-in 
could provide a productive way forward. 
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