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An important element in teaching is the quality of content and pedagogical knowledge 
that teachers use in the design and delivei T of their lessons. In this paper we present a 
framework for investigating how this knowledge is structured and how it relates to the 
mathematical modelling process. The framework is then used to compare an 
experienced teacher's knowledge and teaching of functions with that of four trainee 
teachers. The data show that the experienced teacher has built up knowledge that is 
dominated by conceptual rather than procedural aspects of functions, whereas the 
prospective teachers have structures often lacking a strong conceptual base. 

Much of the  recent research  on the  learning of m a t h e m a t i c s  h a s  focussed on 
students '  a b i l i t y  to use p rev ious ly  acquired  knowledge  in mak ing  progress w i t h  t h e  
solution of novel  problems.  An impor t an t  deve lopmen t  in th i s  a r e a  h a s  been 
app rec i a t i ng  t h a t  the  qua l i t y  of the  knowledge  t h a t  students acquire m a y  h a v e  a 
s ignif icant  influence on h o w  wel l  t h a t  knowledge  is used in the  search for solutions to 
problems.  In a classroom setting, t eachers  p l a y  an ac t ive  role not only in f a c i l i t a t i n g  
the  acquisition of new knowledge  by t h e i r  students,  but also in p rov id ing  
p e d a g o g i c a l l y  v a l u a b l e  experiences t h a t  m a y  assis t  in extending t h a t  knowledge  
into new ter r i tor ies .  

A key e lement  in the  goals t h a t  t eachers  set for t h e i r  lessons and t h e  structuring 
of these  lessons is t h e i r  own unders tanding of both tile subject m a t t e r  and t h e i r  
students.  Thus, the  nature  of  a t eache r ' s  knowledge  base under ly ing  a p a r t i c u l a r  
m a t h e m a t i c a l  topic and the  t each ing  of t h a t  topic can be expected to exert a major 
influence on the  qua l i ty  of  the  understanding t h a t  students develop.  W h i l e  t h i s  
point  about  the  role of  the  t eache r  knowledge  base h a s  received considerable suppor t  
in research  findings (Ball  & McDiarmid ,  1990) and curriculum reform documents 
( N a t i o n a l  Council of  Teachers  of  M a t h e m a t i c s ,  2000) the re  is l i t t l e  in fo rmat ion  
about  the  qua l i ty  of  t eacher s '  subject mat ter  knowledge  and h o w  t h a t  knowledge  
could dr ive  w h a t  students learn.  In one s tudy  where  the  r e l a t i o n s h i p  of an 
experienced t eache r ' s  conceptions of  function to his  prac t ice  was  examined,  Lloyd and 
Wilson (1998) found t h a t  the  " t eacher ' s  comprehens ive  and wel l  o r g a n i s e d  
conceptions contribute to instruction cha rac t e r i s ed  by emphases  on conceptual  
connections, power fu l  representa t ions ,  and meaningful  discussion" (p. 270). In t h e  
present  s tudy,  we  continue the  process of  address ing  th i s  r a t h e r  neglected issue by 
examining t e ache r  knowledge  of functions and h o w  t h a t  knowledge  is used in t h e  
model l ing process. 
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Schemas as Structured Mathematical Knowledge 
Network  theor is ts  h a v e  advanced severa l  fl 'ameworks in w h i c h  to inves t iga te  

concepts and t he i r  development .  According to one view,  conceptual  growth  and 
m a t h e m a t i c a l  understanding can be in te rpre ted  in terms of conceptual  nodes and 
relat ions between nodes (Anderson, 2000). As students '  experiences w i t h  a concept or a 
set of concepts increase, t h e y  build more nodes and links resulting in 'chunks'  t h a t  
a l low them to develop layers  of m a t h e m a t i c a l  understanding. Various a t t empt s  
h a v e  been made  to e luc ida te  such cognitive structures. Among these,  the  notion of 
schemas has  gained considerable support  amongst researchers .  

In the  context of learning, schemas h a v e  been given a number of in te rpre ta t ions  in 
the  psychologica l  l i te ra ture .  Skemp (1979) describes how we construct ' w h a t  we 
a l r e a d y  know' by engaging in mental  construction of r e a l i t y  by building and testing a 
schemat ic  knowledge  s t ruc ture ,where  a schema is "a conceptual  structure existing in 
its own r ight ,  independent ly  of action" (p. 219). In the  context of problem solving, 
Paas (1992, p. 429) describes how a schema "can be conceptualised as a cognit ive 
structure t h a t  enables problem solvers to recognize problems as belonging to a 
pa r t i cu la r  category of problems t h a t  require pa r t i cu la r  operations to r each  a 
solution". Swel le r  (1992, p. 47) agrees, defining a schema as "a cognitive construct 
t h a t  permits  problem solvers to categorise problems according to the  moves required 
to solve them."  Because our existing schemas serve e i t he r  to promote or restr ict  t h e  
association of new concepts, the  qua l i ty  of w h a t  an ind iv idua l  a l r e a d y  knows is a 
key determinant  of our ab i l i t y  to understand, or as Skemp (1979, p. 113) concludes, 
"our conceptual structures are a major factor  of our progress".  

W h a t  then do schemas comprise? Ol ive  and Steffe  (2002, p. 100) explain t h a t  
"Schemas can be regarded as networks of connected concepts." O the r  descriptions 
include a 'connected collection of h i e r a r c h i c a l  relat ions '  (Davis  & Tall ,  2002). 
Dub inskyand  others (Dubinsky, 1991; Cot t r i l l  et al., 1996) use the  acronym APOS to 
describe four components of Action, Process, Object, Schema in the  building of 
m a t h e m a t i c a l  knowledge.  The chain of events, t h e y  suggest, develops as follows. 
Actions, when  a p p l i e d  to objects become processes, w h i c h  in turn become encapsulated 
as mental  objects, and examples of these  th ree  l ink toge ther  to form cognit ive 
structures or schemas. Thus, conceptual  ent i t ies  in ma thema t i c s  often present  
themse lves  w i t h  two dist inct  but complementary  faces: t h e y  may  be v i e w e d  as 
dynamic  processes or as s tat ic  objects. To make a m a t h e m a t i c a l  idea  r e a d i l y  
manipulab le  and app l icab le  in o ther  contexts, it  must be a v a i l a b l e  in te rna l ly  in a 
concise form, and the  encapsulation of the  process as an object is one way  of 
accomplishing this .  The relat ions t h a t  are constructed between the  conceptual 
ent i t ies  forming a schema could include s imi la r i t i e s  and d i s s imi la r i t i e s  between 
concepts, instances of a concept, procedures for using concepts for solving problems or 
a f fec t ive  factors r e l a t e d  to those concepts. 

According to Anderson (2000), two va r i ab les  determine the  qua l i ty  of a schema: 
the  spread of the  network and the  strength of the  links between the  various 
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components of information located w i th in  the  network.  Ol ive  and Steffe (2002) l is t  
th ree  factors: the  type of concepts making up the  schema; the  quant i ty  of t h e  
connections between the  concepts; and the  qua l i ty  of the  connections. This last  factor  
is based on the  ideas of Skemp (1979) who  describes the  qua l i ty  of the  l ink as 
associa t ive  (an A link) or conceptual  (a C link). In the  former concepts are l inked  
purely  by association r a t h e r  t han  by the  conceptual  r e l a t i onsh ip  of the  la t ter .  A 
complex schema can be charac te r i sed  as hav ing  a large network of ideas t h a t  are  
built around one or more core concepts. Further ,  the  links between the  various 
components in the  network are robust, a feature  w h i c h  contributes both to access to 
concepts and to use of the  schema in problem solving and o ther  situations. A w e l l  
structured schema can also benefi t  students by he lp ing  then] ass imi la te  new incoming 
m a t h e m a t i c a l  ideas because such a schema can be expected to h a v e  many  conceptual 
points to link wi th .  In th is  way,  schemas provide  a useful way  to in te rpre t  t h e  
growth  of m a t h e m a t i c a l  knowledge  and meanings.  

Teacher Knowledge and Schema Induction 
W hen  we examine mental  schemas of teachers  in any given content area,  we 

become aware  of w h a t  t h e y  see as the  impor tan t  links w h i c h  t h e y  want  students to 
build into t h e i r  knowledge structures and towards  w h i c h  t h e y  try to structure t h e  
learning environment.  However ,  discussions about  teachers '  content knowledge  must 
also consider how t h a t  knowledge of functions could be t r ans la t ed  into forms t h a t  are  
eas i ly  understood by students. This discr iminat ion was made  by Shulman (1986a, 
1986b, 1987) in his  ana lys is  of ma thema t i c s  teachers '  content and pedagogical content 
knowledge.  Content  knowledge  refers to ma thema t i c s  concepts, conventions and 
procedures, w h i l e  pedagogical content knowledge  includes both understanding of 
students '  d i f f icul t ies  about a ma thema t i c s  topic, and also s trategies  t h a t  are  
adopted  in teaching  a pa r t i cu la r  topic of mathemat ics .  Le in h a rd t  (1989) has  
suggested the  existence of s imi la r  links between teachers '  subject mat ter  knowledge,  
t he i r  explanat ions,  and the  type of representat ions generated by then] during 
teaching.  It has  been proposed t h a t  knowledge  of functions and uses of functions can be 
seen as the  content knowledge,  but the  importance of emphasising the  uses of 
functions during teaching  comprises the  pedagogical content knowledge.  In th i s  
paper ,  we are ma in ly  concerned w i t h  describing teachers '  content knowledge 
a l t h o u g h  it  is possible to argue t h a t  some aspect of th is  knowledge  can be construed 
as belonging to pedagogical content knowledge. 

A schema based analysis ,  therefore ,  suggests t h a t  t eacher  actions could promote  
the  construction of powerful  function schemas t h a t  would benefi t  student learning in 
two impor tan t  ways. Firs t ly,  students would better access prior knowledge and 
in tegra te  t h a t  w i t h  incoming information.  Secondly, students could be expected to 
deploy acquired knowledge  f lex ib ly  during the  process of problem analysis .  Hence 
the  question is, w h a t  is the  nature of a t eacher ' s  knowledge t h a t  would promote t h e  
construction of sub schemas whose content and links are pedagogically v a l u a b l e ?  
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The aim of th is  research s tudy was to examine the  above issue by charac ter i s ing  
tile schemas of teachers  in the  content a rea  of function, in order  to compare and 
contrast schemas of an experienced t eacher  w i t h  those of teachers  who  are new to t h e  
teaching of a lgebra  and functions. W h i l e  teachers '  knowledge is inf luent ia l  in w h a t  
students learn, the  purpose of the  current research was to ana lyse  the  nature and 
qua l i ty  of teachers '  knowledge t h a t  dr ives  t h e i r  instruction. We do th is  by, f i r s t ly ,  
developing a macro schema t h a t  draws out key relat ions and nodes. This  
h y p o t h e s i s e d  framework,  we argue, provides  more de ta i l s  about  the  t rans la t ion  and 
interact ion between teachers '  content and pedagogica l  content knowledge.  

One major difference we h a v e  h y p o t h e s i s e d  has  to do w i t h  encapsulation of 
processes as objects. Many ind iv idua l s  a p p e a r  not to progress to the  point  where  t h e y  
can th ink  in a proceptual (Gray & Tall ,  1994) or versatile way  (Hong & Thomas,  
1998; Tal l  & Thomas, 1991; Thomas, 2002) about m a t h e m a t i c a l  symbols, seeing t h e m  
e i the r  as a process invoked by the  symbol or as the  concept represented by it. Instead,  
t h e y  are process oriented (Thomas, 1994) in t h e i r  thinking,  constrained p r i m a r i l y  to 
m a t h e m a t i c a l  processes w i th in  a given representa t ion system. For a t eacher  t h e  
absence of a conceptual,  representa t ion  free view may  structure t h e i r  th inking,  
causing them to over  stress procedural  methods.  In contrast the  versatile t eacher ,  
w i t h  a global  v iew of a concept crossing a number of representat ions,  is able to see i ts  
components, or consti tuent processes, and re la te  these  to the  who le  (Thomas & Hong, 
2001). 

Considering th is  in the  context of function, how would the  schemas and teach ing  
approach  of a t eache r  w i t h  a r ich conceptual  and inter  r ep resen ta t iona l  view of 
function diverge from those who  h a v e  a p r i m a r i l y  procedural ,  single represen ta t ion  
based perspect ive?  The mul t id imensional  nature of functions can present  a pa r t i cu l a r  
chal lenge to prospect ive  and new teachers  when  designing ap p ro p r i a t e  learning 
situations. Transla t ing between various function representat ions is something w h i c h  
an experienced t eacher  migh t  take  for granted, but to do so one needs to h a v e  an 
overview of the  way  the  def in i t ion  of function re la tes  to each representat ion,  and 
how sub concepts, such as independent  and dependent  var iab les ,  one to one, roots, 
discrete, continuous, and so on, are mani fes t  in each representa t ion (Hong, Thomas, & 
Kwon, 2000). 

To i l lus t ra te  th is  difference, consider the  construction of a composite function 
f o g  from the  funct ions / 'and g w h e r e  

f(x) x2andg(x) x+l,sothatf(g(x)) (x+l) 2. 

Here,  one could eas i ly  t each  students to carry out such a procedure w i t h o u t  a c tu a l l y  
hav ing  the  under lying concept of w h a t  a composite function is. However', our view is 
t h a t  it  would be d i f f icul t  for" such a p rocedura l ly  or iented t eacher  to engage students 
from a conceptual  perspect ive  or to h e lp  them p a r t i c i p a t e  in m a t h e m a t i c a l  
modelling. W h a t  does th is  kind of teaching  involve?  We present  in Figure 1 t h e  
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Figure 1. A structural  f r amework  for teachers '  mathemat ica l  knowledge  and 
modelling of a focus concept. 

organisa t ional  structure of t eache r  knowledge  t h a t  we bel ieve  is r e l evan t  to t each ing  
focussing on m a t h e m a t i c a l  concepts and t h e i r  development .  

This app roach  a t tempts  to capture the  content and relat ions of a t eache r ' s  
knowledge  and the  ac t iva t ion  of th is  knowledge  during tile modell ing process. The  
network of re la t ions among the  focus concept, subsidiary  concepts, a lgor i thms  (or 
procedures), representat ions and examples i l lus t ra te  structure, w h i l e  the  in tegra t ion  
of d a t a  into examples in order  to ins tan t ia te  the  focus concept constitutes t h e  
modell ing (process). A focus concept wi l l  h a v e  associated subconcepts, along w i t h  
a lgor i thms  for carrying out certain actions w i t h  them,  or on them,  and these  
a lgor i thms  wi l l  usually be based in a single representat ion.  However  the  concept is 
not l imi ted  to one representa t ion but wi l l  h a v e  a number of manifes ta t ions ,  each  
w i t h  its own associated a lgor i thms.  For example,  a t eache r  migh t  wish  to provide a 
demonstra t ion of functions in rea l  l ife si tuations.  She could ach ieve  th is  by asking 
the  students to collect numerical  values for two var iab les ,  say, t h e  time t seconds 
taken  for a t ro l l ey  to roll  a certain distance S down a given inclined slope. These  
va r i ab les  form subsidiary  concepts of independent  and dependent  var iab les ,  t h e  
values collected form the  da ta ,  and the  context of t ime /d i s t ance  forms the  example .  
Students could be required to t abu la te  the  values for tile two va r i ab les  and generate a 
g raph  t h a t  shows a quadrat ic  r e l a t i onsh ip  between the  va r i ab les  in question. Thus 
the  table  and the  g raph  constitute representat ions  of the  functional r e la t ionsh ip .  
Est imat ion of the  ve loc i ty  of the  t ro l l ey  at  a pa r t i cu la r  t ime, or tile average  v e lo c i t y  
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over  a period require specific a lgor i thms  w h i c h  could be executed in e i t he r  t h e  
g r a ph i ca l  or t abu la r  representa t ion.  

In th is  episode the  t eacher  is engaging in modelling, where  real w o r l d  d a t a  are  
used v i a  an example  to build an understanding of the  focus concept (quadrat ic  
function). In doing so, however ,  she is drawing on her knowledge  of links among 
severa l  concepts including the  representat ions and a lgor i thms.  We argue t h a t  t h i s  
l a t t e r  a c t i v i t y  provides  an ins ight  into the  organisa t ional  qua l i ty  of her schema 
r e l a t ed  to content and pedagogica l  content knowledge (Shulman,  1986). In th i s  
approach ,  the  emphas is  is on a progression from the  formal aspects to t h e  
algovithnlic components associated w i t h  the  focus concept (Fischbein, 1994). It should 
be noted t h a t  th is  process is usually cyclical.  This ana lys is  may  be contrasted w i t h  a 
procedural  perspect ive  where  a t eache r  starts  w i t h  a symbolic representa t ion for a 
function, seen as representing a procedure, and e i t h e r  operates on it, or uses it  as an 
a lgo r i t hm in the  form of va lue  in and va lue  out. It stresses t h a t  teachers  of 
ma thema t i c s  need to h a v e  a broad view of ma thema t i c s  and its learning. T h e y  
should not be l im i t ed  to seeing it  as p r i m a r i l y  a skills based,  a lgor i thmic  subject, nor 
should t h e y  be constrained to th inking  in terms of a single representat ion.  Ra ther ,  
teaching  ma thema t i c s  should be seen as involving the  student construction of concepts 
and the  network of links between them and t h e i r  sub concepts (Vol l ra th ,  1994) across 
a number of representat ions.  

Method and Results 
This research employs a case s tudy methodology,  examining the  conceptual 

structures w i t h  regard to function of i nd iv idua l  teachers  and t h e i r  influence on t h e i r  
teaching.  This paper  describes the  results in re la t ion  to one experienced t eacher  and 
four t ra inee  teachers .  

The Teachers 
A number of cr i ter ia  were set up for defining w h e t h e r  a t eache r  could be 

categorised as experienced, and Margot 1, a secondary school t eache r  in Auckland, 
New Zea land ,  fu l f i l l ed  each of these,  hav ing  31 years teaching experience,  
including 15 years using technology in ma thema t i c s  teaching.  She  has  been act ive  in 
promoting the  use of calculators and computers to o ther  teachers  in her school, and 
has  a t t ended  professional  deve lopment  courses, including graduate  study. In 
addi t ion ,  she has  run adv i so ry  courses on using graphic  calculators and was recent ly  
seconded to a one year  appoin tment  as a ma thema t i c s  adviser .  In contrast, we also 
in t e rv i ewed  four f irst  yea r  full  t ime  graduate  t eacher  trainees,  Arlene, Dav id ,  
Moana, and Vincent, who  h a d  only t augh t  ma thema t i c s  on pract icum and h a d  never  
used technology in t he i r  teaching.  

1 All names are pseudonyms. 
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Each of the  teachers  took pa r t  in a non structured, free recall  interview, whe re  
t h e y  were asked to t a lk  freely about functions and polynomia ls  and how t h e y  t e a c h  
(or would teach) them. The interviews were recorded on aud io tape  and a f t e rwards  
transcribed for analysis .  Later we were able to go into Margot 's  school and observe 
and v ideo t ape  two lessons on function. 

Margot's Schematic Structure 
Margot 's  intepeiew es tab l i shed  t h a t  she h a d  a conceptual view of function 

underpinning her teaching.  She saw function very much as a re la t ionsh ip  between 
two var iab les  and remarked tha t ,  when  teaching about functions, w h a t  "you tend to 
concentrate on is the  re la t ionsh ip  between two var iables ,  the fact t h a t  there  is one 
va r i ab le  affecting the  outcome of another  var iable . . .  So you ' re  encouraging 
re la t ionsh ips  between var iables ."  Further,  for her, this  r e la t ionsh ip  was about 
change. She commented t h a t  "You could just say t h a t  there  is a connection between 
these two var iables ,  w h i c h  one is causing the  change, and w h a t  is the  result of t he  
change?" and "So w h a t  we tend to do is do this  prac t ica l  type work  first whe re  
t h e y ' r e  getting the  idea  of this  va r i ab le  changing and this  one resulting." Her 
comments were often expressed in terms of pract ica l  examples, w h i c h  she c lear ly  saw 
as very impor tant  for her own understanding and her teaching,  and as modell ing t he  
function concept. For example she t a lked  about beakers of water ,  kangaroo jumps, 
pendulums, and costs. This l inking of concepts and real  wor ld  contexts was an intrinsic 
par t  of her schemat ic  knowledge structures. 

Margot emphasises  th roughout  the  one to one nature of a function, "one in, one 
out" c lear ly  excluding a one to many re la t ionsh ip  (many to one functions were not 
spec i f ica l ly  mentioned). Furthermore, she is very conscious of the distinction between 
the  subsidiary  concepts discrete and continuous var iab les .  

One of the things that I find that causes confusion is the distinction between discrete and 
continuous. You take them away and you do, you know a quadratic patterning, your" 
kangaroos jumping or whatever- and that's a discrete pattern. And then all of a sudden 
you produce a parabola which is continuous, and I don't think myself at the moment that 
I'm yet very good at making the distinction there for" them between the two, and I think a 
lot of them lose that. 

W h a t  o ther  subsidiary  concepts did Margot h a v e  embedded in her overa l l  
conceptual view of function? Clea r ly  from her comments v a r i a b l e  is a p r i m a r y  
subsidiary  concept, but in any modell ing episode there  are others w h i c h  emerge, as 
the  example discussed la ter  demonstrates.  

The Student Teachers' Schemas 
The student teachers  were asked in our" intepeiews to t a lk  about the defini t ion of 

function as t h e y  saw it. 

Arlene: The two things I think that I understand when I talk about functions, is that 
spring to mind immediately out of the vertical line test because that's what I 
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learnt. OK so I know that to find the function you apply the vertical line test 
and you apply that because um ... you want  the function to have only one x 
value ... 

David: To me uh ... definition of a function is a, maybe a special type of relation uh ... I 
understand that functions come under the heading of um ... relations. Um ... but 
uh... I would say that we only get for a function, urn.. we only get one value 
for the.., say an x, in a graph situation, for an x versus y we only get one . . . .  
variable. Do you want  me to draw a little graph? ... the algebra is the actual 
expression or working with the actual expression. And the function to me is 
the visualisat ion of that graph. 

Moana: I got the idea that functions was a graph. Um ... it was a little curve or a 
straight line on a graph . . . .  I think it was in fifth or sixth form that they 
defined what function was and um they had this the vertical line test where 
they said OK, given for example y equals, for example, x cubed ... if you were 
to draw that on a graph by using the vertical line test and if it cuts the 
particular graph at one point on the x axis if I've got this right, and then that is 
what you call a function. 

One  f ea tu re  was  i m m e d i a t e l y  s t r i k ing  a bou t  t he se  responses,  a n d  t h i s  w a s  to 
d o m i n a t e  a l l  t h e  s tuden t  t e a c h e r s '  i n t e r v i e w  comments.  The s tuden t  t e a c h e r s  h a d  a 
strong t e n d e n c y  to t h i n k  of funct ions g r a p h i c a l l y  a n d  in t e rms  of process. A r l e n e ,  
M o a n a  a n d  Vincen t  a l l  s p e c i f i c a l l y  m e n t i o n e d  the  process of t h e  v e r t i c a l  l ine  test on 
a g r a p h ,  a n d  D a v i d  a c t u a l l y  d r e w  a ske tch  s h o w i n g  t he  test .  Not  on ly  do t h e y  t h i n k  
of funct ions g r a p h i c a l l y  but to M o a n a  a n d  D a v i d  t h i s  r e l a t i o n s h i p  goes f u r t h e r .  
T h e y  t h i n k  of t h e m  as a c t u a l l y  being g r a p h s .  M o a n a  a l so  d r a w s  a c lear  d i s t i n c t i o n  in 
her  m i n d  b e t w e e n  funct ions a n d  a lgeb ra :  "Yes i t ' s  less t ime consuming a n d  so t h e y ' l l  
be ab l e  to concen t ra te  on w h a t  t he  g r a p h  looks l ike ,  a funct ion r e a l l y  looks l i k e ,  
r a t h e r  t h a n  c a l c u l a t i n g  . . . .  I t h i n k  t h a t  w h a t ' s  r e a l l y  i m p o r t a n t  is w h a t  t h e y  see 
w h a t  t he  a c t u a l  funct ion looks l i k e  r a t h e r  t h a n  spend  more t ime  on a l g e b r a " .  

As one w o u l d  expect, t h e  r ichness  of t he se  s tuden t  t e a c h e r s '  funct ion schemas  
v a r i e d  s o m e w h a t ,  w i t h  some d i s p l a y i n g  u n d e r s t a n d i n g  of a l a rge  number  of r e l a t e d  
sub concepts w h i l e  others  were  much more l i m i t e d .  Howeve r ,  for Ar lene  a n d  Moana ,  
u n d e r s t a n d i n g  of t he se  concepts was  often m e d i a t e d  by a g r a p h i c a l  or o t he r  v i s u a l  
r e p r e s e n t a t i o n .  Ar l ene  in  her  i n t e r v i e w  h a s  a c l e a r l y  expressed  preference  for 
p ic tures  in  m a t h e m a t i c s ,  a n d  o n l y  assoc ia te s  concepts such as s t a t i o n a r y  va l ue s ,  even  
a n d  inverse  funct ions w i t h  g r a p h s ,  l i n k i n g  t h i s  v i e w p o i n t  to her  school  experiences.  

Arlene: To find where the function wil l  be at a maximum value um ... and minimum 
values. I guess the stationm~¢ points um ... points of inflection, all interesting 
features of the graph and I'm pretty short of examples. 

©nceyou understand the sine and cos and tan curves, once that comes to you, 
it's so nice ...it's a security thing, when all else fails you can go back to those 
and that's just fantastic to know that. And when you get completely stuck 
draw a little sketch and then something wil l  come to you thenyou' l l  think, uh. 

S i m i l a r l y ,  M o a n a  prefers  to v i e w  t he  sub concepts of inc reas ing  a n d  decreas ing  
functions,  ra tes  of change,  roots, l i m i t s ,  m a x i m u m  a n d  tu rn ing  po in t s  in t e rms  of 
c h a r a c t e r i s t i c s  of g r a p h s .  

Moana: Whether it's increasing or decreasing all those other kind of terms that come in 
um ...uh ... what they say, the rate of change or you know the gradients, that 
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kind, so they'll  be able to look at that rather than the algebra itself. There is 
also the idea of limits for" example, you can select two par t icular  points on a 
graph on the function and as the two points get closer" and closer" together" they 
form a gradient  . . . .  

Oh, just drawing my x and y axis now ... and I'm just doing any par t icular  
graph.. ,  here. And thenyou see that these are the roots and also got the point 
of the maximum and I think that 's important that students know that at that 
par t icular  point that the gradient  ... the gradient  is zero and even that 's our" 
minimum, so differentiation comes in ... uh, there is also um ... so therefore 
turning points. 

Modelling--An Illustrative Example 
W e  can i l l u s t r a t e  M a r g o t ' s  a p p r o a c h  to t e a c h i n g  v i a  m o d e l l i n g ,  a n d  t h e  

s u b s i d i a r y  concepts  s u p p o r t i n g  i t ,  by  d e t a i l e d  re fe rence  to one e x a m p l e  from h e r  
i n t e r v i e w .  S h e  de sc r ibe s  a t  some l e n g t h  one w a y  to a p p r o a c h  t i l e  t e a c h i n g  o f  r a t e s  o f  
c h a n g e  w i t h  Y e a r  12 s t uden t s :  

What  we thent ry  to do again is to make thework  as practical  as possible, and last year" 
what  we did was we took the coil of rope . . . .  and we, I went  out to [store name] and 
brought all this bits of string and they mark off. So this is bits of rope being wound  onto 
a coil and they mark offwi th  pen, and theyget  a table for" the number of the coil and the 
length of the string. 

So what  they're actual ly doing, is they're modelling rope being wound  by machine 
or" onto a spool or" whatever-. Worked beautifully, it was perfect, and then we gave them 
questions that, we asked them to graphit ,  so theywere  graphing, and thenwe asked them 
to estimate the rate at which the rope was going on between two integer" values, so that 
they could work  from the table. 

We then asked them to work  out the rate at which it was going on [for'] two 
interpolated values so they actual ly had to work  from that curve, and then we asked 
them to work  out the instantaneous rate at which it was going on, so that they had to 
have the idea of a tangent. But again, this is all functions because again we ' re  looking at 
one var iable  resulting in a change and another" var iable  and the resulting graph and 
how you interpret it, and when we modelled that on the graphics calculator', it was just  
beautiful. 

The  e m p h a s i s  on m o d e l l i n g  is c l e a r  h e r e .  N o t  just  in M a r g o t ' s  use o f  t h e  w o r d  
w h i c h  i n d i c a t e s  t h a t  she  b e l i e v e s  she  is encourag ing  m o d e l l i n g ,  but  in t e r m s  o f  t h e  
w h o l e  a p p r o a c h .  H e r  a im  is to t a k e  a r e a l  w o r l d  ' p r a c t i c a l '  s i t u a t i o n  a n d  r e p r e s e n t  
i t  m a t h e m a t i c a l l y .  S h e  sees  t h e  p r a c t i c a l  s i t u a t i o n  as p r o v i d i n g  d a t a  w h i c h ,  
d i r e c t e d  by  he r  r i c h  c o n c e p t u a l  s t ruc tures ,  l e a d  to m o d e l l i n g  a c t i v i t y .  In  t e r m s  o f  our 
t h e o r e t i c a l  m o d e l ,  t h e  focus concept  of  funct ion is s u p p o r t e d  by,  a n d  r e l a t e d  to, 
s u b s i d i a r y  concepts ,  e a c h  o f  w h i c h  h a s  a number  o f  d i f f e r e n t  r e p r e s e n t a t i o n s .  T h e  
ones she s p e c i f i c a l l y  men t ions  or  a l l u d e s  to for  funct ion are :  a v e r a g e  a n d  
i n s t a n t a n e o u s  r a t e  o f  change ,  i n t e r p o l a t i o n ,  chord ,  t angen t ,  g r a d i e n t  a n d  v a r i a b l e .  
The  major  r e p r e s e n t a t i o n s  e m p l o y e d  are  symbo l i c ,  t a b u l a r ,  o r d e r e d  p a i r s  a n d  
g r a p h i c a l .  

M a r g o t  also sees  t h e  v a l u e  o f  t e c h n o l o g y  in e n a b l i n g  m a n i p u l a t i o n  of  t h e  
m a t h e m a t i c a l  concepts  bo th  w i t h i n  a n d  b e t w e e n  t h e s e  d i f f e r e n t  r e p r e s e n t a t i o n s  
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(Kaput ,  1992), but w h e t h e r  the  technology is used or not, the  t rans i t ion  between 
representa t ions ,  preserving the  conceptual  structure of  the  m a t h e m a t i c s ,  is a crucial  
one in her schemas,  and she is able  to accompl i sh  these  t ransi t ions.  In th i s  example ,  
the  v a r i a b l e s  are f irst  symbol i sed  (one representa t ion)  w i t h  the  function being a 
r e l a t i o n s h i p  be tween the  independen t  and dependen t  va r i ab l e s ,  and then the re  is a 
move between representa t ions  as the  symbols enable access to a t a b u l a r  
representa t ion .  Working  w i t h i n  th i s  t abu l a r  represen ta t ion  the  a v e r a g e  ra te  of  
change is ca lcu la ted  from the  two sets of  va lues ,  using an a l g o r i t h m  or procedure. As 
a next step, Margot  uses two values w h i c h  h a v e  not been d i rec t ly  measured  to 
s t imu la t e  the  use of  a g r a p h i c a l  representa t ion ,  w i t h  a co ordinate or ordered  p a i r  
represen ta t ion  of the  d a t a  as the  l ink between tab le  and g raph .  Once in t h e  
g r a p h i c a l  mode an a l g o r i t h m  to find the  g rad ien t  of  a chord from the  use of  
i n t e r p o l a t e d  values is emp loyed  (we note t h a t  a l t h o u g h  th i s  can be done by l i nea r  
in te rpo la t ion  from the  tab le  th i s  was  not ment ioned  here) .  F ina l ly ,  also work ing  
w i t h i n  the  g r a p h i c a l  representa t ion ,  the  concept of instantaneous ra te  of  change 
requiring the  g raph ing  of a tangent  and an a l g o r i t h m  to find its g rad ien t  is 
introduced.  This  example  does not involve  a lgebra ic  symbol i sa t ion  other  t h a n  of t h e  
va r i ab l e s ,  since the  s i tua t ion  has  been a d e q u a t e l y  represented  m a t h e m a t i c a l l y  
w i t h o u t  recourse to th is .  The f ina l  step in the  model l ing  process involves  work ing  
w i t h i n  a p a r t i c u l a r  represen ta t ion  to carry out a l g o r i t h m i c  processes, in th i s  case to 
ca lcula te  gradients  or ra tes  of  change, namely  between two points  and a t  a point .  

This  example ,  w h i c h  is lacking a symbolic,  a lgebra ic  represen ta t ion  of function, 
is s t i l l  comple t e ly  about  function for Margot,  since " th i s  is a l l  functions because aga in  
we ' r e  looking a t  one v a r i a b l e  result ing in a change and ano the r  v a r i a b l e " .  Th i s  
fundamenta l  conceptual  menta l  construct, the  l inking of an independent  and a 
d e p e n d e n t v a r i a b l e ,  runs th rough  a l l  her  ideas  on function. 

W h e n  we i so la te  some of the  key concepts w h i c h  Margot  is bui lding into t h e  
model l ing  she is doing in the  classroom w h a t  kind of r ich r e l a t i onsh ip s  do we see? 
Table  1 presents  an a t t e m p t  to represent  a macro v iew of th i s  model l ing example  and 
its r e l a t i o n s h i p  to our t h e o r e t i c a l  mode l  (note the  i tems in each  row do not 
necessar i ly  correspond to each  o ther ) .  

The qua l i ty  of  some of the  l inks in Margot ' s  schemas m a y  be observed in t h e  
comments she makes.  One s ignif icant  episode showing the  l inking between concepts 
and representa t ions  is the  w a y  t h a t  Margot  connects the  symbol ic  form of v a r i a b l e  
and function, w i t h  p a r a m e t e r s  and  the  inverse function. 

Well, where you have two variables where x and y are related to one another through a 
third variable often denoted by the letter t: So, for example, if you were to graph x = t, 
y = t ~ you would actually be graphing y = x ~. To get your inverse, all you then have to do 
is make x t e,y t, and you get that mirror image. So that works really nicely. 
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Table 1 
A Macro V i e w  o f  Margot 's  Model l ing  E x a m p l e  and its Re la t i onsh ip  w i t h  t he  
Theoret ical  Mode l  

Concepts Phys i ca l  D a t a  Representa t ions  Algor i thms  
Examples 

Function Winding string Length of Symbol ised Calcu la te  
on spool string va r i ab l e s  ave rage  rate  

of change 
(table) 

V a r i a b l e  Marking length Number of Table of  va lues  Ca lcu la te  
coils g rad ien t  of  a 

chord 
Rate of  change Counting number Table converted Calcu la te  
(average and  of coils to o rdered  pairs g rad ien t  of  a 
instant)  tangent  
Chord,  
Tangent  
Grad ien t  

G rap h  

We notice here  t h a t  the  use of the terms "graphing" and "mirror  image" refer to 
a g r a ph i ca l  representat ion,  in the  context of a manipu la t ion  w i t h i n  the  symbolic 
representa t ion whereby  she combinesx t and y t 2 to get y x 2. This demonstrates  
t h a t  her schemas are ver sa t i l e  enough to a l low her to t h ink  and work  between 
representat ions and t h a t  her schemat ic  links between va r i ab le ,  function, p a r am e t r i c  
form, and inverse function are independent  of the  representat ions.  

In contrast w i t h  Margot 's  inter  r ep resen ta t iona l  th inking,  the  t e ach e r  t ra inees  
seemed to lack the  ab i l i t y  to re la te  some concepts across represen ta t iona l  boundaries.  
For example,  when  discussing composite functions Arlene wanted  to be able to 
understand w h a t  t h e y  mean in  the  g r ap h i ca l  domain but was unable to, and said, "I 
know how you do it  but I don' t  be l ieve  I could tel l  you w h y  you do it  or w h a t  t h e  
g raph  would look l ike,  i f  you h a d  for example,  xsquared  minus nine is your f func t ion ,  
um ... and your g of x [g(x)] was a th ree  x plus two. H o w  t h e y  look on a g raph  is 
comple te ly  beyond me for a start .  I wouldn ' t  be able to tel l  you w h a t  t h e y  look l ike" .  



162 Chinnappan & Thomas 

Somet imes  a change  from one symbol i c  r e p r e s e n t a t i o n  to a n o t h e r  can p r e se n t  
cogni t ive  obstacles ,  as i l l u s t r a t e d  by A r l e n e ' s  r emarks  a bou t  t he  change  from l'(x) to 

± 
dx 

@ 
Arlene: I couldn ' tdo 72' and as soon as I hit university it changed, and I don't  know 

what made me change fl'om t'(x) because through school . . . .  t'(x) was, I mean, 
that's what I worked with. I liked that. And then all of sudden it became 
necessary to use this form although I got completely stumped in first year 
calculus with it. And it took me a long time to figure it out, but once I did it was  
great, like a revelation. 

Th i s  no t a t i on  d i f f i c u l t y  seems to i n d i c a t e  a l ack  of u n d e r s t a n d i n g  of t h e  concept  
u n d e r l y i n g  it ,  suggest ing t h a t  t he  l e a rn ing  of f (x )  m a y  h a v e  been p r i m a r i l y  
procedura l •  

T h e r e  were  o the r  genera l  comments  a bou t  t h e  desire for l i n k i n g  a l g e b r a  a n d  
g r a p h s ,  such as t h a t  of  Moana .  

Moana: ... maybe adding functions would be the same as adding the polynomials, and 
you can relate that to adding functions as part of algebra and you can present 
adding functions in terms of graphs, for example, graph y equals x squared 
[ y = x  2] a n d y e q u a l s  x squared plus one [ y = x  2+ 1]. Adding those two 
functions they see how it relates visually on graph. And then also um ... in 
algebrawise, what you come out with. So the outcome in algebra and the 
outcome with graphing it. 

H o w e v e r ,  i t  is m a n i f e s t  t h a t  she does not h a v e  a c lear  concep tua l  v i ew  of 
funct ions here ,  d i s t i n g u i s h i n g  a fa l se  d i c h o t o m y  b e t w e e n  p o l y n o m i a l s  in t h e  
a l g e b r a i c  d o m a i n  a n d  funct ions in t h e  g r a p h i c a l .  For V i nc e n t  t h e  g r a p h i c a l  
r e p r e s e n t a t i o n  in h i s  m i n d  is an  obstacle to u n d e r s t a n d i n g ,  p r e v e n t i n g  h i m  f rom 
s e p a r a t i n g  out t he  i n d e p e n d e n t  v a r i a b l e  in t h e  a l g e b r a i c  form. He spoke of h o w  " say  
we 've  got  t h e  r e l a t i o n  being a circle, yet  we  can pe r fo rm an  ope ra t ion  on t h a t  c i rcle  
say s ine of t he  x v a l u e .  And  t h a t  comes up a funct ion.  You can conver t  t h e  r e l a t i o n  into 
a funct ion a n d  I found t h a t  unusua l" .  D a v i d  on t h e  o t h e r  h a n d  w a s  ab le  to r e l a t e  some 
i dea s  across r ep re sen t a t i ons .  He spoke  of t i le  l i n k  b e t w e e n  so lv ing  a q u a d r a t i c  
e q u a t i o n  by f a c t o r i s a t i o n  a n d  by using t h e  g r a p h i c a l  in te rcep ts ,  a n d  t he  v a l u e  of t h i s  
for s tuden ts .  

David: xsquared plus three x plus two [x 2 + 3x +2  ] is our expanded form. O.K. so on 
a graph, um ... our intercepts can be found by this factorised form of that ... 
obviously I've first of all started with a factorised form and then expanded it 
so that it was easy for me to come up with it. But urn.., when we're looking for 
a cutting point on the x axis, these factorised forms ... so x equals minus two 
wil l  give u s y v a l u e  of zero so we'll have a minus two and minus one . . . .  And 
then ... so therefore I think that the graphing solution is a good example of why 
the factorising is so important so if you can show the two things at once for a 
student it is a good link in your mind. 

Th i s  is a good e x a m p l e  of h o w  t h e  t r a i n e e  t e a c h e r  D a v i d  seemed to be much  
f u r t h e r  a long  in t h e  process of construct ing h i s  p e d a g o g i c a l  content  k n o w l e d g e  t h a n  
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t h e  o t h e r  t h r e e  s t uden t s .  A l r e a d y  he  is t h i n k i n g  a b o u t  t h e  a d v a n t a g e s  for  t h e  
s t u d e n t s  o f  t h e  m a n n e r  in w h i c h  he w i l l  t e a c h ,  but  t h i s  w a s  l a c k i n g  in t h e  responses  
o f  t h e  o t h e r  t h r e e  t r a i n e e  t e a c h e r s .  

A l i m i t e d  r e p r e s e n t a t i o n a l  p e r s p e c t i v e  i n f l u e n c e d  t i l e  m o d e l l i n g  a b i l i t y  o f  t h e  
s t u d e n t  t e a c h e r s .  T h e y  found t h e  i d e a  o f  a p p l i c a t i o n s  of  funct ions  d i f f i c u l t  to 
desc r ibe ,  be ing  l i m i t e d  to t h e  ones t h e y  w e r e  t a u g h t  a t  school ,  p r i m a r i l y  in ca lculus ,  
a n d  of ten  in t h e  con tex t  o f  g r o w t h  a n d  d e c a y  funct ions  d e s c r i b e d  using d i f f e r e n t i a l  
equa t ions .  M o a n a  t a l k s  o f  p o p u l a t i o n  g r o w t h ,  a n d  t w o  of  t h e  o the r s  comment :  

Arlene: To be honest my main experience of functions has been in the classroom. I 
haven't  had any real world  experience with the functions . . . .  I'm sure that 
there are many, many applicat ions but just  to give you just a few examples of, I 
suppose let's take a weta [NZ insect] population, that 's  dependent on many 
factors and when it levels out, or when some of those factors wi l l  influence the 
populat ion numbers, either greater or less than, and possibly interested in that 
seasonal  and all that sort of stuff so you could possibly do a [unclear 
adjective] function for that. 

Vincent: To me, when I ask or think about appl icat ions of functions and polynomials,  
like where in everTfday life can we use them to model situations things like 
that. Um ... like say we've got ... like .... Like ... uh ... I think we, at [Year 13] 
level when we had the um ... differential equations, the growth curves, and 
things like that, bacteria. I think it's that area of the maths was good because it 
gave you practical  appl icat ions for the underlying maths. 

In  t e r m s  o f  our m o d e l  o f  t e a c h e r s '  m a t h e m a t i c a l  k n o w l e d g e  w e  w o u l d  h a v e  to 
s a y  t h a t  t h e s e  t e a c h e r s ,  un l i ke  Margo t ,  w i l l  h a v e  to w o r k  h a r d  to b r i d g e  t h e  g a p  
b e t w e e n  t h e i r  concept ions  a n d  t h e  i d e a  o f  m a t h e m a t i c a l  m o d e l l i n g ,  s ince  t h e i r  
k n o w l e d g e  o f  a p p l i c a t i o n s  is v e r y  l i m i t e d .  

The Modelling Approach in the Classroom 
For  Margo t ,  on t h e  o t h e r  h a n d ,  m o d e l l i n g  is t i l e  essence of  w h a t  she  is t r y i n g  to 

do in h e r  t e a c h i n g ,  a n d  t h e  t r a n s i t i o n  b e t w e e n  r e p r e s e n t a t i o n s ,  p r e s e r v i n g  t h e  
c o n c e p t u a l  s t ruc ture  of  t h e  m a t h e m a t i c s ,  is a c ruc ia l  one in h e r  s chemas .  S h e  
d e s c r i b e s  he r  v i e w  of  m o d e l l i n g ,  a n d  i t s  i m p o r t a n c e  in t h e s e  te rms:  

I think we could bring modelling ... down with the use of the graphic calculators ... once 
we're confident ourselves in the use of the equipment .... Taking a practical  situation ... 
and fitting an equation to it, fitting a graphto  it. 

W e  no te  a g a i n  t h a t  he r  comment  on m o d e l l i n g  is not  l i m i t e d  to a s ing le  
r e p r e s e n t a t i o n ,  but  she  t a l k s  o f  bo th  e q u a t i o n s  a n d  g r a p h s  as i n t e g r a l  p a r t s  o f  t h e  
process ,  p a r t  o f  he r  k n o w l e d g e  s t ruc tu re .  

M a r g o t  w a s  a s k e d  to p r e p a r e  1 or  2 lessons  on " h o w  you w o u l d  t e a c h  l i n e a r  
funct ions  l e a d i n g  to s o l u t i o n s  o f  equa t ions . "  H e r  c l e a r  e m p h a s i s  w a s  a g a i n  seen in one 
o f  t i l e  ques t ions  w h i c h  she  g a v e  h e r s e l f  to a d d r e s s  in he r  l e s son  p l a n :  "Do  t h e y  
u n d e r s t a n d  w h a t  is m e a n t  by  a m a t h e m a t i c a l  m o d e l ? "  S h e  chose  to set  t h i s  
m o d e l l i n g  o f  a l i n e a r  funct ion in t h e  con tex t  o f  a ' M e x i c a n  W a v e ' ,  so p o p u l a r  a t  
s t a d i u m  s p o r t s  events .  H e r  t w o  lessons i n v o l v e d  t h e  s tuden t s  in m o d e l l i n g  a M e x ic a n  
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wave.  Margot 's  conceptual schemas gave her a clear idea  of the key concept of 
function and the  impor tant  subsidiary  concepts, such as var iable ,  l i nea r i ty ,  
in terpola t ion and ext rapola t ion  w h i c h  she was to use in the lesson. 

The class performed six 'Mexican' waves, w i t h  3, 7, 10, 11, 14 and 21 students in 
turn par t ic ipa t ing ,  w h i l e  one student w i t h  a s topwatch  t imed how many  seconds 
t h e y  took and then recorded it on the  board. These da t a  values were then made into a 
table (see Table 2) and students were asked to use tile table of values  to: 

• es t imate  the  time for a wave w i t h  5 people  
• es t imate  the  time for a wave w i t h  30 people  
• es t imate  the  number of people for a wave taking 5.5 minutes, 

in two different  ways, writ ing the i r  working and reasoning on the  workshee t  
p rovided .  

Table 2 
The Mexican W a v e  D a t a  

Number of students (N) Time in seconds (t) 
3 2.16 
7 4.44 
10 5.13 
11 6.31 
14 8.53 
21 15.75 

The aim of these questions was to pave  the way  for a discussion of the subs id iary  
concepts of interpolat ion,  ex t rapola t ion  and inverses. Among the  interesting methods  
employed by the  students to get the answer for tile time taken for 5 students was: to 
take  h a l f  the  time for 10; to find the  time for one student from each row of the  table,  
find the  mean of these and mul t ip ly  it by 5; and the  fol lowing l inear in terpola t ion  
method  of student P: 

P: Okay, from 3 to 7 there are 4 numbers. So I divided by 4 and thenI timesed it by 
2 to get the number 5, to get 5. And then the answer is that to the number to 3 
people and that's what I got ... and that equalled 2.28. And then I divided that 
by 4 ... and that equals 0.57. And then I timesed that answer so, 0.57 timesed by 
2 which is 1.14 and thenadded that to this time here [i.e., 2.16], which got 3.3. 

This first lesson introduced the basic idea  of function in context. In the second 
lesson the process of modell ing was pa r t i cu l a r ly  h i g h l i g h t e d ,  and the  g raph ic  
calculator  provided  the ca ta lys t  for an inter representa t ional  approach .  

Each student was given a TI 83 g raph ic  calculator to use. Margot 's  view of the  
values on the  w h i t e b o a r d  at this  point  was clear: "Okay,  w h a t  we 've  got here  is 
da ta ,  and we ' re  going to enter them into our calculators".  It was her conceptual 
schemas w h i c h  structured the format in w h i c h  the  d a t a  were ana lysed  in t he  
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modell ing.  Since she h a d  a clear  vision of dea l ing  w i t h  a (one to one) function, t h e  
d a t a  were  f irst  entered into the  ca lcula tor  as tab le  values  using the  l is t  function in 
the  STAT menu w i t h  two va r i ab le s .  Next  came a change of represen ta t ion  to a g r a p h .  
Margot  exp l i c i t l y  l inked the  symbolic  represen ta t ion  of the  v a r i a b l e s  to t h e i r  
meanings in words, "On the  x a x i s  I ' ve  got people  and on the  y a x i s  I 've  got t ime."  

Once the  g r a p h  was  d r awn  Margot  was  keen to e m p h a s i s e  the  idea  of discrete  
da t a .  The g r aph i c  ca lcula tor  enabled  th i s  in a clear  and meaningfu l  way .  Margot  
says "Press TRACE. Can you see the  l i t t l e  f l a sh ing  cursor t he re?  And it  says x is  3 and 
y is g.16. There 's  your f irst  point. Press your  r i gh t  hand  arrow. Look it  skips up t h e  
points. And every t ime it  skips up t h e  points  it  gives you the  co ordinates." In t h i s  
w a y  she e f f ec t i ve ly  introduces in a v i sua l  manner  the  idea  of discrete d a t a  points, a t  
the  same t ime emphas i s i ng  both the  l ink to the  symbols  x and y and the  l ink to t h e  
co ordinate (or ordered  pai r )  representa t ion ,  w h i c h  is i m p l i e d  but not made  exp l i c i t  
on the  screen. 

Margot ' s  next aim is to introduce the  l i n e a r i t y  of  the  functional r e l a t i o n s h i p .  
She  asks "Tell  me about  t h a t  da t a "  and  receives rep l ies  such as: "It 's  going up." "Not  
joined." "It 's  not s t e ady . "  and  "It 's  a squiggly" and one student  says, "One of those  
points  is w a y  out of  line." Margot  h a d  d e l i b e r a t e l y  not introduced the  idea  of 
l i n e a r i t y  i m m e d i a t e l y ,  but h a d  w a i t e d  to see w h a t  the  students made  of t h e  
g r a p h i c a l  d a t a  pa t te rn .  Once the  idea  of a l inear  r e l a t i o n s h i p  was  out in the  open 
the  ca lcula tor  was  used to find the  equat ion of, and draw,  the  regression line, 
y 0.75x 1.gg. Figure g shows the  ca lcula tor  screens t h a t  the  students were  able to see 
and work  w i t h .  
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giving an es t imate  d i f ferent  from the  ones t h e y  got from the  table.  F ina l ly  the  class 
was encouraged to use the  model  to answer the  or iginal  questions posed in t h e  
previous lesson, assisting them to see the  va lue  of i t  for finding approx ima te  answers 
to those questions w h i c h  require in terpola t ion,  or ex t rapola t ion ,  from the  data .  Of 
course, it  is possible to critique the  de ta i l s  of th is  approach .  Margot  did not address 
the  issue of moving from discrete d a t a  to a continuous function (a l though  she was 
aware  of the  problem as s ta ted  ear l ier) ,  and ne i the r  did she encourage discussion on 
w h e t h e r  the  line should pass through (0, 0) (hers did not). However ,  such de ta i l s ,  
w h i l e  important ,  are not our focus in th i s  discussion w h i c h  is concerned p r i m a r i l y  
w i t h  her modell ing perspect ive  using the  idea  of function. 

Discussion 
In th is  paper  we h a v e  introduced a f ramework for s tudying teachers '  conceptual 

knowledge  in a given domain  in re la t ion  to m a t h e m a t i c a l  modelling. This  
f ramework considers the  role of a teacher ' s  schemat ic  knowledge  and the  importance 
of hav ing  h i g h  qual i ty ,  strong connections between the  concept under focus, subs id iary  
concepts and t he i r  various representat ions.  It is our contention t h a t  it  is the  richness 
and robustness of the  structure of teachers '  schemas w h i c h  are a p r i m a r y  influence on 
w h e t h e r  t h e i r  teaching of the  focus concept is procedural  or conceptual. We cannot be 
sure t h a t  Margot  is t yp i ca l  of experienced teachers ,  and in many  ways  she p robab ly  
is not, but the  d a t a  presented here,  w i t h  its l imi ta t ions ,  raises the  question of 
w h e t h e r  experienced teachers  may  h a v e  more links to subsidiary  concepts, and place  
grea ter  emphas is  on these.  Our h y p o t h e s i s  is t h a t  t h e y  do, and t h a t  such links may  
enable them to move between representat ions  more easi ly ,  keeping the  focus concept 
intact,  w h i l e  gaining the  advan tages  t h a t  each has  to offer. In contrast, an emphas i s  
on procedural  aspects of the  focus concept would make it  more d i f f icul t  to move across 
representat ions  and hence tend to anchor the  focus concept in a single representa t ion,  
for example,  the  g r aph i ca l  or symbolic. 

When  it  comes to constructing modell ing ab i l i t y  a view of function sole ly  as a 
g raph  or as an algebraic  formula is a hindrance.  It is r e l a t i v e l y  easy to t h ink  up 
examples w h i c h  give rise to pairs  of values of va r i ab le s  w h i c h  can la te r  be 
approx ima ted  by a specific, exact a lgebraic  function. However ,  it  is much h a r d e r  to 
s ta r t  w i t h  a specific function and then try to produce an example  w h i c h  f i ts  it. In 
add i t ion  a procedural  perspect ive  of function based on working w i t h  formulas is 
l i k e l y  to cause problems in seeing a set of values of two va r i ab les  as a function, 
fu r the r  l imit ing the  po ten t i a l  for modell ing.  

A key aspect of the  student teachers '  responses was t h e i r  f ixa t ion w i t h  v i sua l  
representa t ion of functions w i t h  l i t t l e  concern about the  links to t h e i r  symbolic 
equivalents ,  and the  po ten t i a l  effect  for student learning. This finding is consistent 
w i t h  recent studies on functions w h i c h  h a v e  sh own t h a t  students tended to experience 
d i f f i cu l ty  in in terpre t ing g raph ica l  and symbolic representa t ion of functions 
(Leinhardt ,  Zas lavsky ,  & Stein, 1990; Mi tchelmore  & Cavanagh ,  2000). We argue 
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t h a t  the  continued emphas is  on visual is ing functions w i th o u t  drawing out t h e  
under lying a lgebra  wi l l  do l i t t l e  to change the  above deficiency in students '  
understanding of functions. 

In spi te  of the  dominance of t h e i r  school ma thema t i c s  experience in t h e i r  
thinking,  the  student teachers  we h a v e  in t e rv i ewed  do seem to be engaged in t h e  
in i t i a l  stages of the  process of accommodation of t h e i r  function schema as t h e y  
prepare  to t each  ma thema t i c s  in school. As t h e y  examine t h e i r  content knowledge  
and begin to construct pedagogica l  content knowledge  of function, t h e y  are coming to 
recognise, as t h e y  did in the  in terv iew,  t h a t  t h e y  h a v e  gaps in t h e i r  function 
schema. However  t h e y  are confident t h a t  t h e y  can f i l l  these  gaps once t h e y  are  
teaching.  One way  t h a t  t h e y  h a v e  a l r e a d y  begun th is  process of deve lopment  is by 
learning from colleagues in the  schools where  t h e y  are on teaching  practicum. It is 
clear t h a t  th is  is a two fold process including both learning ways to t each  function 
(pedagogical  content knowledge) and increasing t h e i r  subject mat ter  knowledge by 
increasing t h e  network of information embedded in t h e i r  function schema. Student  
t eacher  D a v i d  referred to two specific areas where  he has  benefi ted from his  
observation of an experienced teacher :  the  l inking of g r aph ica l  and a lgebra ic  
representat ions of functions; and the  u t i l i sa t ion  of computers in order  to construct 
these  links in a dynamic manner.  

The difference between procedural  and conceptual  approaches  to function may  be 
i l lus t ra t ed  by considering the  teaching of a g r aph ica l  solution to the  problem: "Find 
g r a p h i c a l l y  where  y x e 3 is zero". A teacher ,  such as Margot, who  has  a r i ch  
schema for function w i t h  many  subsidiary  concepts, is l i k e l y  to keep a l ive  t h e  
concept of a one to one (or many  to one) r e l a t ionsh ip  between va r i ab les  as t h e  
representat ions are t raversed .  The table  of values,  the  set of co ordinates and t h e  
g raph  are each s imply  viewed as ano the r  representa t ion of the  symbo l i ca l ly  
presented functional r e l a t i onsh ip  w h i c h  assigns a va lue  x e 3 to a va lue  x, in a 
one to one manner. The question (which  could be answered in any representa t ion)  
then becomes ' W h i c h  va lue  of x produces the  va lue  0?' In contrast, teachers  who  
h a v e  less r ich schemas may  concentrate on a procedural  app roach  w h i c h  lacks t h i s  
under lying l inkage.  A sequence of conceptually unconnected procedures, in or between 
representat ions,  is the  result. Thus, students may  calculate  values of y given cer ta in  
values of x. T h e y  may  t ransfer  these  to a g raph  by a matching procedure w h i c h  
aligns the  first  number to the  x a x i s  and the  second to tile y axis, giving a sequence of 
points, and then join these  up. The f inal  procedure, in tile g r aph ica l  mode, sees t h e m  
read the  va lue  where  the  curve crosses the  x axis. W h i l e  the  solutions may be t h e  
same, the  conceptual knowledge  built is quite d i f ferent .  

One interest ing feature  of Margot 's  action was t h a t  she was able to sh i f t  between 
representat ions w i thou t  drawing out po ten t i a l  conceptual links between t h e  
representat ions and the  concept in question. There  seem to be a number of occasions in 
ma thema t i c s  teaching when  teachers  may  not exp l i c i t ly  make the  l ink between 
d i f ferent  representat ions  of a conceptual  idea  (and indeed some where  it  may  not be 
desi rable  to do so). For example,  when  solving ax + b cx + d in the  a lgebra ic  
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representat ion,  how often do teachers  emphas ise  the  link to w h a t  corresponds in t h e  
g r a ph i ca l  representa t ion to adding kx  to both sides? S imi la r ly ,  we may teach  a 
mat r ix  method  to solve Ax Xx to find eigenvalues,  but how often is a g r a p h i c a l  
meaning for the  solutions (when the  vector space is, say R e or R 3) l inked to t h e  
a lgebra?  Our contention is t h a t  only those teachers  whose conceptual structures are  
r ich and contain the  expl ic i t  links wi l l  be able to make these  connections for students. 

The present  s tudy has  h i g h l i g h t e d  the  importance of analys ing p o t en t i a l  
r e l a t ionsh ips  t h a t  migh t  exist between teachers '  knowledge  and t h a t  constructed by 
t h e i r  students. The results of the  s tudy support  the  findings of Lloyd and Wilson 
(1998), indicat ing t h a t  experienced teachers  tend to ac t i va t e  and use h i g h l y  
organised knowledge  schemas w h i c h  could h e lp  students develop knowledge 
structures w i t h  s imi la r  qual i ty .  Ch innappan  (1998) showed t h a t  even when  students 
h a d  built up a reasonable number of schemas in the  domain  of geometry,  t h e y  were 
not able to construct r ich representat ions of the  given problem. This weakness  in t h e i r  
solution process could be a t t r ibu ted  to students app ly ing  schemas t h a t  h a d  more 
procedural  t han  conceptual  information.  We suggest t h a t  teachers  need to build up 
and draw more on conceptual ly  domina ted  schemas of the  type r evea l ed  by our 
experienced t eacher  in order  to promote a more f lexible approach  to m a t h e m a t i c a l  
learning and problem solving by students. 

One o ther  lesson arising from our ana lys is  is t h a t  when  teachers  begin t h e i r  f i rs t  
teaching  post t h e y  c lear ly  h a v e  a continuing need to be supported by t h e i r  
colleagues. Experienced teachers  should take  the  time to col laborate  w i t h  new 
teachers  on how t h e y  migh t  present  concepts such as function to t h e i r  classes. Th ree  
areas in pa r t i cu la r  where  th is  s tudy suggests t h a t  th is  would be p a r t i c u l a r l y  
advantageous  w i t h  regard to function are: (a) inter  r ep resen ta t iona l  approaches  to 
the  concept of function, (b) use of computers and g raph ic  calculators to promote  
represen ta t iona l  links for functional concepts, and (c) rea l i s t ic  contexts giving rise to 
examples for modell ing of functions. 
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