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An important element in teaching is the quality of content and pedagogical knowledge
that teachers use in the designand delivery of their lessons. In this paper we present a
framework for investigating how this knowledge isstructured and how it relates to the
mathematical modelling process. The framework is then used to compare an
experienced teacher’s knowledge and teaching of functions with that of four trainee
teachers. The data show that the experienced teacher has built up knowledge that is
dominated by conceptual rather than procedural aspects of functions, whereas the
prospective teachers have structures often lacking a strong conceptual base.

Much of the recent research on the learning of mathematics has focussed on
students’ ability to use previously-acquired knowledge in making progress with the
solution of novel problems. An important development in this area has been
appreciating that the quality of the knowledge that students acquire may have a
significant influence on how well that knowledge is used in the search for solutions to
problems. Ina classroom setting, teachers play an active role not only in facilitating
the acquisition of new knowledge by their students, but also in providing
pedagogically valuable experiences that may assist in extending that knowledge
into new territories.

A key element in the goals that teachers set for their lessons and the structuring
of these lessons is their own understanding of both the subject matter and their
students. Thus, the nature of a teacher’s knowledge base underlying a particular
mathematical topic and the teaching of that topic can be expected to exert a major
influence on the quality of the understanding that students develop. While this
point about the role of the teacher knowledge base has received considerable support
in research findings (Ball & McDiarmid, 1990) and curriculum reform documents
(National Council of Teachers of Mathematics, 2000) there is little information
about the quality of teachers’ subject-matter knowledge and how that knowledge
could drive what students learn. In one study where the relationship of an
experienced teacher’s conceptions of function to his practice was examined, Lloyd and
Wilson (1998) found that the “teacher’s comprehensive and well-organised
conceptions contribute to instruction characterised by emphases on conceptual
connections, powerful representations, and meaningful discussion” (p. 270). In the
present study, we continue the process of addressing this rather neglected issue by
examining teacher knowledge of functions and how that knowledge is used in the
modelling process.
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Schemas as Structured Mathematical Knowledge

Network theorists have advanced several frameworks in which to investigate
concepts and their development. According to one view, conceptual growth and
mathematical understanding can be interpreted in terms of conceptual nodes and
relations between nodes (Anderson, 2000). As students’ experiences with a concept or a
set of concepts increase, they build more nodes and links resulting in ‘chunks’ that
allow them to develop layers of mathematical understanding. Various attempts
have been made to elucidate such cognitive structures. Among these, the notion of
schemas has gained considerable support amongst researchers.

In the context of learning, schemas have been given a number of interpretations in
the psychological literature. Skemp (1979) describes how we construct ‘what we
already know’ by engaging in mental construction of reality by building and testing a
schematic knowledge structure, where a schema is “a conceptual structure existing in
its own right, independently of action” (p. 219). In the context of problem solving,
Paas (1992, p. 429) describes how a schema “can be conceptualised as a cognitive
structure that enables problem solvers to recognize problems as belonging to a
particular category of problems that require particular operations to reach a
solution”. Sweller (1992, p. 47) agrees, defining a schema as “a cognitive construct
that permits problem solvers to categorise problems according to the moves required
to solve them.” Because our existing schemas serve either to promote or restrict the
association of new concepts, the quality of what an individual already knows is a
key determinant of our ability to understand, or as Skemp (1979, p. 113} concludes,
“our conceptual structures are a major factor of our progress”.

What then do schemas comprise? Olive and Steffe (2002, p. 100} explain that
“Schemas can be regarded as networks of connected concepts.” Other descriptions
include a ‘connected collection of hierarchical relations’ (Davis & Tall, 2002).
Dubinsky and others (Dubinsky, 1991; Cottrill et al., 1996) use the acronym APOS to
describe four components of Action, Process, Object, Schema in the building of
mathematical knowledge. The chain of events, they suggest, develops as follows.
Actions, when applied to objects become processes, which in turn become encapsulated
as mental objects, and examples of these three link together to form cognitive
structures or schemas. Thus, conceptual entities in mathematics often present
themselves with two distinct but complementary faces: they may be viewed as
dynamic processes or as static objects. To make a mathematical idea readily
manipulable and applicable in other contexts, it must be available internally in a
concise form, and the encapsulation of the process as an object is one way of
accomplishing this. The relations that are constructed between the conceptual
entities forming a schema could include similarities and dissimilarities between
concepts, instances of a concept, procedures for using concepts for solving problems or
affective factors related to those concepts.

According to Anderson (2000), two variables determine the quality of a schema:
the spread of the network and the strength of the links between the various
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components of information located within the network. Olive and Steffe (2002) list
three factors: the type of concepts making up the schema; the quantity of the
connections between the concepts; and the quality of the connections. This last factor
is based on the ideas of Skemp (1979) who describes the quality of the link as
associative (an A-link) or conceptual (a C-link). In the former concepts are linked
purely by association rather than by the conceptual relationship of the latter. A
complex schema can be characterised as having a large network of ideas that are
built around one or more core concepts. Further, the links between the various
components in the network are robust, a feature which contributes both to access to
concepts and to use of the schema in problem-solving and other situations. A well
structured schema can also benefit students by helping them assimilate new incoming
mathematical ideas because such a schema can be expected to have many conceptual
points to link with. In this way, schemas provide a useful way to interpret the
growth of mathematical knowledge and meanings.

Teacher Knowledge and Schema Induction

When we examine mental schemas of teachers in any given content area, we
become aware of what they see as the important links which they want students to
build into their knowledge structures and towards which they try to structure the
learning environment. However, discussions about teachers’ content knowledge must
also consider how that knowledge of functions could be translated into forms that are
easily understood by students. This discrimination was made by Shulman (1986a,
1986b, 1987) in his analysis of mathematics teachers’ content and pedagogical content
knowledge. Content knowledge refers to mathematics concepts, conventions and
procedures, while pedagogical content knowledge includes both understanding of
students’ difficulties about a mathematics topic, and also strategies that are
adopted in teaching a particular topic of mathematics. Leinhardt (1989) has
suggested the existence of similar links between teachers’ subject-matter knowledge,
their explanations, and the type of representations generated by them during
teaching. It has been proposed that knowledge of functions and uses of functions can be
seen as the content knowledge, but the importance of emphasising the uses of
functions during teaching comprises the pedagogical content knowledge. In this
paper, we are mainly concerned with describing teachers’ content knowledge
although it is possible to argue that some aspect of this knowledge can be construed
as belonging to pedagogical content knowledge.

A schema-based analysis, therefore, suggests that teacher actions could promote
the construction of powerful function schemas that would benefit student learning in
two important ways. Firstly, students would better access prior knowledge and
integrate that with incoming information. Secondly, students could be expected to
deploy acquired knowledge flexibly during the process of problem analysis. Hence
the question is, what is the nature of a teacher’s knowledge that would promote the
construction of sub-schemas whose content and links are pedagogically valuable?
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The aim of this research study was to examine the above issue by characterising
the schemas of teachers in the content area of function, in order to compare and
contrast schemas of an experienced teacher with those of teachers who are new to the
teaching of algebra and functions. While teachers’ knowledge is influential in what
students learn, the purpose of the current research was to analyse the nature and
quality of teachers’ knowledge that drives their instruction. We do this by, firstly,
developing a macro-schema that draws out key relations and nodes. This
hypothesised framework, we argue, provides more details about the translation and
interaction between teachers’ content and pedagogical content knowledge.

One major difference we have hypothesised has to do with encapsulation of
processes as objects. Many individuals appear not to progress to the point where they
can think in a proceptual (Gray & Tall, 1994) or versatile way (Hong & Thomas,
1998; Tall & Thomas, 1991; Thomas, 2002) about mathematical symbols, seeing them
either as a process invoked by the symbol or as the concept represented by it. Instead,
they are process—oriented (Thomas, 1994) in their thinking, constrained primarily to
mathematical processes within a given representation system. For a teacher the
absence of a conceptual, representation-free view may structure their thinking,
causing them to over-stress procedural methods. In contrast the versatile teacher,
with a global view of a concept crossing a number of representations, is able to see its
components, or constituent processes, and relate these to the whole (Thomas & Hong,
2001).

Considering this in the context of function, how would the schemas and teaching
approach of a teacher with a rich conceptual and inter-representational view of
function diverge from those who have a primarily procedural, single representation-
based perspective? The multidimensional nature of functions can present a particular
challenge to prospective and new teachers when designing appropriate learning
situations. Translating between various function representations is something which
an experienced teacher might take for granted, but to do so one needs to have an
overview of the way the definition of function relates to each representation, and
how sub-concepts, such as independent and dependent variables, one-to-one, roots,
discrete, continuous, and so on, are manifest in each representation (Hong, Thomas, &
Kwon, 2000).

To illustrate this difference, consider the construction of a composite function
f og from the functions fand gwhere

f(x) =x* and g(x} =x+1, so that f(g(x)) = (x+1)".

Here, one could easily teach students to carry out such a procedure without actually
having the underlying concept of what a composite function is. However, our view is
that it would be difficult for such a procedurally—oriented teacher to engage students
from a conceptual perspective or to help them participate in mathematical
modelling. What does this kind of teaching involve? We present in Figure 1 the
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Examples - Data
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Figure 1. A structural framework for teachers’ mathematical knowledge and
modelling of a focus concept.

organisational structure of teacher knowledge that we believe is relevant to teaching
focussing on mathematical concepts and their development.

This approach attempts to capture the content and relations of a teacher’s
knowledge and the activation of this knowledge during the modelling process. The
network of relations among the focus concept, subsidiary concepts, algorithms (or
procedures), representations and examples illustrate structure, while the integration
of data into examples in order to instantiate the focus concept constitutes the
modelling (process). A focus concept will have associated subconcepts, along with
algorithms for carrying out certain actions with them, or on them, and these
algorithms will usually be based in a single representation. However the concept is
not limited to one representation but will have a number of manifestations, each
with its own associated algorithms. For example, a teacher might wish to provide a
demonstration of functions in real-life situations. She could achieve this by asking
the students to collect numerical values for two variables, say, the time t seconds
taken for a trolley to roll a certain distance S down a given inclined slope. These
variables form subsidiary concepts of independent and dependent variables, the
values collected form the data, and the context of time/distance forms the example.
Students could be required to tabulate the values for the two variables and generate a
graph that shows a quadratic relationship between the variables in question. Thus
the table and the graph constitute representations of the functional relationship.
Estimation of the velocity of the trolley at a particular time, or the average velocity
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over a period require specific algorithms which could be executed in either the
graphical or tabular representation.

In this episode the teacher is engaging in modelling, where real-world data are
used via an example to build an understanding of the focus concept (quadratic
function). In doing so, however, she is drawing on her knowledge of links among
several concepts including the representations and algorithms. We argue that this
latter activity provides an insight into the organisational quality of her schema
related to content and pedagogical content knowledge (Shulman, 1986). In this
approach, the emphasis is on a progression from the formal aspects to the
algorithmic components associated with the focus concept (Fischbein, 1994). It should
be noted that this process is usually cyclical. This analysis may be contrasted with a
procedural perspective where a teacher starts with a symbolic representation for a
function, seen as representing a procedure, and either operates on it, or uses it as an
algorithm in the form of value in and value out. It stresses that teachers of
mathematics need to have a broad view of mathematics and its learning. They
should not be limited to seeing it as primarily a skills-based, algorithmic subject, nor
should they be constrained to thinking in terms of a single representation. Rather,
teaching mathematics should be seen as involving the student construction of concepts
and the network of links between them and their sub-concepts (Vollrath, 1994) across
a number of representations.

Method and Results

This research employs a case study methodology, examining the conceptual
structures with regard to function of individual teachers and their influence on their
teaching. This paper describes the results in relation to one experienced teacher and
four trainee teachers.

The Teachers

A number of criteria were set up for defining whether a teacher could be
categorised as experienced, and Margot!, a secondary school teacher in Auckland,
New Zealand, fulfilled each of these, having 31 years teaching experience,
including 15 years using technology in mathematics teaching. She has been active in
promoting the use of calculators and computers to other teachers in her school, and
has attended professional development courses, including graduate study. In
addition, she has run advisory courses on using graphic calculators and was recently
seconded to a one-year appointment as a mathematics adviser. In contrast, we also
interviewed four first year full-time graduate teacher trainees, Arlene, David,
Moana, and Vincent, who had only taught mathematics on practicum and had never
used technology in their teaching.

' All names are pseudonyms.
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Each of the teachers took part in a non-structured, {ree recall interview, where
they were asked to talk freely about functions and polynomials and how they teach
{(or would teach) them. The interviews were recorded on audiotape and afterwards
transcribed for analysis. Later we were able to go into Margot’s school and observe
and videotape two lessons on function.

Margot’s Schematic Structure

Margot’s interview established that she had a conceptual view of function
underpinning her teaching. She saw function very much as a relationship between
two variables and remarked that, when teaching about functions, what “you tend to
concentrate on is the relationship between two variables, the fact that there is one
variable affecting the outcome of another wvariable... So you're encouraging
relationships between variables.” Further, for her, this relationship was about
change. She commented that “You could just say that there is a connection between
these two variables, which one is causing the change, and what is the result of the
change?” and “So what we tend to do is do this practical type work first where
they’re getting the idea of this variable changing and this one resulting.” Her
comments were often expressed in terms of practical examples, which she clearly saw
as very important for her own understanding and her teaching, and as modelling the
function concept. For example she talked about beakers of water, kangaroo jumps,
pendulums, and costs. This linking of concepts and real world contexts was an intrinsic
part of her schematic knowledge structures.

Margot emphasises throughout the one-to-one nature of a function, “one in, one
out” clearly excluding a one-to-many relationship (many-to-one functions were not
specifically mentioned). Furthermore, she is very conscious of the distinction between
the subsidiary concepts discrete and continuous variables.

One of the things that I find that causes confusion is the distinction between discrete and

continuous. You take them away and you do, you know a quadratic patterning, your

kangaroos jumping or whatever and that’s a discrete pattern. And then all of a sudden

you produce a parabola which is continuous, and I don’t think myself at the moment that

I'm yet very good at making the distinction there for them between the two, and I think a
lot of them lose that.

What other subsidiary concepts did Margot have embedded in her overall
conceptual view of function? Clearly from her comments variable is a primary
subsidiary concept, but in any modelling episode there are others which emerge, as
the example discussed later demonstrates.

The Student Teachers® Schemas

The student teachers were asked in our interviews to talk about the definition of
function as they saw it.

Arlene: The two things [ think that [ understand when [ talk about functions, is that
spring to mind immediately out of the vertical line test because that's what I
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learnt. OK so [ know that to find the function you apply the vertical line test
and you apply that because um ... you want the function to have only one x
value ...

David:  To me uh...definition of a function is a, maybe a special type of relation uh ...
understand that functions come under the heading of um ... relations. Um ... but
uh...I would say that we only get for a function, um.. we only get one value
for the ...say an x, in a graph situation, for an x versus y we only get one. ...
variable. Do you want me to draw a little graph? ... the algebra is the actual
expression or working with the actual expression. And the function to me is
the visualisation of that graph.

Moana: I got the idea that functions was a graph. Um ... it was a little curve or a
straight line on a graph ... .I think it was in fifth or sixth form that they
defined what function was and um they had this the vertical line test where
they said OK, given for example y equals, for example, x cubed ... if you were
to draw that on a graph by using the vertical line test and if it cuts the
particular graph at one point on the x axis if ['ve got this right, and then that is
what you call a function.

One feature was immediately striking about these responses, and this was to
dominate all the student teachers’ interview comments. The student teachers had a
strong tendency to think of functions graphically and in terms of process. Arlene,
Moana and Vincent all specifically mentioned the process of the vertical line test on
a graph, and David actually drew a sketch showing the test. Not only do they think
of functions graphically but to Moana and David this relationship goes further.
They think of them as actually being graphs. Moana also draws a clear distinction in
her mind between functions and algebra: “Yes it’s less time consuming and so they'll
be able to concentrate on what the graph looks like, a function really looks like,
rather than calculating. ... I think that what’s really important is what they see
what the actual function looks like rather than spend more time on algebra”.

As one would expect, the richness of these student teachers’ function schemas
varied somewhat, with some displaying understanding of a large number of related
sub-concepts while others were much more limited. However, for Arlene and Moana,
understanding of these concepts was often mediated by a graphical or other visual
representation. Arlene in her interview has a clearly expressed preference for
pictures in mathematics, and only associates concepts such as stationary values, even
and inverse functions with graphs, linking this viewpoint to her school experiences.

Arlene: To find where the function will be at a maximum value um ... and minimum

values. [ guess the stationary points um ... points of inflection, all interesting
features of the graph and I'm pretty short of examples.

Once you understand the sine and cos and tan curves, once that comes to you,
it’s so nice ...it's a security thing, when all else fails you can go back to those
and that’s just fantastic to know that. And when you get completely stuck
draw a little sketch and thensomething will come to you thenyou'll think, uh.

Similarly, Moana prefers to view the sub-concepts of increasing and decreasing
functions, rates of change, roots, limits, maximum and turning points in terms of
characteristics of graphs.

Moana: Whetherit's increasing or decreasing all those other kind of terms that come in
um ...uh ... what they say, the rate of change or you know the gradients, that
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kind, so they'll be able to look at that rather than the algebra itself. There is
also theidea of limits for example, you can select two particular points on a
graphon the function and as the two points get closer and closer together they
form a gradient... .

Oh, just drawing my x and y axis now ... and I'm just doing any particular
graph...here. And thenyou see that these are the roots and also got the point
of the maximum and I think that's important that students know that at that
particular point that the gradient ... the gradient is zero and even that's our
minimum, so differentiation comes in ... uh, there is also um ... so therefore
turning points.

Modelling—An Illustrative Example

We can illustrate Margot’s approach to teaching via modelling, and the
subsidiary concepts supporting it, by detailed reference to one example from her
interview. She describes at some length one way to approach the teaching of rates of
change with Year 12 students:

What we thentry to do again is to make the work as practical as possible, and last year

what we did was we took the coil of rope, ... and we, [ went out to [store name] and

brought all this bits of string and they mark off. So this is bits of rope being wound onto

a coil and they mark off with pen, and they get a table for the number of the coil and the
length of the string.

So what they’re actually doing, is they’re modelling rope being wound by machine
or onto a spool or whatever. Worked beautifully, it was perfect, and then we gave them
questions that, we asked them to graphit, so they were graphing, and thenwe asked them
to estimate the rate at which the rope was going on between two integer values, so that
they could work from the table.

We then asked them to work out the rate at which it was going on [for] two
interpolated values so they actually had to work from that curve, and then we asked
them to work out the instantaneous rate at which it was going on, so that they had to
have the idea of a tangent. But again, this is all functions because again we’re looking at
one variable resulting in a change and another variable and the resulting graph and
how you interpret it, and when we modelled that on the graphics calculator, it was just
beautiful.

The emphasis on modelling is clear here. Not just in Margot’s use of the word
which indicates that she believes she is encouraging modelling, but in terms of the
whole approach. Her aim is to take a real world ‘practical’ situation and represent
it mathematically. She sees the practical situation as providing data which,
directed by her rich conceptual structures, lead to modelling activity. In terms of our
theoretical model, the focus concept of function is supported by, and related to,
subsidiary concepts, each of which has a number of different representations. The
ones she specifically mentions or alludes to for function are: average and
instantaneous rate of change, interpolation, chord, tangent, gradient and variable.
The major representations employed are symbolic, tabular, ordered pairs and
graphical.

Margot also sees the value of technology in enabling manipulation of the
mathematical concepts both within and between these different representations
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(Kaput, 1992), but whether the technology is used or not, the transition between
representations, preserving the conceptual structure of the mathematics, is a crucial
one in her schemas, and she is able to accomplish these transitions. In this example,
the variables are first symbolised (one representation) with the function being a
relationship between the independent and dependent variables, and then there is a
move between representations as the symbols enable access to a tabular
representation. Working within this tabular representation the average rate of
change is calculated from the two sets of values, using an algorithm or procedure. As
a next step, Margot uses two values which have not been directly measured to
stimulate the use of a graphical representation, with a co-ordinate or ordered pair
representation of the data as the link between table and graph. Once in the
graphical mode an algorithm to find the gradient of a chord from the use of
interpolated values is employed (we note that although this can be done by linear
interpolation from the table this was not mentioned here). Finally, also working
within the graphical representation, the concept of instantaneous rate of change
requiring the graphing of a tangent and an algorithm to find its gradient is
introduced. This example does not involve algebraic symbolisation other than of the
variables, since the situation has been adequately represented mathematically
without recourse to this. The final step in the modelling process involves working
within a particular representation to carry out algorithmic processes, in this case to
calculate gradients or rates of change, namely between two points and at a point.

This example, which is lacking a symbolic, algebraic representation of function,
is still completely about function for Margot, since “this is all functions because again
we're looking at one variable resulting in a change and another variable”. This
fundamental conceptual mental construct, the linking of an independent and a
dependentvariable, runs through all her ideas on function.

When we isolate some of the key concepts which Margot is building into the
modelling she is doing in the classroom what kind of rich relationships do we see?
Table 1 presents an attempt to represent a macro view of this modelling example and
its relationship to our theoretical model (note the items in each row do not
necessarily correspond to each other).

The quality of some of the links in Margot’s schemas may be observed in the
comments she makes. One significant episode showing the linking between concepts
and representations is the way that Margot connects the symbolic form of variable
and function, with parameters and the inverse function.

Well, where you have two variables where x and y are related to one another through a

third variable often denoted by the letter t. So, for example, if you were to graph x = ¢,

v = 'you would actually be graphing y = x*. To get your inverse, all you then have to do
is make x =, y =t, and you get that mirror image. So that works really nicely.
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Table 1
A Macro View of Margot's Modelling Example and its Relationship with the
Theoretical Model

Concepts Physical Data Representations  Algorithms
Examples
Function Winding string  Length of Symbolised Calculate
on spool string variables average rate
of change
(table)
Variable Marking length  Number of  Table of values  Calculate
coils gradient of a
chord
Rate of change Counting number Table converted  Calculate
(average and  of coils to ordered pairs  gradient of a
instant) tangent
Chord, Graph
Tangent
Gradient

We notice here that the use of the terms “graphing” and “mirror image” refer to
a graphical representation, in the context of a manipulation within the symbolic
representation whereby she combines x= t and y = t* to get y = X*. This demonstrates
that her schemas are versatile enough to allow her to think and work between
representations and that her schematic links between variable, function, parametric
form, and inverse function are independent of the representations.

In contrast with Margot’s inter-representational thinking, the teacher trainees
seemed to lack the ability to relate some concepts across representational boundaries.
For example, when discussing composite functions Arlene wanted to be able to
understand what they meanin the graphical domain but was unable to, and said, “I
know how you do it but I don't believe I could tell you why you do it or what the
graph would look like, if you had for example, x squared minus nine is your ffunction,
um ... and your gof x [g(x)] was a three x plus two. How they lock on a graph is
completely beyond me for a start. I wouldn't be able to tell you what they look like”.
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Sometimes a change from one symbolic representation to another can present
cognitive obstacles, as illustrated by Arlene’s remarks about the change from f(x) to
&

dx’
Arlene: Icouldn'tdo % and as soon as [ hit university it changed, and I don't know

what made me change from f(x) because through school, ... f'(x) was, [ mean,

that's what I worked with. I liked that. And then all of sudden it became
necessary to use this form although I got completely stumped in first year
calculus with it. And it took me a long time to figure it out, but once [ did it was
great, like a revelation.

This notation difficulty seems to indicate a lack of understanding of the concept
underlying it, suggesting that the learning of f{x) may have been primarily

procedural.
There were other general comments about the desire for linking algebra and
graphs, such as that of Moana.

Moana: ...maybe adding functions would be the same as adding the polynomials, and
you can relate that to adding functions as part of algebra and you can present
adding functions in terms of graphs, for example, graph y equals x squared

[yv= x'] and y equals x squared plus one [y = x + 1] Adding those two
functions they see how it relates visually on graph. And then also um ... in
algebrawise, what you come out with. So the outcome in algebra and the
outcome with graphing it.

However, it is manifest that she does not have a clear conceptual view of
functions here, distinguishing a false dichotomy between polynomials in the
algebraic domain and functions in the graphical. For Vincent the graphical
representation in his mind is an obstacle to understanding, preventing him from
separating out the independent variable in the algebraic form. He spoke of how “say
we've got the relation being a circle, yet we can perform an operation on that circle
say sine of the xvalue. And that comes up a function. You can convert the relation into
a function and I found that unusual”. David on the other hand was able to relate some
ideas across representations. He spoke of the link between solving a quadratic
equation by factorisation and by using the graphical intercepts, and the value of this
for students.

David: xsquared plusthree x plus two [x"+3x +2]is our expanded form. O.K. so on
a graph, um ... our intercepts can be found by this factorised form of that ...
obviously ['ve first of all started with a factorised form and then expanded it
so that it was easy for me to come up with it. But um ... when we're looking for
a cutting point on the x axis, these factorised forms ... so x equals minus two
will give us y value of zero so we'll have a minus two and minus one ... . And
then...so therefore [ think that the graphing solution is a good example of why
the factorising is so important so if you can show the two things at once for a
student it is a good link in your mind.

This is a good example of how the trainee teacher David seemed to be much
further along in the process of constructing his pedagogical content knowledge than
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the other three students. Already he is thinking about the advantages for the
students of the manner in which he will teach, but this was lacking in the responses
of the other three trainee teachers.

A limited representational perspective influenced the modelling ability of the
student teachers. They found the idea of applications of functions difficult to
describe, being limited to the ones they were taught at school, primarily in calculus,
and often in the context of growth and decay functions described using differential
equations. Moana talks of population growth, and two of the others comment:

Arlene: To be honest my main experience of functions has been in the classroom. |
haven't had any real world experience with the functions ... . I'm sure that
there are many, many applications but just to give you just a few examples of, |
suppose let's take a weta [NZ insect] population, that's dependent on many
factors and when it levels out, or when some of those factors will influence the
population numbers, either greater or less than, and possibly interested in that

seasonal and all that sort of stuff so you could possibly do a [unclear
adjective] function for that.

Vincent: To me, when [ ask or think about applications of functions and polynomials,
like where in everyday life can we use them to model situations things like
that. Um ... like say we've got ... like .... Like ... uh ... I think we, at [Year 13]
level when we had the um ... differential equations, the growth curves, and
things like that, bacteria. [ think it's that area of the maths was good because it
gave you practical applications for the underlying maths.

In terms of our model of teachers’ mathematical knowledge we would have to
say that these teachers, unlike Margot, will have to work hard to bridge the gap
between their conceptions and the idea of mathematical modelling, since their
knowledge of applications is very limited.

The Modelling Approach in the Classroom

For Margot, on the other hand, modelling is the essence of what she is trying to
do in her teaching, and the transition between representations, preserving the
conceptual structure of the mathematics, is a crucial one in her schemas. She
describes her view of modelling, and its importance in these terms:

[ think we could bring modelling ...down with the use of the graphic calculators ... once

we're confident ourselves in the use of the equipment ... .Taking a practical situation ...

and fitting an equation to it, fitting a graphto it.

We note again that her comment on modelling is not limited to a single
representation, but she talks of both equations and graphs as integral parts of the
process, part of her knowledge structure.

Margot was asked to prepare 1 or 2 lessons on “how you would teach linear
functions leading to solutions of equations.” Her clear emphasis was again seen in one
of the questions which she gave herself to address in her lesson plan: “Do they
understand what is meant by a mathematical model?” She chose to set this
modelling of a linear function in the context of a ‘Mexican Wave’, so popular at
stadium sports events. Her two lessons involved the students in modelling a Mexican
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wave. Margot’s conceptual schemas gave her a clear idea of the key concept of
function and the important subsidiary concepts, such as wvariable, linearity,
interpolation and extrapolation which she was to use in the lesson.

The class performed six ‘Mexican’ waves, with 3, 7, 10, 11, 14 and 21 students in
turn participating, while one student with a stopwatch timed how many seconds
they took and then recorded it on the board. These data values were then made into a
table (see Table 2) and students were asked to use the table of values to:

e estimate the time for a wave with 5 people
e estimate the time for a wave with 30 people
e estimate the number of people for a wave taking 5.5 minutes,

in two different ways, writing their working and reasoning on the worksheet
provided.

Table 2
The Mexican Wave Data
Number of students (V) Time in seconds ()
3 2.16
7 4.44
10 5.13
11 6.31
14 8.53
21 15.75

The aim of these questions was to pave the way for a discussion of the subsidiary
concepts of interpolation, extrapolation and inverses. Among the interesting methods
employed by the students to get the answer for the time taken for 5 students was: to
take half the time for 10 to find the time for one student from each row of the table,
find the mean of these and multiply it by 5; and the following linear interpolation
method of student P:

p: Okay, from 3 to 7 there are 4 numbers. So [ divided by 4 and thenI timesed it by

2 to get the number 5, to get 5. And then the answer is that to the number to 3
people and that’s what I got ... and that equalled 2.28. And then I divided that

by 4 ...and that equals 0.57. Andthen I timesed that answer so, 0.57 timesed by
2 which is 1.14 and thenadded that to this time here [i.e., 2.16], which got 3.3.

This first lesson introduced the basic idea of function in context. In the second
lesson the process of modelling was particularly highlighted, and the graphic
calculator provided the catalyst for an inter-representational approach.

Each student was given a TI-83 graphic calculator to use. Margot’s view of the
values on the whiteboard at this point was clear: “Okay, what we’'ve got here is
data, and we're going to enter them into our calculators™. It was her conceptual
schemas which structured the format in which the data were analysed in the
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modelling. Since she had a clear vision of dealing with a (one-to-one) function, the
data were first entered into the calculator as table values using the list function in
the STAT menu with two variables. Next came a change of representation to a graph.
Margot explicitly linked the symbolic representation of the wvariables to their
meanings in words, “On the x-axis I've got people and on the y-axis I've gottime.”

Once the graph was drawn Margot was keen to emphasise the idea of discrete
data. The graphic calculator enabled this in a clear and meaningful way. Margot
says “Press TRACE. Can you see the little flashing cursor there? And it says xis 3 and
y is 2.16. There’s your first point. Press your right hand arrow. Look it skips up the
points. And every time it skips up the points it gives you the co-ordinates.” In this
way she effectively introduces in a visual manner the idea of discrete data points, at
the same time emphasising both the link to the symbols x and y and the link to the
co-ordinate {(or ordered pair) representation, which is implied but not made explicit
on the screen.

Margot’s next aim is to introduce the linearity of the functional relationship.
She asks “Tell me about that data” and receives replies such as: “It’s going up.” “Not
joined.” “It’s not steady.” and “It’s a squiggly” and one student says, “One of those
points is way out of line.” Margot had deliberately not introduced the idea of
linearity immediately, but had waited to see what the students made of the
graphical data pattern. Once the idea of a linear relationship was out in the open
the calculator was used to find the equation of, and draw, the regression line,
y=0.75x-1.22. Figure 2 shows the calculator screens that the students were able to see
and work with.
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giving an estimate different from the ones they got from the table. Finally the class
was encouraged to use the model to answer the original questions posed in the
previous lesson, assisting them to see the value of it for finding approximate answers
to those questions which require interpolation, or extrapolation, from the data. Of
course, it is possible to critique the details of this approach. Margot did not address
the issue of moving from discrete data to a continuous function (although she was
aware of the problemas stated earlier), and neither did she encourage discussion on
whether the line should pass through (0, 0) (hers did not). However, such details,
while important, are not our focus in this discussion which is concerned primarily
with her modelling perspective using the idea of function.

Discussion

In this paper we have introduced a framework for studying teachers’ conceptual
knowledge in a given domain in relation to mathematical modelling. This
framework considers the role of a teacher’s schematic knowledge and the importance
of having high quality, strong connections between the concept under focus, subsidiary
concepts and their various representations. It is our contention that it is the richness
and robustness of the structure of teachers’ schemas which are a primary influence on
whether their teaching of the focus concept is procedural or conceptual. We cannot be
sure that Margot is typical of experienced teachers, and in many ways she probably
is not, but the data presented here, with its limitations, raises the question of
whether experienced teachers may have more links to subsidiary concepts, and place
greater emphasis on these. Our hypothesis is that they do, and that such links may
enable them to move between representations more easily, keeping the focus concept
intact, while gaining the advantages that each has to offer. In contrast, an emphasis
on procedural aspects of the focus concept would make it more difficult to move across
representations and hence tend to anchor the focus concept in a single representation,
for example, the graphical or symbolic.

When it comes to constructing modelling ability a view of function solely as a
graph or as an algebraic formula is a hindrance. It is relatively easy to think up
examples which give rise to pairs of values of variables which can later be
approximated by a specific, exact algebraic function. However, it is much harder to
start with a specific function and then try to produce an example which fits it. In
addition a procedural perspective of function based on working with formulas is
likely to cause problems in seeing a set of values of two variables as a function,
further limiting the potential for modelling.

A key aspect of the student teachers’ responses was their fixation with visual
representation of functions with little concern about the links to their symbolic
equivalents, and the potential effect for student learning. This finding is consistent
with recent studies on functions which have shown that students tended to experience
difficulty in interpreting graphical and symbolic representation of functions
(Leinhardt, Zaslavsky, & Stein, 1990; Mitchelmore & Cavanagh, 2000). We argue
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that the continued emphasis on visualising functions without drawing out the
underlying algebra will do little to change the above deficiency in students’
understanding of functions.

In spite of the dominance of their school mathematics experience in their
thinking, the student teachers we have interviewed do seem to be engaged in the
initial stages of the process of accommodation of their function schema as they
prepare to teach mathematics in school. As they examine their content knowledge
and begin to construct pedagogical content knowledge of function, they are coming to
recognise, as they did in the interview, that they have gaps in their function
schema. However they are confident that they can fill these gaps once they are
teaching. One way that they have already begun this process of development is by
learning from colleagues in the schools where they are on teaching practicum. It is
clear that this is a two-fold process including both learning ways to teach function
(pedagogical content knowledge) and increasing their subject-matter knowledge by
increasing the network of information embedded in their function schema. Student
teacher David referred to two specific areas where he has benefited from his
observation of an experienced teacher: the linking of graphical and algebraic
representations of functions; and the utilisation of computers in order to construct
these links in a dynamic manner.

The difference between procedural and conceptual approaches to function may be
illustrated by considering the teaching of a graphical solution to the problem: “Find
graphically where y = x* -3 is zero”. A teacher, such as Margot, who has a rich
schema for function with many subsidiary concepts, is likely to keep alive the
concept of a one-to-one (or many-to-one) relationship between variables as the
representations are traversed. The table of values, the set of co-ordinates and the
graph are each simply viewed as another representation of the symbolically
presented functional relationship which assigns a value x* - 3 to a value x, in a
one-to-one manner. The question (which could be answered in any representation)
then becomes ‘Which value of x produces the value 0?7 In contrast, teachers who
have less rich schemas may concentrate on a procedural approach which lacks this
underlying linkage. A sequence of conceptually unconnected procedures, in or between
representations, is the result. Thus, students may calculate values of y given certain
values of x. They may transfer these to a graph by a matching procedure which
aligns the first number to the x—axis and the second to the y-axis, giving a sequence of
points, and then join these up. The final procedure, in the graphical mode, sees them
read the value where the curve crosses the x-axis. While the solutions may be the
same, the conceptual knowledge built is quite different.

Oneinteresting feature of Margot’s action was that she was able to shift between
representations without drawing out potential conceptual links between the
representations and the concept in question. There seem to be a number of occasions in
mathematics teaching when teachers may not explicitly make the link between
different representations of a conceptual idea (and indeed some where it may not be
desirable to do so). For example, when solving ax + b = ¢x + d in the algebraic
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representation, how often do teachers emphasise the link to what corresponds in the
graphical representation to adding kx to both sides? Similarly, we may teach a
matrix method to solve Ax = Ax to find eigenvalues, but how often is a graphical

meaning for the solutions (when the vector space is, say R* or RY) linked to the
algebra? Our contention is that only those teachers whose conceptual structures are
rich and contain the explicit links will be able to make these connections for students.

The present study has highlighted the importance of analysing potential
relationships that might exist between teachers’ knowledge and that constructed by
their students. The results of the study support the findings of Lloyd and Wilson
(1998), indicating that experienced teachers tend to activate and use highly
organised knowledge schemas which could help students develop knowledge
structures with similar quality. Chinnappan (1998) showed that even when students
had built up a reasonable number of schemas in the domain of geometry, they were
not able to construct rich representations of the given problem. This weakness in their
solution process could be attributed to students applying schemas that had more
procedural than conceptual information. We suggest that teachers need to build up
and draw more on conceptually-dominated schemas of the type revealed by our
experienced teacher in order to promote a more flexible approach to mathematical
learning and problem solving by students.

One other lesson arising from our analysis is that when teachers begin their first
teaching post they clearly have a continuing need to be supported by their
colleagues. Experienced teachers should take the time to collaborate with new
teachers on how they might present concepts such as function to their classes. Three
areas in particular where this study suggests that this would be particularly
advantageous with regard to function are: (a) inter-representational approaches to
the concept of function, (b} use of computers and graphic calculators to promote
representational links for functional concepts, and (¢} realistic contexts giving rise to
examples for modelling of functions.
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