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This paper presents an analysis of young students' development of multiplication 
and division concepts based on a multimodal SOLO model. The analysis is d rawn 
from two sources of data: a two-year longitudinal study of 70 Grade 2 to 3 
students' solutions to 24 multiplicative word problems, and examples from a 
problem-centred teaching project with Grade 3 students. An increasingly complex 
range of counting, additive, and multiplicative strategies based on an equal- 
grouping structure demonstrated conceptual growth through ikonic and concrete 
symbolic modes. The solutions employed by students to solve any particular 
problem reflected the mathematical structure they imposed on it. A SOLO 
developmental model for multiplication and division is described in terms of 
developing structure and associated counting and calculation strategies. 

Recent studies show that young children can develop multiplication and 
division concepts in the first years of schooling, highlighting the fact that current 
teaching practices may not be focussed on children's potential mathematical 
development (Carpenter, Ansell, Franke, Fennema, & Weisbeck, 1993; Clark & 
Kamii, 1996; Hunting, Davis, & Pearn, 1996; Kouba, 1989; Mulligan & 
Mitchelmore, 1997). On the other hand, there is also growing evidence that once 
children reach the primary grades they are unable to solve problems involving 
multiplication and division or apply multiplicative number facts with meaning. In 
the upper grades, students find difficulty in using multiplicative reasoning in a 
range of contexts and in integrating their understanding of rational number with 
multiplication and division (Behr, Harel, Post, & Lesh, 1994; Bell, Greer, Grimison, 
& Mangan, 1989; Confrey & Smith, 1995). 

Multiplicative reasoning is essential in the development of concepts and 
processes such as ratio and proportion, area and volume, probability, and data 
analysis. It is also clear that failure to develop multiplicative structures in the early 
years impedes the general mathematical development of students in secondary 
school, for example, in using algebra, functions, and graphs. A concomitant 
problem is that multiplicative concepts are often not well understood or well 
taught by teachers at primary and secondary level (Graeber, Tirosh, & Glover, 
1989; Simon, 1993). It appears that difficulties faced by older students can be 
attributed, at least in part, to the lack of development of an equal-grouping 
structure in early concept formation (Mulligan & Mitchelmore, 1997; Steffe, 1994). 

In analysing young children's intuitive models for multiplication and division 
problems, Mulligan and Mitchelmore (1997) found that the intuitive model 
employed to solve a particular problem did not necessarily reflect any specific 
problem feature but rather the mathematical structure that the student was able to 
impose on it. Students acquired increasingly sophisticated strategies based on an 
equal-grouping structure. 'Counting strategies were integrated into repeated 
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addition and subtraction processes and then generalised into the binary operations 
of multiplication and division. Strategies used with concrete and sensory models 
were internalised and replicated at an abstract level with increasing sophistication. 

Mulligan and Mitchelmore (1997) also found strong evidence of the use of 
multiple models. Students were not consistent in their use of intuitive models; they 
used different strategies depending on the way they imposed structure on the 
problem. This structure was influenced by their use of concrete materials, the 
problem type, the size and type of numbers used, and the student's known 
calculation strategies. The structural characteristics and counting strategies 
provide a basis for describing the development of multiplication and division 
concepts using a multimodal approach according to the Structure of Observed 
Learning Outcomes (SOLO) model (Biggs & Collis, 1982; Collis & Biggs, 1991). 
SOLO analysis has been applied extensively to a range of mathematical concepts 
such as volume measurement (Campbell, Watson, & Collis, 1992), early fraction 
development (Watson, Campbell, & Collis, 1993), formal mathematical thinking 
(Pegg & Coady, 1993), common and decimal fractions (Watson, Collis, & 
Campbell, 1995), data analysis (Reading & Pegg, 1996), algebra (Coady & Pegg, 
1996), the concept of average (Callingham, 1997), and chance measurement 
(Watson, Collis, & Moritz, 1997). Earlier, analysis of an elementary multiplication 
problem used a SOLO mapping procedure to elucidate the transition from ikonic 
to concrete symbolic modes (Watson & Mulligan, 1990). 

By analysing longitudinal and teaching project data of young students' 
solutions to multiplication and division problems and focusing on the relationship 
between different modes of functioning, we can identify more explicitly the 
development of underlying multiplicative structures. The context for this study 
will be set in terms of (a) previous research on early multiplication and division 
strategies, and (b) the results obtained from previous research using the SOLO 
model. A framework of responses will be presented and the elements of the 
framework will be integrated into a multimodal developmental model that 
provides a more coherent basis for developing a teaching, learning and assessment 
framework for multiplication and division concepts. 

Research on Multiplication and Divis ion 
Early research on multiplication and division processes investigated generally 

the influence of linguistic aspects and the semantic structure of word problems on 
students' solutions (Nesher, 1988). Studies of secondary students found that 
mathematically equivalent problems of different semantic structures produced 
different solution strategies and varied widely in difficulty (Bell et al., 1989). Other 
researchers analysed models of multiplication and division (Fischbein, Deri, Nello, 
& Marino, 1985), and the notion of multiplicative structures (Vergnaud, 1988) gave 
new insights into understanding children's development of multiplicative 
reasoning. Multiplicative situations, such as equal grouping, comparison ("times as 
many"), arrays, and cartesian products, were classified according to the nature of 
the quantities involved and the relation among them (Greer, 1992; Schmidt & 
Weiser, 1995; Vergnaud, 1988). In this approach, multiplicative concepts and 
relationships are not viewed simply as isolated abstractions. 
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Studies investigating multiplication and division processes'with younger 
children identified the development of sound problem-solving strategies from an 
early age and the importance of modelling and representation in this development 
(Anghileri, 1989; Carpenter et al., 1993; Clark & Kamii, 1996; Kouba, 1989; 
Mulligan, 1992; Steffe, 1994). Recent research on multiplicative reasoning has 
looked to the early development of multiplication, division, and fraction concepts 
through essential processes such as counting, partitioning, grouping, unitising, and 
"splitting" (Confrey, 1994; Hunting et al., 1996; Lamon, 1996; Steffe, 1994; Watson, 
Campbell, & Collis, in press). Although multiplicative reasoning does not emerge 
in instructional programs until the second or third grade, many researchers have 
been investigating the intuitive and informal development of these processes in an 
attempt to seek out new ways of addressing the difficulties experienced in learning 
and to formulate more valid assessment techniques than traditional multiple 
choice tests. 

Classroom-based studies on teaching and learning multiplication and division 
have investigated the ways in which children devise and represent related 
problem situations and solve computations (Boero, Ferrari, & Ferrero, 1989; 
Carpenter et al., 1993; English, 1997; Lampert, 1990; Mulligan & Mitchelmore, 
1996; Murray, Olivier, & Human, 1992; Nesher, 1988, 1992). New instructional 
approaches can encourage closer links between different modes of representation, 
but more in-depth research is needed to identify the internal mental structures that 
children use in developing an understanding of multiplicative structures. 
Examining children's intuitive recordings of multiplicative situations is one way of • 
gaining further insight into this development. 

Much of the recent research investigating young students' multiplication and 
division concepts has focused on the analysis of solution strategies. Broadly, 
strategies have been classified in two ways: calculation strategies and modelling 
strategies. Calculation strategies have been classified according to degree of 
abstractness by Kouba (1989) and Mulligan (1992). These involve increasingly 
sophisticated counting methods: direct or unitary counting, rhythmic and skip 
counting, additive strategies based on repeated addition, and multiplicative 
strategies. Some examples are given in Table 1. Modelling strategies primarily 
involve the use of physical objects (Kouba, !989) such as counters or fingers, or the 
drawing of icons or tallies. Carpenter et al. (1993) reported the use of direct 
modelling by Kindergarten children as they learned to represent and solve simple 
multiplication and division word problems. All these modelling strategies have 
been reported by Kouba (1989) and Carpenter et al. (1993) as occurring in 
conjunction with all five calculation strategies in Table 1. 

Mulligan and Mitchelmore (1997) analysed young children's intuitive models 
for multiplication and division, whereby an intuitive model was defined as an 
internal mental structure corresponding to a class of calculation strategies. The 
children's internal conceptual structures of multiplication and division were 
inferred from strategies such as grouping, partitioning, counting, and patterning. 
From the correct responses, three main intuitive models for multiplication and 
division were inferred: direct (unitary) counting, repeated addition and 
multiplicative operation. A fourth model, repeated subtraction, only occurred in 
division problems. All intuitive models were applied to both multiplication and 
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Table 1 
Calculation Strategies for One-Step Whole Number Multiplicative Word Problems 

Strategy Definition 

1. Direct 
counting 

2. Rhythmic 
counting 

3. Skip counting 

4. Addi t ive  
calculation 

5. Multiplicative 
calculation 

Physical materials are used to model  the prob lem and the 
objects are s imply counted without  any obvious reference to 
the multiplicative structure. 

Counting follows the structure of the problem (e.g., "1, 2; 3, 4; 
5, 6_" or "6; 5, 4; 3, 2_.") Simultaneously with counting, a 
second count may be kept of the number  of groups as a 
"double count." 

Counting is done in mult iples (e.g., "2, 4, 6" or "6, 4, 2"), 
making  it easier to keep count of the n u m b e r  of groups. 

Counting is replaced by  calculations such as "2 + 2 = 4, 
4 + 2 = 6" o r " 6 -  2 = 4, 4 -  2 =2."  

Calculations take the form of known facts (e.g., "3 t imes 2 is 
6" or derivations from a known fact, e.g. "3 x 2 = 2 + 2 + 2.") 

division problems of various semantic structures. Fundamenta l  to processing a 
mult ipl icat ive situation effectively was the recognition of the appropriate  equal- 
sized groups. The semantic structure of problems was found to influence 
performance,  wi th  some problem types being consistently more difficult than 
others, but  the semantic structure of the problem did not necessarily correspond 
with the strategy used to solve it. This was in contrast to the models  proposed by  
Fischbein et al. (1985). 

Most students in the Mull igan and Mitchelmore (1997) s tudy were not 
consistent in their intuitive models  at any interview stage. Problem characteristics, 
such as semantic structure and  the specific numbers  or size of numbers  in the 
problem, seemed to influence which intuitive model  would  be used. At each 
interview, there were some students  who used the same intuitive model  on all 
problems but  there were others who used as m a n y  as three different models.  On 
the other hand,  there was a consistent progression of strategy development  from 
interview to interview within  each problem. Over all 12 mult ipl ication problems, 
in only 3% of the cases did students successfully use a more primit ive intuitive 
model  to solve a problem that they had  successfully solved at the previous 
interview. 

A Developmental Model 
Various models  of the cognitive growth of mathematical  concepts have been 

based on the development  of structure and levels of abstraction in students '  
mathematical  thinking (Collis & Biggs, 1991; Gray & Tall, 1994; Pirie & Keiren, 
1992; Sfard, 1991). Intuitive and  ikonic functioning is considered central to this 



Developmental Multimodal Model for Multiplication and Division 65 

development. In particular, the SOLO model has distinguished structural aspects 
of learning at five levels (Biggs & Collis, 1982, 1991; Collis & Biggs, 1991): 
prestructural (P), unistructural (U), multistructural (M), relational (R) and 
extended abstract (EA). Unistructural represents functioning which uses single 
elements; multistructural uses multiple elements, usually in sequence; relational 
implies multiple elements related to form a coherent argument; and extended 
abstract responses indicate a transition to the next higher mode. These structural 
levels are found within modes of increasing abstractness: sensorimotor, ikonic (IK), 
concrete symbolic (CS), formal-I, and formal-2. In an extension of their earlier 
SOLO model, Collis and Biggs (1991) indicate that unistructural, multistructural, 
and relational levels combine to form a learning cycle (U-M-R) which repeats 
within modes. Hence, researchers may seek to analyse responses for recursive 
development as multiple U-M-R cycles within modes. 

The complex interaction of various structural elements within the development 
from informal knowledge to abstract functioning has formed the basis of analysis 
for many studies of mathematical concept formation. In studies of fraction 
knowledge (Watson et al., 1993), volume measurement (Campbell et al., 1992) and 
chance measurement (Watson et al., 1997), two U-M-R cycles have been identified 
in the concrete symbolic mode. For example, in their analysis of volume 
measurement, Campbell et al. (1992) showed two learning cycles within the 
concrete symbolic mode with the relational aspects in the first cycle becoming 
unistructural elements in the second. The first relational level, for example, was 
distinguished by the recognition of volume in terms of the relationship V = L x B x 
H. In the first cycle, children used methods based on counting visible units and 
often lacked accurate and efficient counting procedures (e.g., omitting hidden 
units). Counting and repeated addition in the first cycle assisted in the recognition 
of the relationship V = L x B x H. The complexity of this relationship in comparison 
to the unistructural nature of individually counting cubes was what distinguished 
the relational level of development. Although the acquisition of counting, addition, 
and multiplication skills were necessary, they were not sufficient for the 
application of volume measurement methods beyond the first cycle of the concrete 
symbolic mode. In the second cycle there was a recognition of how the units relate 
to the whole figure in more complex problem-solving contexts. Not only was an 
account taken of parts that could not be seen but also the relationship V = L x B x H 
was applied as a single entity to objects constructed of multiple parts. 

Another critical dimension in the analysis of mathematical concepts using the 
SOLO model is the notion that students can be functioning in a number of modes 
and levels--depending, for example, on the problem situation, the sophistication 
of the concepts, and the quantities involved. Biggs and Collis (1991) argue that 
much thinking in the area of problem solving is multimodal. Thinking in the ikonic 
mode has been found to continue developing into the formal mode where it is used 
in solving novel mathematical problems by adolescents with high ability in 
mathematics (Collis, Watson, & Campbell, 1993). The relationship between ikonic 
functioning in high ability children and mathematical structure in representations 
of number has also been demonstrated (Brown & Presmeg, 1993; Thomas, 
Mulligan, & Goldin, 1996). There now appears to be growing acknowledgment of 
the notion of multimodal functioning, compared with more traditional stage-like 
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models of learning (e.g., Campbell, Collis, & Watson, 1995; Watson et al., 1993; 
Watson & Collis, 1994). Watson et al. (1993), for example, describe, "the mutual 
interaction between ikonic and concrete symbolic development, with progress in 
one area feeding into and supporting progress in the other. Ikonic processes 
appear to provide a necessary support to concrete symbolic reasoning at some 
developmental points, particularly when understanding is l imited" (p. 60). 
Development of higher modes can also serve to increase sophistication in ikonic 
functioning. 

Lack of appropriate development through ikonic and concrete symbolic modes 
can adversely influence the transition to formal thinking for many students. Coady 
and Pegg (1996) distinguish algebraic reasoning at a non-formal or concrete 
symbolic level in responses that show students' reliance on numerical substitution 
and /o r  incorrect or inappropriate manipulative algebraic procedures. Over- 
emphasis on manipulation of symbols and procedures in the concrete symbolic 
mode may serve to prevent higher order cognitive growth at the formal level. Lack 
of formal thinking may be traced to difficulties in the development of 
mathematical structures and /o r  use of superficial procedures in the concrete 
symbolic and ikonic modes. 

A developmental model describing the growth of multiplication and division 
processes needs to take account of the acquisition of an equal-grouping 
(composite) structure which is at the heart of multiplicative reasoning (Anghileri, 
1989; Confrey, 1994; Kouba, 1989). A composite whole is a collection or group of 
individual items that must be viewed as one thing. For example, a child must view 
three items as "one three" in order for the unit "three" to be a countable unit. For a 
true understanding of multiplication and division the child needs eventually to 
coordinate groups of equal-sized groups and recognise the overall pattern relating 
composites of composites (e.g., "three sixes"). Steffe (1994) described this as a 
premultiplying scheme: "For a situation to be established as multiplicative, it is 
necessary at least to coordinate two composite units in such a way that one of the 
composite units is distributed over elements of the other composite unit" (p. 19). 
Other theorists emphasise the importance of this structure calling it unitising 
(Lamon, 1996) and re-initialising (Confrey, 1994). In addition, multiplication and 
division may require that quantities or their numerical referents be transformed as 
a result of the process. The quantity that is the product is a different type of 
quantity to the two like or unlike quantities that have been multiplied (e.g., 
combinations of t-shirts and jeans produce "outfits"). This description has the 
potential to fit well with the structure of updated U-M-R cycles within the concrete 
symbolic mode as incorporated in the SOLO model. 

Once the initial strategies related to developing composites are developed and 
consolidated with repeated addition or repeated subtraction and sharing models, 
multiplicative reasoning must extend beyond these to a point where the 
commutativity of multiplication is recognised and the inverse relationship between 
multiplication and division is applied. The acquisition of multiplication and 
division as binary operations relies on the child's ability not only to develop 
composite structure and commutativity but also to recognise the relationship m x n 
as a composite unit m "operated upon" n times. This is quite different to a repeated 



Developmental Multimodal Model for Multiplication and Division 67 

addition notion of multiplication which is commonly used in teaching practice. 
Again a U-M-R cycle has the potential to describe the structure involved. 

In describing the early development of multiplication and division concepts 
through SOLO levels and modes, it is essential to focus closely on composite 
structure which has its foundations in the ikonic mode and develops largely 
through the concrete symbolic mode. In, the concrete symbolic mode, multiplicative 
concepts are experienced through mathematical notations and symbols and 
through written language; responses are usually evoked mentally rather than with 
concrete and sensory models. The basis of the SOLO analysis is the "observed 
learning outcome"; hence it is not appropriate to speculate on what children may 
have been thinking but only what they say, write or draw. In studying children's 
responses to multiplication and division problems prior to instruction, the 
transition to the concrete symbolic mode and the interaction between ikonic and 
concrete symbolic modes can be described. The SOLO model hence offers potential 
to provide a detailed structure for learning outcomes observed from student 
responses and to inform teachers of possible starting and finishing points as they 
plan classroom experiences for children. 

Research Questions 
The analysis reported in this paper seeks to describe and explain structural 

aspects of development in more depth than done previously, by reporting 
children's responses in terms of the SOLO model. The process of forming and 
modelling the composite structure of multiplication and division will be made 
more explicit through descriptions of children's responses in the ikonic and 
concrete symbolic modes and at the five levels of functioning: prestructural, 
unistructural, multistructural, relational and extended abstract. 

The analysis attempts to throw light on a number of research questions: 

1. How do children's responses to multiplicative problems show the 
development of composite structure in terms of the SOLO model with 
multimodal functioning? 

2. How is the development of composite structure related to the 
development of counting and calculation strategies? 

3. How does the ikonic mode support development in the concrete symbolic 
mode? Do children use both modes of functioning simultaneously? 

Method 
The analysis reported in this paper is based on data from two sources: a two- 

year longitudinal study of development of multiplication and division strategies 
with 70 Grade 2 students (Mulligan & Mitchelmore, 1997), and some examples of 
children's representations of multiplication and division word problems drawn 
from a problem-centred teaching project with ten Grade 3 students (Mulligan & 
Mitchelmore, 1996). 

The longitudinal research was particularly focused on studying the overall 
changes in students' development of multiplication and division concepts prior to 
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and during formal instruction. Seventy students were observed four times during 
Grades 2 and 3 as they solved the same set of 24 word problems. Clinical 
interviews were conducted in March/April and November/December in two 
successive years. At the time of the first interview, students had received-teacher 
instruction in addition and subtraction but not in multiplication and division. 
Between the third and fourth interviews, all students were given instruction in 
basic multiplication facts with the 2-10 times tables but not in related division facts. 
The problems were chosen to represent five of the ten semantic structures 
identified by Greer (1992). The division problems were constructed as inverse 
problems. The twelve multiplication problems were classified as equal grouping, 
rate, comparison, array, and cartesian product. The twelve division problems were 
classified as partition, rate, quotition, comparison, and sub-grouping. The 
problems were paired, with one problem in each pair using small numbers and 
one using large numbers. 

The problem-centred teaching project with ten Grade 3 students presented a 
closer view of children's representations of multiplicative situations as they 
interacted in a mini-classroom setting over a 10-week period. The students were 
not instructed in solving multiplication and division word problems in the regular 
classroom prior to or during the study. The researcher assumed the teaching role 
as a facilitator, providing problems for each student to solve in order of difficulty. 
Ten multiplication and division word problems were adapted from Greer (1992). 
Children were challenged to solve the problems in a variety of ways and to explain 
their solution processes. A range of concrete materials was made available for 
children to use in modelling the problem if they wished. They were required to 
record their solution as a drawing or diagram, and to explain how they solved the 
problem by writing a sentence. The researcher interviewed each child about 
similarities and differences between their solution strategies and representations of 
the problems during and after each teaching session. For further details of sample, 
procedures and problem types see Mulligan and Mitchelmore (1996, 1997). 

Analysis of Results 
The present analysis focuses on the transition from early ikonic functioning, 

based on concrete and sensory models, to the development of a composite 
structure of multiplication and division. Thus, all responses to the multiplication 
and division problems have been classified primarily for the development of an 
equal-grouping (composite) structure and corresponding calculation strategies 
using the SOLO taxonomy. While different problems may require different levels 
of response to be considered correct, what is of interest here is the range of 
responses at various levels, regardless of the task set or the correctness of the 
response. 

Following the presentation of the model developed to explain the structure of 
students' responses related to early attempts at multiplication and division 
problems, examples will be given for each level. Multimodal functioning will be 
described as appropriate when it is seen in ikonic support for responses in the 
concrete symbolic mode. The responses of students in the longitudinal interviews 
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will then be summarised over the four interviews to give an idea of the 
development occurring over time. 

Table 2 presents a summary of SOLO levels of development from prestructural 
thinking through the ikonic and concrete symbolic modes--whereby, in the latter, 
two U-M-R cycles are identified. Each level is described in terms of the 
abstractness of the response, the emergence of composite structure, and the 
increasing sophistication of calculation strategies. 

Although the prestructural imagistic mode is often regarded as part of ikonic 
functioning, it has been classified prior to ikonic mode here because it denotes 
those responses which have no structural features--that is, those which do not 
focus on specific mathematical elements related to the task presented. Prestructural 
imagistic responses can be useful precursors to the development of ikonic 
functioning and building of structure within ikonic mode. Images at the 
prestructural level may also be used in conjunction with higher order ikonic and 
concrete symbolic thinking. The U-M-R cycle within the ikonic mode is 
characterised by development moving toward the equal-grouping structure, where 
students rely on concrete and sensory models but still are not consistently 
conserving. The increasing complexity of structure will be shown in the examples 
which follow. The extended abstract level of the ikonic mode becomes the first 
level of the concrete symbolic mode. 

Although children still visualise and use concrete support in the concrete 
symbolic mode, it is distinguished by responses that no longer rely on physical 
modelling and perceptual counting. This is consistent with prior analysis (Watson 
& Mulligan, 1990). Two U-M-R cycles are shown, where the first cycle is based on 
the development of composite units and the second based on the development of 
multiplication and division as operations deriving from these composite units, 
culminating in two relational levels denoted as R2a and R2b. Examples of responses 
at each mode and level are described in the following subsections. 

Prestructural Responses 
At the prestructural level, children typically elicited idiosyncratic responses 

that did not focus on specific mathematical elements or the structure of the 
problem. Prestructural responses to the multiplication array problem, for example, 
showed that children were influenced predominantly by their initial image of the 
situation given in the problem. Consider, for example, these responses to the 
problem "There are 4 lines of children with 3 children in each line. How many 
children are there altogether?": 

P : We line up in twos. 
P : Lots of children. 
P : You can count the l ines . . .  I don't know how many. 
P : If it's 4 l ines . . ,  that's a lot. 
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Table 2 
Summary of SOLO Levels for Responses to Multiplication and Division Problems 

SOLO Level Strategies 

P Prestructural 
Imagistic 

U 1 (IK) Pre-composites 

M1 ( IK)  Emergent 
Composites 

R1 ( I K )  Initial 
Composites 

EA 1 (IK) 
- U 1 ( C S )  

Intermediate 
Composites 

U 1 (CS) Intermediate 
Composites 

M 1 (CS)  Composite 
Units 

R 1 (CS) Coordinating 
Composite 
Units 

Forms idiosyncratic images of problems lacking in 
mathematical structure; generates non- 
mathematical solutions. 

Ikonic mode 
Represents one element of the problem using 
concrete or sensory models; unable to conserve or 
form composites. Unitary counting may be used. 
Represents two elements of the problem 
independently using concrete or sensory models; 
unable to form composites. Unitary counting 
strategies may be used to calculate total. 
Forms composites by equal grouping, sharing, or 
one-to-many grouping using concrete or sensory 
models; calculates total by unitary, rhythmic, skip, 
or additive counting, but still does not consistently 
conserve. Unable to generalise pattern of 
composites. 
Forms composites by equal grouping, sharing, or 
one-to-many grouping using concrete or sensory 
models; consistently calculates total correctly by 
skip or double counting. Coordinates composites by 
relying on concrete model. Unable to generalise 
pattern of composites but consistently conserves. 

Concrete symbolic mode 
Forms composites usually without concrete or 
sensory models; calculates solution by unitary 
counting or method which does not take advantage 
of composite structure. Unable to generalise pattern 
of composites. 
Forms composite units by equal grouping or 
sharing abstractly; calculates using composite 
structure with unitary or skip counting. Unable to 
coordinate composites; calculates number of 
composites separately. 

Coordinates composites abstractly; calculates using 
composite structure with skip or double counting; 
generalises pattern of composites. 
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SOLO Level Strategies 
U2 (CS) Repeated Uses composite units to calculate using repeated 

Addition and addition or subtraction. Identifies number  of 
Subtraction composites by adding on or subtracting the 

M2 (CS) 

R2a (CS) 

R2b (CS) 

Repeated 
Addition and 
Subtraction 

Multiplicative 
Operation 

Multiplicative 
Operation 

composite unit repeatedly. Unable to generalise 
pattern of composites. 
Uses composite units repeatedly and coordinates 
number of units as repeated addition and 
subtraction. Identifies number of composites as a 
pattern; able to generate symbolic notation (e.g., "3 
+ 3 + 3 + 3 = 12" or "12 - 3 - 3 - 3 - 3 = 0"). Derives 
multiplication and division facts from addition and 
subtraction facts. 
Coordinates two composite units simultaneously as 
a binary operation of multiplication or division 
where implicit sequence of multiples is treated as a 
single entity (e.g., "3, 6 times is 18"). Uses symbols 
x and +. Associativity and commutativity shown. 
Can recall and derive basic multiplication and 
division facts automatically; uses multiplication 
and division as inverse relationships. Generates 
number sentences in symbolic form from 
multiplication and division problems. Associativity 
and commutativity shown. 

Ikonic Mode 
In the ikonic mode, children began to form composites using concrete and 

sensory models but  could not represent the structure in their minds. Images 
formed in the ikonic mode became critical to development in the concrete symbolic 
mode because they provided the corresponding structure upon which 
multiplicative operations were developed. If the child was unable to operate at a 
relational level in the ikonic mode, it was unlikely that development through the 
concrete symbolic mode would be based on composite structure. 

Unistructural level. Children at-the U 1 (IK) level repeated, or modelled with 
counters or fingers, only one element in the problem. For example, in the partition 
problem "There are 8 children and 2 tables in the classroom, how many children 
are seated at each table?", typical responses included the following: 

U 1 (IK): 8 children at the table. 
U 1 (IK): One (puts block), two (puts b lock) . . ,  two children. 
U1 (IK): 2 children. 
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If counting occurred it was usually perceptual counting and unrelated to the 
structure of the problem, such as "1, 2, 3, 4, 5, 6, 7, 8 . . .  8 children." There were 
attempts to model quantities in the probiem by sharing or trial and error, but 
children were unable to form composites. 

Multistructural level. M 1 (IK) responses were similar to those shown at the 
unistructural level, except that they focused on two elements of the problem. 
Although children could focus on more than one element, they were not yet able to 
form a composite unit (e.g., "three books is one three"). Incorrect responses often 
showed a reliance on addition and perceptual counting. For example, in the 
multiplication comparison problem "John has 3 books and Sue has 4 times as 
many. How many books does Sue have?", typical responses included the 
following: 

M1 (IK): That's 4 ( models 4) and 3 (models 3). 
M1 (IK): 1, 2, 3, 4, 5, 6, 7, (counts) 7 altogether. 
M1 (IK): That's 4 and 3 makes forty-three. 

Relational level. At the R1 (IK) level, children attempted for the first time to 
integrate composite structure with their counting strategies by forming 
intermediate composite units through modelling and counting. In the quotition 
problem "There are 12 children with 4 at each table. How many tables?", for 
example, a child formed composites of 4 from 12 counters and expressed this as "4, 
4, 4 , . . .  that's 3 tables." Within the ikonic mode this type of response may be seen 
as a generalisation, but initially it may not be complete. Compared with 
unistructural or multistructural responses, this level represents the development of 
multiplicative structure because the child forms and uses composites even though 
an error may occur in calculation. 

2 + +  4c;i/..f" 

Figure 1. How Michelle, aged 7 years, represented two groups of three. 

Figure 1 shows an ikonic relational response drawn from the teaching project 
(Mulligan & Mitchelmore, 1996), in which Michelle represented composite 
structure for the equal-grouping problem "There are 2 tables, 3 children at each 
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table. How many children altogether?" She formed two groups of three but 
interpreted the situation as "4 girls and 2 boys," using unitary counting and 
addition to calculate an answer. This was meaningful for Michelle, but her 
calculation strategy and symbolisation of the problem did not take advantage of 
the composite structure of multiplication. Michelle used ikonic support to show a 
composite structure although this structure was not fully realised. In this case, 
Michelle's idiosyncratic interpretation of the situation was so strong that it 
restricted her representation and calculation strategies. She knew that she had a 
total of six children because she used unitary counting. 

Extended abstract. At the extended abstract level of the ikonic mode, modelling 
and counting were still used and the total number of items was consistently 
calculated by skip or double counting. Children were able to coordinate 
composites using a visual stimulus such as a model or picture and could 
consistently conserve. This meant that they could consistently gain correct 
solutions from their model no matter how the model was arranged. They were still 
unable, however, to generalise the pattern of composites. 

Concrete Symbolic Mode 
The concrete symbolic mode was distinguished by responses that no longer 

relied solely on physical modelling and perceptual counting. Two U-M-R cycles 
were identified from both sets of data and these characterised two stages in the 
development of multiplication and division as binary operations. The first cycle 
was based on the development and coordination of abstract composite units. The 
second cycle built upon the composite units of the first cycle, using processes of 
repeated addition and repeated subtraction leading to multiplication and division 
as operations at two relational levels (R2a and R2b ). Multimodal functioning in the 
form of ikonic support for responses will be noted throughout the examples. 

First unistructural level. At this level, composite units of small quantities such as 
two, three, four or five items were formed mentally; but children still used 
counting methods reflecting the ikonic mode which did not take advantage of the 
composite structure. For example, in the partition problem referred to in the 
description of U 1 (IK) above, typical responses included the following: 

U 1 (CS): That's 1, 2, 3, 4 and 1, 2, 3, 4 . . .  4 children at each table. 
U 1 (CS): [Child shares by dealing mentally] 1 here, 1 there, 2 here, 2 there, 3 

here, 3 there, 4 here, 4 there . . .  1, 2, 3, 4 . . .  4 at each table. 

First multistructural level. M 1 (CS) was an advance on U 1 (CS) because children 
identified both the composite unit and the number of units as separate elements 
and used skip counting rather than unitary counting to calculate a solution. In 
partition and equal-grouping problems, students typically shared or constructed 
equal groups abstractly. For example, in the partition problem "There are 28 
children and 4 tables in the classroom. How many children are seated at each 
table?", typical responses followed this pattern: 
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M 1 (CS): Divide it into 4 tables, half of 28 is 14 so half  of 14 is 7, 7 at each 
t a b l e . . ,  now we had  4 tables so that 's 7 and 7 and 7 and 7. 

Most of the responses at this level showed that students focused on the 
number  of units and the number  of items in each unit  separately. In the rate 
division problem "Peter bought 4 lollies for 20 cents. If each lolly cost the same, 
how much  did one cost?", for example,  some typical responses were as follows: 

M 1 (CS): 5 for 1, 10 for 2, 15 for 3, 20 for 4. 
M 1 (CS): 5, 10, 1 5 , 2 0 . . .  5 for 1. 

First relational level. R 1 (CS) marked an important  transition to mul t ip l ica t ion 
and division as repeated addit ion and repeated subtraction. Chi ldren were  able to 
coordinate composite units without  the use of concrete material  for the first time. 
This was accompanied by skip or double counting, where double  counting 
signified an ability to generalise the pattern of composites. Consider,  for example,  
the quotition problem "Twelve toys shared equal ly among the children. If they 
each had 3 toys how m a n y  children were there?" The following responses showed 
coordination of two composite units: 

R1 (CS): 12, 9, 6, 3 . . .  that 's 4 children. 
R1 (CS): 3 (1), 6 (2), 9 (3), 12 (4 ) . . .  4 children. 

In the equal-grouping problem "There are 4 tables in the classroom and 7 
children are seated at each table. How many  children are there altogether?", the 
following responses showed children's  ability to generalise the pattern of 
composites. 

R1 (CS): 7 at one table, 7, 7, 7 . . .  that 's 28. 
R1 (CS): 7 for 1, 14 for 2, 21 for 3, 28 for 4 . . .  that 's  7 four times. 

Second unistructural level. At the U 2 (CS) level, in the second U-M-R cycle of the 
concrete symbolic mode,  composite units and counting strategies employ ing  a 
sequence of multiples were internalised as addit ion and subtraction. This was a 
limited strategy, however,  because children were only able to use a smal l  n u m b e r  
of composites to add on or take away. 

U2 (CS): 3 plus 3 = 6. 
U2 (CS): 4 + 4 = 8. 
U2 (CS): 2 + 2 + 2 = 6. 

Second multistructural level Transition to M 2 (CS) was characterised by  
composite units being added  or subtracted repeatedly, where the number  of 
composites was coordinated as a pattern. Problems involving larger composite 
units such as four, six, or seven were solved using addit ive and subtractive 
strategies involving a sequence. Addit ion was largely employed  to derive 
multiplication and division facts: 

M2 (CS): 3 + 3 are 6 and 3 are 9 and 3 are 1 2 . . .  4 threes are 12. 
M2 (CS): 21 - 7 makes  14 - 7 makes 7 . . .  that 's 3 sevens in 21. 
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Figures 2 and 3 present some examples from the teaching project. In Figure 2, 
Natalie used composite units and repeated addition at the M 2 (CS) level to show 
the composite structure of the equal-grouping problem "There are 6 plates and 4 
cakes on each plate. How many cakes altogether?" She represented the equivalent 
grouping problem ikonically, in a linear formation, and used repeated addition by 
adding on 4 successively. However, in her response to the comparison problem 
"Susan had 3 books and Jane had 5 times as many. How many books did Jane 
have?", shown in Figure 3, direct counting seemed to dominate her thinking 
despite her using formal notation 5 x 3 = 15. In this example, Natalie appeared to 
be using ikonic support to produce a response typical of concrete symbolic 
thinking where repeated addition and the symbolism of multiplication are used. 
Although Natalie used formal notation, she relied on forming and drawing equal 
groups, together with direct counting, to obtain an answer. In this case the use of 
multiplication notation was only a summarised form of repeated addition and did 
not mean that Natalie was using multiplication as a binary operation. 

Figure 2. Natalie's response to equal-grouping problem. 

Figure 3. Natalie's response to comparison problem. 

Second relational level. In R 2 (CS), there were two sublevels of performance 
observed. At the R2a (CS) level, multiplication and division appeared explicitly as 
binary operations for the first time. The final term of an implicit sequence of 
composite units was treated as a single entity. Responses at the M 2 (CS) level were 
based on repeated addition but R2a (CS) responses were distinctly different from 
these because the composite unit was "operated upon." For example, in the 
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comparison problem "She has 3 books and Sue has 5 times as many , "  responses 
included the following: 

R2a (CS): 3 . . .  5 t imes is 15. 
R2a (CS): 5 threes are 15. 

In contrast, at the M 2 (CS) level composites were restricted to a repeated 
addit ion model  based on grouping such as "3 lots of 5 makes  15," no mat ter  what  
the problem structure was. A relational unders tanding  of mult ipl icat ion and 
division was shown particularly through problem situations (such as array 
problems) that gave rise to the use of composites as factors--chi ldren reasoning, 
for example,  "3 by  4, that 's  12" rather than "3 + 3 + 3 + 3 =12." 

Figure 4 shows how Samantha demonstrated mult ipl icat ion as an operat ion by  
replicating one group of three pencils nine times. It was observed that she did this 
without  using direct counting or repeated addit ion to obtain an answer. Samantha,  
like Natalie, formed one group initially, "to be t imesed." This m a y  be significant in 
that many  children who were developing mult ipl icat ion as an operation eventual ly  
formed one group to represent the multiplier.  This is an R2a (CS) response with 
ikonic support. 

3am hd g p¢,5;~ 

a~d ~¢b¢cc~ G~d 

9xI ? 

Figure 4. Samantha 's  response to comparison problem. 

At the R2b (CS) level, responses were characterised by the automatic recall and 
application of basic mult ipl icat ion and division facts. Unknown  facts could be 
derived from known facts, where  children used mult ipl icat ion and division as 
inverse processes to derive a solution. Chi ldren  responding at this level solved a 
range of multiplicative problems including structures of equal grouping, 
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comparison, array, cartesian product, and ratio. Typical responses included the 
following. 

R2b (CS): 6 times 4 is 24 so 12 times 4 is 48. 
R2b (CS): 72 divided by 8 . . .  9 eights are 72. 
R2b (CS): 3 by 7 is 21, so 42 divided by 7 must be 6. 

R2b (CS) responses also showed understanding of commutativity in that the 
order in which multiplications are performed does not affect the final product. This 
appeared to be the consolidation typical of movement into another U-M-R cycle 
necessary for more complex problem solving. The new cycle would be 
accompanied by understanding the commutativity of multiplication and the 
inverse relationship between multiplication and division, rather than rote learning 
of corresponding multiplication and division facts. 

Analysis of Responses to Multiplication and Division Problems by 
Response Mode and Level 

Table 3 and Table 4 show the overall distribution of responses to multiplication 
and division problems across the various SOLO levels at each interview in the 
longitudinal study. In these tables, data have been pooled from the 12 
multiplication or division problems. Concrete symbolic responses have been 
grouped in three categories to correspond with the prior analysis of intuitive 
models (Mulligan & Mitchelmore, 1997): U1, M1, R1 (CS) responses use a direct 
counting model without concrete modelling, U 2 (CS) and M 2 (CS) responses use 
repeated addition (or subtraction) without concrete modelling, and R2a (CS) and 
R2b (CS) responses use multiplicative operations. 

Table 3 shows that prestructural solutions were quite common in Year 2 but 
rare in Year 3. Prestructural responses were universally incorrect. The most 
common mode at interview 1 was the ikonic mode; by comparison, the most 
frequent mode for the last three interviews was the concrete symbolic mode 
(combining all categories). 

Table 3 
Percentage Distribution of Responses to Multiplication Problems Across 
SOLO Levels, by Interview 

SOLO level Interview 

1 2 3 4 

P 20 16 6 5 
IK 46 37 41 31 
U1, M1, R1 (CS) 9 11 10 9 

U2, M2 (CS) 22 31 29 26 

R2a , R2b (CS) 3 5 14 29 
Note. n -- 70, 68, 62, 60 for interviews 1 to 4, respectively. 
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Table 4 
Percentage Distribution of Responses to Division Problems Across 
SOLO Levels, by Interview 

SOLO Level Interview 

1- 2 3 4 

P 24 21 11 6 
IK 44 37 47 29 
U 1, M 1, R 1 (CS) 12 13 11 10 

U2, M 2 (CS) 17 25 21 29 

R2a, Rzb (CS) 3 4 10 26 
Note. n -- 70, 68, 62, 60 for in terv iews I to 4, respectively.  

Table 4 shows the distribution of SOLO levels in responses to the division 
problems at each interview stage. Because performance on division tasks was 
slightly lower than for multiplication problems, prestructural solutions (all 
incorrect) accounted for slightly more responses than for multiplication; but they 
also decreased rapidly. The pattern of ikonic and concrete symbolic mode 
responses was virtually the same as for the multiplication problems. A substantial 
number of concrete symbolic responses used repeated addition, with progression 
to a multiplicative operation model at interview 4. 

The change in the distribution of responses across SOLO levels from interview 
to interview corresponds to the development of the equal-grouping structure and 
associated calculation strategies. By tracing the paths of responses of individual 
students it was possible to identify those who progressed from ikonic to concrete 
symbolic mode during the period of the interviews. Some general patterns are 
reported here. For multiplication problems, of the 46% of children using ikonic 
mode at interview 1, about half (56%) gave ikonic responses at interview 4. The 
other children (44%) responded in the first cycle of concrete symbolic mode or the 
U 2 level of the second cycle of the concrete symbolic mode. Similarly, 25% of the 
children who responded at ikonic level (41%) at interview 3 gave responses at the 
U2 (CS) or M 2 (CS) levels at interview 4. For division problems, of the 44% of 
children giving ikonic responses at interview 1, 35% of these progressed to the U2 
(CS) or M2 (CS) levels by interview 4. The increase in ikonic responses to 47% at 
interview 3 can be attributed to those students moving from prestructural 
responses to the ikonic mode. Further, on all multiplication and division problems, 
in only 3% of the cases did students successfully use a less sophisticated strategy to 
solve a problem that they had successfully solved at the previous interview and 
only 2% of students failed to solve the same problem again. 

The following examples show how two individual students progressed over 
the four interviews. The first example shows how Nathan moved from 
prestructural to ikonic mode and then developed through to the unistructural level 
of the second cycle of concrete symbolic mode. He made the following responses to 
the quotition problem "12 toys are shared equally among the children. If they each 
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had 3 toys how many children were there?" at successive interviews: 

P: They have to share the toys. 
U 1 (IK): They get three toys. That's how many they get each. 
U 1 (CS): [Child shares by dealing mentally, keeping track with fingers] 1, 2, 3 

toys, 4, 5, 6 toys, 7, 8, 9 toys, 10, 11, 12 toys. 
U 2 (CS): That's 3 each so 3 +3 = 6 + 3 = 9 + 3 =12. So that's 1, 2, 3, 4 threes. 

Nathan modelled the problem with counters in the U 1 (IK) mode and used the 
same model abstractly at the U 2 (CS) level. He visualised three toys in each group 
but  used unitary counting to represent and calculate the number of composite 
units. He used his fingers to help keep track of the number of items. 

In the second example, Sarah progressed from the extended abstract level of 
the ikonic mode through to the relational level (R2a) of the second cycle of concrete 
symbolic mode. Her responses at the four interviews to the comparison problem 
"Sue has 3 books, and Jane has 5 times as many. How many books does Jane 
have?" were as follows: 

EA (IK): [Child models 3 books first, then models another 5 groups of 3 
counters] That's 3, 6, 9, 12, 15 books altogether [counts books in 
multiples of 3]. 

M 1 (CS): There's 3 books for Sue so 5 times would be 3, 6, 9, 12, 1 5 . . .  1, 2, 3, 4, 
5. 

U 2 (CS): That's 3 + 3 = 6; 3 + 3 = 6 and 3 makes 9, 12, 15. 
R2a (CS): 3, 5 times is 15. 

Sarah showed a more sophisticated development of the composite structure of 
multiplication than Nathan as she used her knowledge of the multiple sequence of 
threes early in the ikonic mode to assist her in coordinating composite units. The 
progression shown by Nathan and Sarah highlight the differences in students' 
development of composite structure, their ability to model the problems abstractly, 
and the increasing level of sophistication of their calculation strategies. 

Discussion 
The formation of images at the prestructural and ikonic level appeared critical 

to the development of the equal-grouping (composite) structure. Images initially 
lacking in structure at the prestructural level became more organised mathematical 
elements in the ikonic mode; random drawings of ikons gave way to drawings 
showing the structure of the groups, albeit unequal. Children initially giving 
prestructural responses (20% at interview 1) became less reliant on their physical 
or imagined reality and began to focus on numerical aspects of the problem in the 
ikonic mode. This related to their ability to interpret the semantic structure of the 
problem and their ability to represent equal-sized groups through physical or 
concrete models. 

The SOLO analysis also distinguished the transition from prestructural and U 1 
(IK) and M1 (IK) levels, to the R 1 (IK) level, by the development of counting 
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strategies that eventually took advantage of composite structure. At the R 1 (IK) 
level, the formation of composites with a concrete or physical model  such as 
fingers required the child to establish a group of single items as one unit  in order 
for them to be considered a countable unit (e.g., "three ones as one three"). 
Children whose counting was limited to the initial forward number sequence were 
incapable of doing this. Forming and counting composite units required a 
modification to the counting sequence using a numerical pattern or spatial pattern. 
This provided a basis for a pattern of multiples which took into account the 
number in each group as well as the counting pattern (e.g., "2, 4, 6" and "3 groups 
of 2"). Responses in the ikonic mode were often based on partitioning a number  of 
items into equal groups using a skip counting sequence. In some cases, only one 
group or row of items was used repeatedly as the composite unit to represent and 
calculate the total number of items. Steffe (1994) referred to this as a figurative 
composite unit because the child uses the unit mentally as a "tangible" model 
whose elements can be visualised and counted. 

At the R 1 (IK) level children were still unable to generalise the pattern of 
composites, even though increasingly appropriate composite counting strategies 
developed. The calculation of the total number of items, or the number  of groups, 
was assisted by the concrete or physical model which provided the structure of 
composites without the child having to use them abstractly. The transition to the 
EA (IK) level and U1 (CS) level was marked by the ability to conserve consistently; 
the equal-grouping structure could berecognised no matter what the arrangement 
of items or situation presented. 

The development of efficient counting (skip and double counting) and 
calculation strategies has been accepted as integral to developing composite 
structure. Coordinating composite units (e.g., "three threes as a unit of nine") 
depends on the ability to move beyond counting based on a unistructural notion 
and to use a pattern of multiples as a double count ("1, 2, 3 (one), 4, 5, 6 (two)," 
etc.) mentally. While the development of direct counting and ikonic functioning 
precedes development of composite structure, there exists a complex 
interrelationship between counting and composite structure in the concrete 
symbolic mode. This has been described in this analysis as two cycles. The use of 
skip and double-counting procedures gives rise to more efficient processes that 
take advantage of the equal-grouping structure in the second cycle where repeated 
addition (or subtraction) is generalised as an operation. 

The development of repeated addition or repeated subtraction in the second 
cycle of the concrete symbolic mode does not constitute a full conceptual 
understanding of multiplication or division. It is not until the relational level that 
the development of multiplication and the related division process is distinguished 
as the distribution of one composite unit across elements of another composite unit 
(e.g., "six, three times means 6 x 3 = 18"), thus generalising the structure of 
composites. Critical to developing a relational understanding of multiplication is 
the ability to see multiplication and division in an inverse relationship and to 
explain commutativity (e.g., 6 x 9 = 9 x 6). Children who are able to recall 
multiplication and division number  facts without being able to explain and 
represent the composite structure are not yet functioning at the relational level. 
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This observation highlights the importance of children acquiring the binary 
structure of multiplication, where the product represents one or more units 
distributed simultaneously over one or more composites (equal-sized units). 
Furthermore, the situation is more complex than for addition and subtraction 
because, in multiplication and division, cases arise where two quantities are 
combined to form a third quantity that is unlike either of them. Generalising the 
combination process is critical to fully understanding the operations of 
multiplication and division. 

In terms of the first two research questions addressing the development of 
composite structure, the data showed that this emerged from prestructural and 
ikonic mode responses through the development of increasingly sophisticated 
counting strategies. The development from unitary perceptual counting, skip 
counting, and double counting through to repeated addition and subtraction 
without direct modelling was based on the formation and coordination of 
composites. The data showed a complex interdependence between the existence of 
ikonic level support and the development of counting and calculation strategies. 
Skip- and double-counting strategies closely reflected composite structure with 
and without modelling at the ikonic and concrete symbolic modes respectively, 
and each served to support the development of repeated addition and 
multiplication and division as operations. 

In relation to the third question concerning the role of ikonic support in the 
concrete symbolic mode, it appears that ikonic functioning continued to be used 
through the concrete symbolic mode because ikonic images became connected 
with increasingly complex composite units and notational representations of 
multiplication and division. Repeated addition, for example, gave rise to the 
symbolism of multiplication and division provided that the child could see the 
overall pattern of composites and move beyond using repeated addition for 
calculation. In the teaching project, ikonic support was used in a variety of ways by 
children to explain their methods of solution; in many cases, it was necessary to 
gain a solution. 

It may also be asked if children develop composite structure in the concrete 
symbolic mode but do not use this structure mentally because it is less cognitively 
demanding to revert to an ikonic mode of functioning. For example, it is easier to 
share 12 concrete items into groups of 4 to establish the number in each group than 
to keep track mentally of the distribution of items and number of groups 
simultaneously. In the SOLO model, the former process belongs to the relational 
level in the first cycle of the concrete symbolic mode--whereas the latter belongs to 
the second cycle. Children may also visualise ikonic support to assist the way they 
impose structure on multiplicative situations. Even when operating in the concrete 
symbolic mode, the use of repeated addition notation such as 3 + 3 + 3 + 3 may be 
built upon images of groups of 3 at the ikonic level. It is often difficult to judge the 
level of ikonic support if it is not overtly displayed in a response. It is suggested, 
however, that for responses whose main outcome is a concrete symbolic 
elaboration, then an aspect of "abstract" ikonic support is most likely to be a 
genuine multimodal contribution~it would not be possible for the ikonic mode on 
its own to support that level of abstractness. 
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Evidence of multimodal functioning was more clearly shown through 
children's representations and explanations of responses in the teaching project. 
Because children were encouraged to record their representations, regardless of 
whether they were in the ikonic or concrete symbolic modes, the interaction 
between modes could be investigated. In cases where children were operating 
mainly in the second cycle of the concrete symbolic mode, ikonic drawings 
represented more sophisticated models using notational and symbolic systems that 
had been translated "down" to the ikonic level. While this was unnecessary for a 
solution, recordings showed the level of structure in the child's thinking more 
clearly. 

Implications 
In terms of instruction, students may need ikonic support in modelling some 

semantic structures so that they can apply counting strategies successfully to them. 
However, once children have established composite structure and associated skip 
and double counting strategies in the ikonic mode, concrete and physical models of 
support can be gradually removed in order to encourage a visualised structure of 
composites in the concrete symbolic mode. Even if children revert to less 
sophisticated unitary counting methods to calculate a solution, the move to 
concrete symbolic thinking is necessary for the development of multiplication and 
division as operations. Ikonic support can still be used, but children might be 
encouraged to visualise these images rather than to revert to concrete or pictorial 
models. Evidence from children's drawings in the teaching project showed in 
many cases that ikonic support was unnecessary to gain a solution but was useful 
in showing how ikonic images influenced the solution process. 

Beyond unitary counting and sharing in the concrete symbolic mode children 
can be encouraged to use the equal-grouping structure to develop more efficient 
strategies involving repeated addition. Steffe (1994) and Confrey (1994) both argue 
that we should teach alternative constructs for multiplication (i.e., repeated 
addition and coordinating composite units) and abandon any single interpretation 
for all children. When repeated addition becomes generalised, the idea of 
multiplication and division as operations emerges at the relational level of the 
second concrete symbolic cycle. One implication of this is that acquisition and 
retrieval of basic multiplication and division facts must be based on the child 
explaining the relationship between composites (e.g., "6 3 times is 18" 
symbolised as 6 x 3 =18 and "3 groups of 6 are 18" symbolised as 3 x 6 is 18). 
Ikonic support may be used to distinguish the difference in composite structure. 

In considering the appropriateness of the SOLO model for structuring young 
students' outcomes on mathematical tasks, it is useful to compare the results of this 
study with those of Watson et al. (in press) who analysed the responses of 30 
children from pre-Grade 1 to Grade 4 on two hands-on tasks involving fractions. In 
problem-solving contexts, children were asked to divide a pancake fairly among 
three dolls and to determine one-half and one-third of twelve marbles. The 
responses reflecting ikonic and first cycle concrete symbolic understanding parallel 
well the structure observed in the present study. In the ikonic mode, a single idea 
of sharing was realised with concrete material being split; but there was no 
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recognition of the distribution of shares to all recipients. This parallels the inability 
to form composites at the U1 (IK) level in the present study. At the M 1 (IK) level, 
the idea of fractional sharing included all who should receive shares; but there was 
no attempt at equality of shares. These responses correspond to those in the 
current s tudy that took more elements of a problem into account but did not form 
composites. At the R 1 (IK) level in both studies, children used more complex but 
idiosyncratic methods, lacking the ability to conserve. 

In the first cycle of the concrete symbolic mode, U 1 (CS) responses for 
fractional sharing involved the conservation of an equal number of parts given to 
recipients, regardless of the size of the parts of the fractions involved. The inability 
to go beyond giving the same numerical value (of pieces) to each recipient is 
similar to the use of unitary counting in the current s tudy where more complex 
patterns were not recognised. At the M 1 (CS) level different fractions were 
distinguished, although not appropriately, and fair sharing was attempted in terms 
of the amount of substance as well as the number of pieces. Sharing was done 
laboriously, in a similar fashion to the forming of composites by children in the 
present study. At the R 1 (CS) level in both studies, patterns associated with 
geometry or counting were consolidated in the problems presented to the students. 
It would be of interest in future research to present the same children with tasks 
based on both topics in order to further elucidate the structural relationship of the 
two areas of the curriculum. 

SOLO analysis of children's responses to multiplication and division problems 
highlights the importance of assessing critical elements of developing composite. 
structure and associated counting and calculation strategies. The detail provided 
throughout three cycles in two modes of functioning can assist teachers and 
curriculum planners to be sure they cater for all possibilities of students'  
functioning. Lack of appreciation of the structure may be detrimental to the 
understanding of some children. These aspects have been integrated into a 
Learning Framework in Number (NSW Department of Education and Training, 
1998) as part  of a classroom-based assessment project currently operating in 
Kindergarten and Grade 1 classrooms in New South Wales public schools. Further 
research will investigate young children's development of composite structure in 
relation to other key aspects of developing number knowledge. 
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