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This study assessed the ability of university students enrolled in an introductory 
calculus course to solve related-rates problems set in geometric contexts. Students 
completed a problem-solving test and a test of performance on the individual steps 
involved in solving such problems. Each step was characterised as primarily 
relying on procedural knowledge or conceptual understanding. Results indicated 
that overall performance on the geometric related-rates problems was poor. The 
poorest performance was on steps linked to conceptual understanding, specifically 
steps involving the translation of prose to geometric and symbolic representations. 
Overall performance was most strongly related to performance on the procedural 
steps. 

University students' poor performance in beginning calculus courseshas been 
well documented (Cipra, 1988; Culotta, 1992; Ferrini-Mundy & Gaudard, 1992; 
Ferrini-Mundy & Graham, 1991; Peterson, 1986). Reports that about half of all 
students enrolled in introductory calculus courses either fail or withdraw before 
completing the course provided the impetus for the calculus reform movement of 
the last fifteen years (Douglas, 1986; Steen, 1986; Tucker & Leitzel, 1995). Despite 
promising results from several studies comparing student performance in 
reformed and traditional classes (Bookman & Friedman, 1994; Meel, 1998; Park & 
Travers, 1996), the reform movement has suffered a backlash and many 
universities, especially in the United States, have returned to more traditional 
approaches to calculus instruction (Wilson, 1997). Even as the curricular pendulum 
swings, the reasons that students perform so poorly in calculus are still unclear 
(Thompson, 1994). 

Although there are still many open questions about the teaching and learning 
of calculus, researchers studying student performance in higher-level mathematics, 
including calculus, have made several observations. For example, students tend to 
view mathematics as a collection of algorithmic procedures to be mastered 
(Dreyfus, 1990; Schoenfeld, 1994; Silver & Marshall, 1990). In general, students at 
the college level are proficient at performing algorithms, but they lack the ability to 
connect the algorithms to their underlying conceptual bases (Orton 1983a, 1983b). 
The inability to link the conceptual with the procedural is thought to be at the root 
of students' difficulties with higher-level mathematics (Dreyfus, 1990). 

The focus of the present study is on university students' performance on 
geometric related-rates problems. The term related-rates problem, as used 
throughout this study, refers to the type of calculus problem that requires the 
determination of "the rate of change (with respect to time) of some variables based 
on their relationship to other variables whose rates of change are known" (Dick & 
Patton, 1992, p. 270). Although several reformed calculus texts exclude or de- 
emphasise related-rates problems (Davis, Porta, & Uhl, 1994; Hughes-Hallett, et al., 
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1994; Smith & Moore, 1996), these problems are standard fare in the traditional 
courses which are enjoying renewed popularity. The related-rates problems used in 
this study are restricted to those in a geometric context. In a geometric related-rates 
problem, the relationship between the variables, upon which the relationship 
between the rates is based, is described by a geometric equation. Students' 
difficulty with geometric related-rates problems has been noted by several authors 
(Balomenos, Ferrini-Mundy, & Dick, 1987; White & Mitchelmore, 1996). In 
addition, the multi-step, multi-faceted nature of these problems provides fertile 
ground for examining students' procedural knowledge and conceptual 
understanding of several important mathematical ideas that appear throughout the 
calculus course. 

In the present study, a standard multi-step model for solving related-rates 
problems is identified. Each step in this model is then classified as procedural or 
conceptual. By analysing student performance on items corresponding to each step 
of the standard solution model  inferences are made about students' procedural 
knowledge and conceptual understanding. 

Rationale 

Solving Geometric Related-Rates Problems 
By examining expositions and worked examples in several textbooks (Berkey, 

1988; Dick & Patton, 1992; Feroe & Steinhorn, 1991; Lial, Miller, & Greenwell, 
1993), interviewing mathematics faculty and graduate students, and examining 
student work, it was found that the solution of related-rates problems generally 
involves the same six steps. More complex problems may also require one 
additional step: the solution of an auxiliary problem--which in the case of 
geometric related-rates problems is related to the geometric context (e.g., 
proportions in similar triangles, use of the Pythagorean relationship). The seven 
steps are shown in Table 1; I will refer to them as the standard solution model for 
geometric related-rates problems. It should be noted that, although Steps 1-6 
generally occur in sequence, Steps 1 and 2 may happen in either order and there 
may be frequent "backtracking". Step 7 may occur at any point. 

Procedural Knowledge and Conceptual Understanding 
Several authors (National Assessment of Educational Progress [NAEP], 1988; 

Cooney, Davis, & Henderson, 1975; Hiebert & Lefevre, 1986) have made a 
distinction between procedural knowledge and conceptual understanding. 
Procedural knowledge is characterised by the ability to note, select, and apply the 
appropriate concrete, numerical, or symbolic procedures required to solve a 
problem; and to verify and justify the correctness of these procedures. Conceptual 
understanding is characterised by the ability to identify examples and non- 
examples of a concept; to use, connect, and interpret various conceptual 
representations; to know, apply, distinguish, and integrate facts, definitions, and 
principles; and to interpret assumptions and relations in a mathematical setting 
(NAEP, 1988). 
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Table 1 
Description and Classification of Steps in Solving Geometric Related-Rates Problems 

Step Description Classification 
1 Sketch the situation and label the sketch with Conceptual 

variables or constants 
Summarise the problem statement by defining the 
variables and rates involved in the problem 
(words to symbols translation) and identifying 
the given and requested information 
Identify the relevant geometric equation 
Implicitly differentiate the geometric equation to 
transform a statement relating measurements to a 
statement relating rates 
Substitute specific values of the variables into the 
related-rates equation and solve for the desired 
rate 
Interpret and report results 
Solve an auxiliary geometry problem 

2 Conceptual 

3 Procedural 
4 Procedural 

5 Procedural 

6 Conceptual 
7 (varies) 

White and Mitchelmore (1996) claim that procedural knowledge and 
conceptual understanding involve different types of concepts. Abstract-general 
concepts are formed by a generalising ~ synthesising ~ abstracting sequence 
(Dreyfus, 1991) or an interiorisation --~ condensation --~ reification process (Sfard, 
1991). Such concepts are linked to one another to form conceptual understanding. 
By contrast, abstract-apart concepts are formed by learning symbolic manipulations 
without reference to their meaning. Students whose concepts are abstract-apart can 
only acquire procedural knowledge. 

It was found that most of the steps in the standard solution model for 
geometric related-rates problems could be classified as procedural or conceptual on 
the basis of whether primarily procedural knowledge (involving abstract-apart 
concepts) or primarily conceptual understanding (involving abstract-general 
concepts) was required for its completion. The following explains the rationale for 
the classification included in Table 1. 

Steps 1 and 6. The first and sixth steps both rely on students' ability to translate 
between verbal and symbolic representations of the quantities involved in the 
problem. These steps clearly require conceptual understanding. For example, 
White and Mitchelmore (1996) show that, in order to solve problems that require 
translation from prose to symbols, students must have an abstract-general concept 
of variable. In order to perform the translation, students must conceive of a 
variable as representing an element in the context and as retaining this meaning 
when mathematical processes are performed on it. Students whose concept of 
variable is abstract-apart can only manipulate symbols that are disengaged from 
the context. 

By comparing student performance on isomorphic related-rates problems that 
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required a varied amount of translation of prose to symbols, White and 
Mitchelmore (1996) concluded that many beginning calculus students have 
abstract-apart concepts of variable. Two of the common errors they report illustrate 
this. (1) An inappropriate use of a constant in place of a variable: Required to 
derive a rate at a particular instant, many students calculated the given rates at that 
instant--instead of deriving the related rate using variables and then finding its 
value at that instant. (2) A manipulation focus: Many students wrote down 
remembered formulae and then sought variables to substitute in them. Thompson 
(1994), in a s tudy of student understanding of the rate concept in the context of the 
Fundamental  Theorem of Calculus, also found that students tend to manipulate 
variables according to previously learned patterns of actions without attending to 
the meanings of the variables. 

Step 2. The second step requires students to go beyond translation of individual 
variables in order to identify assumptions and construct representations of 
relations among variables and rates described in the problem statement. For 
example, fihe rate of change of a variable is represented by the derivative of that 
variable with respect to time. This step relies on students'  conceptual 
understanding, because students must connect the symbolic representation for a 
derivative with the concept of derivative as a rate of change. In his seminal study 
of student understanding of differentiation and integration, Orton (1983b) 
discovered that one of the understandings that most often eluded students was the 
ability to ir~terpret the derivative as a rate. 

Perhaps one reason that students have so much difficulty interpreting 
derivatives as rates is that they are unable to distinguish between instantaneous 
and average rates of change. Schneider (1992) presented a related-rates problem to 
two classes of about 20 students, each of whom were in their second to last year of 
secondary school (about 16 years old). Schneider's s tudy documented students' 
difficulties making the cognitive leap from average rate of change to instantaneous 
rate of change. The students who were able to make the leap did so by maintaining 
the distinction between the limiting value of an expression as a component variable 
approaches zero and the value of an expression when a component variable is 
equal to zero. Students who were unable to make the leap could not do so because 
they did not distinguish the limiting value from the exact value. Even among those 
who had completed three semesters of calculus, Thompson (1994) found that 
students could not understand covariation among rates because of their weak 
schemes for average and instantaneous rates of change. Schneider's and 
Thompson's  findings give further credence to the categorisation of Step 2 as 
primarily involving conceptual understanding. 

Steps 3, 4 and 5. Since the third, fourth and fifth steps of the standard solution 
model involve the selection and application of symbolically based procedures, they 
may be characterised as calling on procedural knowledge. Orton (1983b) found that 
students had least difficulty using algorithms to compute derivatives, although he 
noted difficulties factoring and solving algebraic equations. 

Step 7. Students '  ability to solve auxiliary problems has not been previously 
examined in the context of ability to solve related-rates problems. Since the 
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auxiliary problems vary widely, it is not possible to classify this step as procedural  
or conceptual. Like the related-rates problems themselves, some components  of an 
auxiliary problem may require procedural knowledge whereas others require a 
conceptual understanding. 

Balomenos, Ferrini-Mundy, and Dick (1987) suggested that one way to 
improve student performance on related-rates problems would be to have them 
gain more experience solving the geometry problems that are often embedded  in 
them. The relationship between student performance on Step 7 and  overall 
performance on related-rates problems should provides evidence on the 
importance of this step. 

Statement of the Problem 
This study aimed to characterise students'  ability to solve geometric related- 

rates problems by identifying the conceptual and procedural knowledge required 
and, if possible, identifying which type of understanding is most closely related to 
successful performance. The specific questions guiding the research were as 
follows. 

1. How do university students enrolled in an introductory calculus course 
perform on geometric related-rates problems? 

2. How do such students perform on (a) the conceptual steps 1, 2 and 6, (b) 
the procedural steps 3, 4 and 5, and (c) the combined step 7 of the standard 
geometric related-rates model? 

3. How is performance on the various steps of the model related to each 
other and to overall performance? 

Method 
In order to investigate the three research questions, a non-randomised 

performance study was designed. Students' ability to solve geometric related-rates 
problems was assessed using two written instruments. The first instrument, 
consisting of three open-ended geometric related-rates problems, was used to 
determine how students perform on geometric related-rates problems. The second 
instrument was used to assess students' ability to perform each step of the 
standard solution model independently. Although student performance on written 
tests is a limited source of information about their problem solving, it was felt that 
such tests could identify components which cause students the greatest difficulty. 
In doing so, it has been assumed that responses to written tests serve as reasonable 
indicators of students'  conceptual and procedural understanding. 

Sample 
The sample for the s tudy was selected from students enrolled in two 

introductory calculus courses (Calculus I) at a large, private university in an urban 
area in the northeast United States. The courses were designed for students 
majoring in mathematics, physics, or engineering, but were also open to students 
majoring in other subjects. Both courses were traditionally taught, and the same 
textbook (Berkey, 1988) was used in both classes. 
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There were 120 students in Course A. The majority of students in this course 
were enrolled in the College of Liberal Arts or the College of Engineering. 
Course B, with 40 students, was primarily designed for College of Engineering 
students who had performed relatively poorly on a mathematics placement test 
administered by the University. Both groups of students had similar mathematical 
preparation, as indicated by their standardised test scores (SAT). 

Table 2 
Selected Sample Characteristics (n = 58) 

Characteristic Value 

Mean (SD) SAT-Mathematics score 607 (68) 
Mean (SD) SAT-Verbal score 497 (118) 
Mean (SD) number of university courses completed 0.2 (0.5) 
Mean (SD) year at university 1.1 (0.4) 
Percentage completed a previous calculus course 56% 
Percentage female 69% 

The 58 students (34 from Course A and 24 from Course B) who took both the 
test instruments form the sample for the present study. Table 2 presents summary  
statistics on some relevant characteristics of the sample. Analysis showed that this 
sample of students was reasonably representative of the 160 students enrolled in 
Courses A and B (Martin, 1997). 

Instruments 
Test 1. The first test instrument (Figure 1) was a mandatory quiz contributing 

to both course grades. It was designed to measure students'  ability to solve 
standard geometric related-rates problems. The three problems were selected from 
Dick and Patton (1992) and Feroe and Steinhorn (1991) for their comparability to 
questions in the course text. In addition, the problems were chosen to vary in 
geometric context and the number of steps required for their solution. The content 
validity of Test 1 was verified by a panel of experts consisting of mathematics 
professors, a physics professor, and graduate students in mathematics-related 
fields. 

Test 1 was administered immediately after instruction on related-rates 
problems, about a month after the courses began. It was taken by 154 students. 

Test 2. The second test was a ten-question instrument designed to measure 
students' ability to perform the seven steps in the standard solution model for 
geometric related-rates problems (see Table 1). Several questions contained 
multiple parts, each of which was considered a separate item, so that the total test 
consisted of 26 items. Each item addressed one and only one of the seven steps. 
(See Table 4 for the number of items addressing each step.) 
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Show all calculations. Answer every question with a full sentence. 

Consider a balloon being inflated over time. Suppose the balloon is considered to be 
a perfect sphere and its radius is changing at the rate of 3 cm/sec. How fast is the 
volume-of the balloon changing when the radius is 20 cm? 

Two roads intersect at right angles. Two cars leave simultaneously from the 
intersection. The first car travels at a speed of 30 mph travelling due north. The other 
car travels at a speed of 40 mph travelling due east. How fast is the distance between 
them increasing 30 minutes later? 

A water tank is in the shape of a right circular cone that has a radius of 5 feet and a 
height of 10 feet. It is positioned so that the cone points straight down. Water is being 
drained out of the tank at the rate of 2 cubic feet per minute. At what rate is the 
height of the water in the tank changing when there are 18~ cubic feet of water in the 
tank? 

Figure 1. Test 1. 

Figures 2, 3, and  4 show some sample items from Test 2. In Figure 2, Ques t ion  
8 addressed  Step 6 of the s t anda rd  solution model,  Quest ion 10a addressed  Step 1, 
and  Question 10b addressed  Step 2. In Figure 3, Question 1 addressed  Step 3, 
Question 4 addressed  Step 4, and Question 7 addressed Step 5. Quest ion 9 in 
Figure 4 addressed Step 7. The complete test is available in Martin (1997). Member s  
of the expert  panel  conf i rmed its content validity. 

Since Test 2 was  fairly long, it was necessary to include a sa feguard  in the 
design so that  the order  of the questions would  not affect student performance.  Ten 
alternate forms of the test were  constructed using a Latin Square Design and  
randomly  assigned to students.  An analysis of s tudent  performance on the ten 
versions of Test 2 indicated no significant differences among  the ten forms. 

The second test was  adminis tered within two days  of Test 1. It was  optional,  
but  s tudents  were  s trongly encouraged to take it. Test 2 was taken by 58 s tudents ,  
all of w h o m  had also taken Test 1. 

Scoring 
Test 1. Test 1 was  scored by  the researcher using a rubric based on solutions 

generated by the panel  of experts. This rubric outl ined the criteria for allocation of 
part ial  credit and was  des igned so that independent  raters could score the test 
wi thout  requir ing any addi t ional  instructions. The three problems were va lued  at 
8, 10, and 12 points, respectively,  for a total of 30 points. The second and  third 
problems were  allocated more  points because the inclusion of auxiliary steps mean t  
that  there were  more steps requi red  for their completion. 
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. A calculus student has left the following computations on the page under the 
problem below. Assuming that the computations are correct, write the answer to the 
problem in one or two sentences. 

A ladder 26 ft long leans against a vertical wall. If the lower end is being pulled 
away from the wall at the rate of 5 ft/sec, how fast is the top of the ladder 
moving when the lower end is 10 ft from the wall? 

f2 + w 2 = 262 

d--f-f+ 2w dw 
2 f at dt =0 

dw - f  df 
dt w dt 

dw -10 -25 
- -  - - - ( 5 )  = 
dt 24 12 

W 

10. Consider the following problem. Do not perform any calculations. 

A woman standing on the bank of a river is reeling in a fish. The tip of her 
fishing rod is 5 ft above the water's surface at the bank's edge. How fast is the 
fish approaching shore, when there are 30 ft of line out from the tip of the rod 
and the woman is reeling in line at a rate of 3 in/sec? 

(a) Draw a sketch that may be useful in visualising the situation and label all 
variables and known quantities. 

(b) Define (in words and symbols) all variables and rates that are relevant to the 
solution of the problem. 

Figure 2. Sample  conceptual i tems from Test 2. 

For each problem, points  were  a w a r d e d  for each of Steps 3-7 of the s tandard  
solution model  (except for Problem 1, which contained no Step 7). Steps 1 and  2 
were omit ted because they could be per formed mental ly without  writ ten evidence 
of their completion. The var ious  steps are, of course, chained (i.e., the correct 
completion of a step depends  on the correct completion of previous steps). The full 
number  of points was  a w a r d e d  for each step if the appropriate  procedure  was  
per formed  correctly, even if incorrect information was  incorporated f rom previous 
steps. 

To determine the reliability of Test 1 scores, another rater independent ly  
scored a quarter  of the test papers .  The correlation between the two raters '  total 
scores was  0.95. The correlations be tween the scores given by the two raters for 
Problems 1, 2, and 3 were  0.89, 0.90, and 0.90, respectively. These correlations 
indicated satisfactory inter-rater  reliability. To measure  the internal consistency of 
Test 1, Cronbach 's  a lpha  was  used.  The value of 0.63 indicated a moderate  internal 
consistency which was  acceptable for the purposes at hand. 
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. Consider  a conical water  cup,  wi th  a small  hole  th rough  which  water  leaks  f rom the 
bottom. See sketch. 

Suppose  the rate at wh ich  the rad ius  of the wa te r  in the cup is decreasing is k n o w n .  

(a) Record a geometric formula  that w o u l d  be useful in f inding the rate at  w h i c h  the 
vo lume is changing. 

4. Implicit ly differentiate the fol lowing equat ions wi th  respect to time. 

(a) x3+y3+z 3= w 3 
(b) V = x2y 
(c) A = s 2 

. dn = 4 cm/sec ,  dV _ 5 cm3/sec .  Find dA Suppose n = 3 cm, dt dt dt  

situations. (Be sure to include units  in answer.)  

(a )  d A  = 2mz  dn 
dt  dt 
dV 1 dA 1 dn 2 

(b)  - n ~  + -  4m~ 
dt 3 dt 3 dt 

in each of the fo l lowing 

Figure 3. S a m p l e  p r o c e d u r a l  i t e m s  f r o m  Test  2. 

. Two roads intersect at r ight  angles. A car leaves the intersection headed  eas tbound  and  
travels at 40 mph.  Two hours  later, another  car leaves the same intersection head ing  
no r thbound  at 30 mph.  H o w  far is each car f rom the intersection and  from the other  car, 
5 hours  after the eastbound car leaves? See sketch. 

N 

E 

Figure 4. S a m p l e  a u x i l i a r y  p r o b l e m  f r o m  Test  2. 
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Test 2. Test 2 items were scored as correct or incorrect by the researcher. 
Because there was no partial  credit, no scorer reliabili ty check was carried out. 
Cronbach alphas were 0.73 for the test as a whole, 0.57 for the total score on the 
conceptual cluster (the 6 items related to Steps 1, 2, and  6) and 0.55 for the total 
score on the procedural  cluster (the 18 items related to Steps 3, 4, and 5). 

Results 
Table 3 shows how students performed Test 1 as a whole and on each of the 

three questions individual ly.  In each case, the mean  and  s tandard deviat ion is 
reported as a percentage of the m a x i m u m  possible score. The difference be tween 
the mean  scores of students enrolled in the two courses was  not significant (p > 
0.05). 

Table 3 
Mean and Standard Deviations of Subscores and Total Score on Test I (n = 58) 

Question (context) Mean score Standard deviation 

1. (Sphere) 55% 25% 
2. (Triangle) 52% 35% 
3. (Cone) 27% 25% 

Total score 43% 22% 

Test 2 results are summar i sed  in Table 4. Again, means  and s tandard  
deviations are reported as percentages of the m a x i m u m  possible score for each 
cluster of items. The mean  score for the conceptual steps (Steps 1, 2, and 6) var ied 
f rom 17% to 47%, giving an overall (unweighted) mean  of 30%. The mean  score for 
the procedural  steps (Steps 3, 4, and 5) varied from 41% to 78%, with an 
unweighted  overall mean  of 54%. 

Table 4 
Mean and Standard Deviations of Subscores on Test 2 (n = 58) 

Step No. of i tems 

1. Sketch and label 2 
2. Summarise  information 3 
3. Identify equation 11 
4. Implicitly differentiate 5 
5. Substitute and solve 2 
6. Interpret results 1 
7. Solve auxiliary problem 2 

Mean  score Standard deviat ion 

17% 29% 
26% 23% 
78% 21% 
44% 36% 
41% 33% 
47% 50% 
53% 38% 
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Table 5 shows how the subscores on Test 2 were  related to each other and to 
the total score on Test 1. The Test i total score was significantly related to the Test 2 
subscores for Step 2 (one of the conceptual steps); Steps 3, 4, and 5 (the three 
procedural steps); and Step 7. All correlations among Test 2 subscores were 
positive and about half of them were statistically significant. 

Table 5 
Correlations between Total Test I Score and Test 2 Subscores 

T1 T2.1 T2.2 T2.3 T2.4 T2.5 T2.6 
T2.1 0.15 
T2.2 0.31" 0.26* 
T2.3 0.39** 0.30* 0.28* 
T2.4 0.63** 0.34** 0.34** 
T2.5 0.38** 0.15 0.18 
T2.6 0.14 0.30* 0.32* 
T2.7 0.49** 0.23 0.40** 

0.43** 
0.19 0.23 
0.01 0.21 
0.48** 0.44** 

0.16 
0.21 0.11 

Note :  T1 = Total  score  on  Test  
* p < 0 . 0 5  **p<0.01  

Overall Performance 

1, T2.1= Subscore  1 on  Test  2, and  so  on.  

Discussion 

Even though the students had recently studied the material, the average 
percentage score was below 60% for all of the geometric related-rates problems on 
Test 1. The students had the least difficulty with Question I (the sphere problem) 
and the most difficulty with Question 3 (the cone problem). There are several 
factors which might have contributed to this difference. 

An important factor seems to have been the degree of convergent and 
divergent thinking required to analyse the geometric context. Question 1 requires 
only identification of a geometric formula, differentiation, substitution, and 
algebraic manipulation. It does not require any reasoning about the sphere other 
than correctly identifying and linking variables. By contrast, Questions 2 and 3 
incorporate auxiliary steps which require reasoning within the geometrical context 
of each problem. In Question 2, however, the problem statement (which includes 
references to rates, time, distance, and right-angled triangles) cues all the important 
ideas related to the solution of the auxiliary problem. On the other hand, the 
statement of Question 3 would lead one to sketch a cone whereas the auxiliary 
problem requires recognition of similar triangles obtained by sectioning the cone. 

Another factor contributing to problem difficulty may have been the number of 
steps required to solve the auxiliary problem: Question I has no auxiliary problem, 
and the auxiliary problem in Question 2 requires fewer steps than the auxiliary 
problem in Question 3 with fewer choices at each step. Finally, students may 
simply have been more familiar with the distance-rate-time relationship and the 
Pythagorean theorem required in Question 2 than with similar triangle 
relationships and the formula for the volume of a cone in Question 3. 
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Performance on Conceptual Steps 

Performance on Test 2 was lowest for two of the conceptual steps, Steps 1 and 
2 (see Table 4). This result echoes findings of Dreyfus (1990), Orton (1983a, 1983b), 
and White and Mitchelmore (1996). 

To complete Step 1, students must sketch a geometric figure that represents the 
relationships described in the problem statement and label the figure with 
variables and constants as appropriate. Students' difficulty with this step (17% 
correct) reinforces Dreyfus' (1990) conclusion that when students solve calculus 
problems, visualisation is rare and is disconnected from algebraic representations. 

To complete Step 2, students must identify the given and requested 
information and verbally and symbolically represent it. In order to perform this 
step, students must engage in a focusing --~ identifying --~ synthesising --~ devising 
process. First, students must focus on relevant sections of the statement of the 
problem. That is, they must realise that a phrase such as "the rate at which the 
radius is changing" can be thought of as a coherent whole and that it has 
significance in determining what is given and what  is requested in the problem. 
Next, a key phrase that indicates the nature of the mathematical object, such as 
"rate of change", must be identified. In order to translate from a verbal to a 
symbolic representation, students must then synthesise the key phrase, generate a 
mental image of the mathematical object, and retrieve a set of standard symbolic 
representations for the concept. Finally, students must devise a symbolic 
representation that is appropriate for the specific rate requested in the problem, 

dr  such as 
dt 

In order to engage in this process, one must have an abstract-general (White & 
Mitchelmore, 1996) concept of variable. Meaningful translation from prose to 
symbols requires that the abstract symbols themselves must be intimately tied to 
the concepts they represent (Harel & Kaput, 1991). In addition, the ability to 
represent rate of change of a variable, say radius, with a derivative notation, say 
dr  
d l '  requires that the variable be thought of as an entity which can be acted upon 

by the differentiation process. Based on student performance (mean score 26%), we 
can surmise that few of the students in the present s tudy had an abstract-general 
understanding of variable in this context. 

Specifically, when students were asked to identify whether quantities or rates 
mentioned in a problem statement varied or remained constant, they were often 
unable to do so correctly. For example, when asked to identify variables or rates 
that remain constant over time in Problem 5(a), an item linked to Step 2, 25 
students (43%) incorrectly answered s, s = 200 ft, or 100 ft (see Figure 5). In effect, 
these students were claiming that a quantity that varied over time (the amount  of 
string let out or the height of the kite above her hand) was constant, and the values 
of this "constant" was the value of the variable at the instant in question. This 
inability to distinguish between variables and constants was one of the prominent 
error patterns noted by White and Mitchelmore (1996). 
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. Consider the following problem. 

A girl is flying a kite in a wind that is blowing east at a rate of 50 ft/min. How fast 
must the string be let out at the instant when the kite is 100 ft above her hand and 
there is already 200 ft of string let out? See sketch. 

\ 

ds dw Choose from among s, w, , or to answer the following questions. Variables or 
dt dt 

rates may be used more than once. 

(a) Which variable(s) or rate(s) retains a constant value for any time, t? Give the 
constant value(s). 

Figure 5. Test 2 item in which students mus t  identify constants. 

Students '  responses  to Problem 5(a) highlighted some other difficulties as well. 
Al though a literal interpretat ion of the problem would  render  the physical  
situation impossible (the kite would  fall if its eas tward  motion were  the same as the 
speed of the wind),  none of the students seemed bothered by this. The sketch 
provided  for s tudents  labelled the horizontal distance be tween the person  and  the 
kite as w, implying the horizontal  movement  was  due to the wind.  A l though  the 

dw 
students  were  not all able to correctly identify dt as a constant, none compla ined  

dw 
of a physical  impossibility. Specifically, 22 students  called dt a constant  and  23 

called it a variable. Abou t  half of each of those groups  at tached the va lue  of 
dw 

50 f t / m i n  to the symbolic representation . The other half  only used the rate 
dt 

symbol, wi thout  any  numerical  values. Of the 7 s tudents  who  attached the value  50 

f t / m i n  to a symbol  other  than 

one said it was  the va lue  of ds 
dt 

dw 

dt 
, 6  of those said it was  the value of w a n d  only 

• Since the students were  not questioned abou t  their 

responses to this problem,  it is not clear w h y  they accepted, wi thout  question, the 
physical contradict ions in the setting. Perhaps they lacked an unders tand ing  of the 
mathemat ica l  or physical  relationships in the problem. Alternatively, if they  had  
sufficient background  knowledge,  perhaps they lacked the desire or experience to 
evaluate their solutions f rom a sense-making perspective. 

The low mean  (47%) for the third conceptual step, Step 6, suppor ts  Or ton ' s  
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(1983b) finding that students have difficulty interpreting derivatives. The fact that 
students performed better on this step than they did on Steps I and 2 suggests that 
translation from symbols to prose is easier than translation from prose to symbols. 
When translating symbols to prose, it is not necessary to identify a key phrase or 
excerpt of text. When one examines a list of algebraic steps that culminate in a 

dw -25 
solution, it is clear that the last line (e.g., d'--~- - 1---2- in Problem 8, Figure 2) is the 

important information on which to focus. The only translation that is required is 
dw the translation of the derivative notation (i.e., -~/represents  the rate at which the 

ladder is sliding up the wall). This step also requires the interpretation of the sign 
of the numerical value and an assignment of units based on the context of the 
problem. An examination of the errors associated with this problem revealed that 
students'  difficulties were often due to factors other than an inability to translate 
the derivative notation. The most frequently occurring error was an incorrect 
interpretation of the sign Of the answer; another frequent error was the failure to 
report units or the reporting of incorrect units. In fact, 66% of the students were 
able to correctly translate a symbolic representation of the derivative to a verbal 
representation. This finding indicates that decoding symbols may be much easier 
for students than encoding symbols. 

Performance on Procedural Steps 
Performance on Test 2 was strongest (78% correct) for one of the procedural 

steps, Step 3. It could be argued that this step is the least intellectually demanding 
of the procedural  steps, reflecting only an ability to memorise formulas. However, 
if the students cannot recall basic geometric formulas, they cannot hope to solve 
geometric related-rates problems correctly. Performance on Steps 4 and 5 (44% and 
41%, respectively) suggests an even lower ceiling on the number of problems that 
students could possibly solve correctly. Being able to differentiate implicitly and to 
substitute and solve are especially critical in a computation-intensive, traditional 
calculus course where no technological aids are available. 

These results appear contrary to Orton's (1983b) conclusion that the procedural 
aspects of differentiation are well understood. This s tudy is not directly 
comparable to Orton's, since his observations were made on the basis of students'  
performances on tasks involving only explicitly defined functions. However, the 
students in this s tudy had at least a week of practice with implicit differentiation 
just before the two tests were given. In addition, given their mathematical 
backgrounds, we can assume that these students all had extensive experience with 
algebraic equations in preparation for calculus. The fact that the average score on 
the three procedural steps was still only just over 50% must raise serious concern. 

Relation between Procedural Knowledge, Conceptual Understanding, 
and Problem Solving Performance 

The present s tudy confirms what  others (such as Dreyfus, 1990; Orton, 1983a, 
1983b; and White and Mitchelmore, 1996) have found, that students have greater 
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difficulty with conceptual steps than they havewi th  procedural steps in problem 
solving. Many students may have been working with variables on a strictly 
procedural level, with the symbols disconnected from the concepts they represent. 
As an illustration, consider the case of Mary, who recorded a valid implicit 
differentiation for all three equations in Problem 4 (see Figure 3). In addition, Mary 
was able to correctly substitute into and solve both equations in Problem 7 (also 
shown in Figure 3). However, on Problem 5(a) (shown in Figure 5) Mary  claimed 
that the variable quantities were constant and that the constant rate was  variable. 
This inconsistency in her performance indicates an abstract-apart unders tanding of 
variables and rates. 

From studies that document students'  weak conceptual ability, many  have 
concluded that, if students only understood what they were doing, they would 
perform better (Dreyfus, 1990). If that were true, then we would expect substantial 
correlations between performance on conceptual steps and performance on 
geometric related-rates problems. However, in this study, performance on only one 
of the three conceptual steps was significantly correlated with performance on Test 
1, and the correlation was quite weak. In contrast, performance on all three 
procedural steps and the auxiliary step was significantly correlated with 
performance on Test i and the correlations were all higher. 

How do we account for this counterintuitive result? It cannot be dismissed as a 
statistical artefact, because scores on the conceptual steps did not have a lower 
reliability or lower variation than scores on the procedural steps (see Table 4). 
However, it may have been due to the omission of Steps 1 and 2 from the scoring 
rubric for Test 1. To explore this possibility, Test 1 was re-scored allocating points 
to the first two steps (wherever there was any written evidence). This change led to 
no significant change in the total score, expressed as a percentage of the maximum 
possible score (p > 0.10), and correlations with the subscores on Test 2 only 
changed slightly. In particular, the correlation between scores on Test 1 and on 
Subscore 2 on Test 2 increased to 0.36 and became statistically significant at a 
higher level of significance (p < 0.01). There is, then, some evidence that students 
who are better able to summarise a problem statement tend to be better at solving 
geometric related-rates problems. 

Conclusions 
The present study has demonstrated that calculus students are poor at solving 

geometric related-rates problems, particularly those that require the completion of 
auxiliary steps. Proponents of the "back to traditional" approach to calculus 
instruction should note that even in classes primarily populated by  mathematics, 
science, and engineering students, the traditional instructional approach led to 
disappointingly poor performance on steps linked to procedural knowledge as well 
as on steps primarily relying upon conceptual understanding. 

If it is true that "[symbolic] notations help provide the basis for conceptual 
presence" (Harel and Kaput, 1991, p. 89), then it is critical for students to be 
confident, competent users of symbolic representations. However, it is also critical 
for. students to be able to make connections among verbal, symbolic, and graphical 
representations. It is important  for calculus students to engage in both the 
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processes of decoding and encoding symbolic representations, recognising that 
these two skills may represent different levels of conceptual understanding. 

The students in this study were unable to translate previous success in 
geometry and algebra to success in calculus. It is no longer appropriate to assume 
that success in prior mathematics courses will predict success in calculus. It is time 
to insist that both the conceptual and procedural domains and the links between 
them receive considerably more attention throughout the school curriculum. 

In this study, we found lower correlations between conceptual understanding 
and problem-solving performance than between procedural understanding and 
problem-solving performance. One possible explanation is that it is entirely 
possible to be "successful" in traditional calculus without understanding what  you 
are doing. Anti-reformists might counter that the danger of conceptually focused 
reformed curricula is that it is possible to be "successful" in reformed calculus 
despite weak algebraic or procedural skills. Perhaps both perspectives have some 
truth to them. Although the debate over traditional versus reformed calculus 
lingers on, it is clear that we must first determine what success in calculus ought to 
be, then design curriculum and assessment to match that vision. 
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