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Multistate life table methods are often used to estimate the proportion of remaining life that indi-
viduals can expect to spend in various states, such as healthy and unhealthy states. Sullivan’s method 
is commonly used when panels containing data on transitions are unavailable and true multistate 
tables cannot be generated. Sullivan’s method requires only cross-sectional mortality data and cross-
sectional data indicating prevalence in states of interest. Such data often come from sample surveys, 
which are widely available. Although the data requirements for Sullivan’s method are minimal, the 
method is limited in its ability to produce estimates for subpopulations because of limited disaggrega-
tion of data in cross-sectional mortality  les and small cell sizes in aggregated survey data. In this 
article, we develop, test, and demonstrate a method that adapts Sullivan’s approach to allow the inclu-
sion of covariates in producing interval estimates of state expectancies for any desired subpopulation 
that can be speci  ed in the cross-sectional prevalence data. The method involves a three-step process: 
(1) using Gibbs sampling to sample parameters from a bivariate regression model; (2) using ecologi-
cal inference for producing transition probability matrices from the Gibbs samples; (3) using standard 
multistate calculations to convert the transition probability matrices into multistate life tables.

ultistate life table methods are used in demography to estimate the length of remaining 
life that individuals can expect to live in different states, such as healthy versus unhealthy 
states, married versus unmarried states, and so on. One of the most common applications 
has been the estimation of healthy life expectancy (HLE): the length or proportion of 
 remaining life spent free from disability, chronic disease, or other health problem. A  speci  c 
focus of multistate methods has been to estimate active life expectancy (ALE), which is 
the length of life spent free from physical limitations. To date, the method most often used 
to estimate ALE has been Sullivan’s (1971) method, which is not a true multistate method 
but which provides good estimates of ALE with less stringent data requirements than true 
multistate approaches (Crimmins and Saito 2001; Crimmins, Saito, and Ingegneri 1997).

True multistate methods require panel data for computing transition probabilities 
 re  ecting the movement of individuals into and out of different states across time (see Land 
and Hough [1989] for an exception). Recent advances in multistate life table methodology 
include (1) the use of multivariate hazard models to produce smoothed transition probabili-
ties for generating multistate life tables for speci  c subpopulations, and (2) the develop-
ment of simulation-based methods for constructing interval estimates of state expectancies 
when sample data are used. As an example of the former, Land, Guralnik, and Blazer 
(1994) showed how predicted values from loglinear models with covariates could be used 
to generate expected age-speci  c transition probability matrices for input into multistate 
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life table calculations, thereby leading to the construction of multistate life tables for any 
desired subpopulation, including those for which data disaggregation would have yielded 
sample sizes too small for stable estimation.

Multistate life tables derived under this approach, however, do not address the uncer-
tainty inherent in using sample data. Thus, research over the past decade has concentrated 
on methods to capture uncertainty. Wolf and Laditka (1996) showed how a Markov pro-
cess model can be estimated via multinomial logistic regression and used to simulate life 
histories and thereby to obtain individual-level variability in life table functions (see also 
Laditka and Wolf 1998). This method was extended by Lievre, Brouard, and Heathcoate 
(2003) via the derivation of standard errors using the delta method.

Hayward, Rendall, and Crimmins (1999) used a data bootstrap to obtain samples of 
hazard model parameters, generated transition probability matrices for each bootstrap 
sample, and computed multistate tables from these matrices, yielding bootstrapped con-
 dence intervals (CI) for multistate expectancies. Lee and Rendall (2001) used a similar 

approach, but simulated the hazard model parameters directly from the sampling distribution 
implied by the parameters and standard error estimates from a single hazard model. More 
recently, Lynch and Brown (2005) used Gibbs sampling to sample hazard model parameters, 
generated transition probability matrices for each Gibbs sample, and computed multistate 
tables from them, yielding interval estimates. Most recently, Cai and Lubitz (2007) and Cai, 
Schenker, and Lubitz (2006) showed how to use bootstrapping procedures to compensate 
for complex sample design in generating standard errors for multistate life table quantities.1

Despite these recent advances, the availability of panel data remains a signi  cant 
 impediment to the use of multistate methods for up-to-date life table estimation and evalu-
ation of trends over time in both developed and developing countries. Although panel data 
are more prevalent now than historically in developed countries, relatively few panels  exist 
that cover signi  cant portions of the age distribution for many birth cohorts. Consider 
the case of HLE in the United States, for example. The National Health and Nutrition 
 Examination Survey (and its follow-ups—the National Health Epidemiologic Followup 
Surveys NHEFS)) is one of the longest running panel data sets investigating health and 
covering the entire adult age range. However, although the study spans 1971–1992 and cov-
ers persons ages 24–77 at baseline, it has limitations. First, there are only four (unevenly 
spaced) waves of data over the more than 20-year span. Second, the panel is not replenished 
at each wave, so estimates of HLE cannot be obtained for cohorts born after 1946. Third, 
the data are dated, given that the last follow-up occurred more than a decade ago. In devel-
oping countries, even this type of data is generally unavailable.

The limitations of panel data make Sullivan’s method an attractive alternative to true 
multistate methods because Sullivan’s method produces multistate-like estimates by  using 
independent sets of cross-sectional data for mortality and for health (or other) states. Cross-
sectional mortality data are produced annually in most developed countries, and annual 
cross-sectional prevalence estimates for health (or other states) can be obtained from vari-
ous sources, including repeated cross-sectional surveys in particular. One such source in the 
United States is the National Health Interview Survey (NHIS), a repeated cross-sectional 
survey conducted every year since 1969. Thus, in theory, Sullivan’s method can allow 

1. At least two types of interval estimates can be constructed for state expectancies. One type of interval esti-
mate concerns the extent to which a population-level measure—such as life expectancy—may vary, conditional on 
the observed data; the other concerns the extent to which individuals’ experiences may vary around the population 
mean. The difference between these two types of variability can be best understood as the difference between a 
standard error and a standard deviation. In this article, we are concerned with the extent of possible variability in 
the population-level expectancy measure (as captured by a standard error of a mean). We do not attempt to estimate 
the extent of individual-level variation in the population (as captured by a standard deviation). This issue merits 
further discussion in the growing literature on multistate life table interval estimation.
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 estimation of HLE annually across roughly the past four decades, at a minimum making the 
evaluation of trends in HLE possible.

Sullivan’s method, however, suffers from at least one signi  cant limitation. Aggregate-
level measurement of state expectancies, although important, ignores important and exten-
sive heterogeneity in experience across subpopulations. Thus, Sullivan’s method is often 
applied to disaggregated data to produce subpopulation-speci  c estimates. However, the 
subpopulations for which estimates can be produced are generally limited by two factors: 
(1) the level of disaggregation possible in mortality data, and (2) the subsample sizes for 
aggregated subpopulations in survey-based prevalence data. Annual U.S. vital statistics 
mortality data cover the entire population but are generally measured coarsely—usually 
only by age, sex, and race. On the other hand, survey data can be aggregated to a much 
more re  ned level, but survey sample sizes are often too small to produce stable transition 
or prevalence probabilities for highly re  ned subpopulations (see Land et al. 1994).

Even if cell sizes are adequate so that survey data can be aggregated to produce re  ned 
subpopulation-level prevalence estimates, it is unclear how to combine mortality and sur-
vey data at different levels of aggregation and compensate for the uncertainty in multistate 
estimates that such an approach would produce. Yet, it may be desirable to obtain state 
expectancy estimates for very speci  c subpopulations even if the mortality data cannot be 
disaggregated at that level. Answering key research questions concerning group differences 
in state expectancies requires such disaggregation. For example, in this article, we consider 
the extent to which black-white differences in HLE are attributable to socioeconomic status 
(SES) differences between blacks and whites even though annual mortality data cannot 
generally be disaggregated by SES.

In this article, we propose a regression-based approach to Sullivan’s method that 
allows the inclusion of covariates measured at different levels in mortality and survey 
prevalence data and produces interval estimates of state expectancy that compensate for the 
uncertainty inherent in using such data. The method recasts Sullivan’s approach as a true 
multistate approach and uses a two-stage Gibbs sampling strategy to produce distributions 
of multistate life table quantities. In the next section, we review Sullivan’s method for a 
three-state model (the most common state space used). Then we develop a regression-based 
extension and present results of a brief simulation demonstrating the validity of the method. 
Finally, we provide an empirical example demonstrating the method’s utility for addressing 
social science research questions. Although this method can be applied to any state space, 
we focus on the case of HLE, the original setting for the development of Sullivan’s method.

ORIGINAL SULLIVAN’S (1971) METHOD
Sullivan’s method for calculating HLE involves only four steps. First, a single-decrement 
life table is produced from age-speci  c, cross-sectional mortality rates/probabilities. 
Second, data from a cross-sectional survey are used to obtain age-speci  c prevalence 
proportions of persons in poor health. Third, these proportions are applied directly to the 
person-years (L(x)) column of the life table in order to apportion the years lived in each age 
interval, [x,x + n) (where n is the interval width), into healthy and unhealthy years of life 
(say Lh(x) and Lu(x), respectively). Finally, the remaining life table calculations are carried 
out for these new person-years columns. That is, Th(x) = a = xLh(a) is the total number of 
person-years to be lived healthy from age x to the oldest age ( ), and eh(x) = Th(x) / l(x), 
where l(x) is the total number of individuals alive at age x.

Standard errors of Sullivan estimates under the linear method for computing person-
years lived can be obtained by using the binomial variance of the health proportions (see 
Molla, Wagener, and Madans 2001):

( ( )) ( )
1 [ ( ) ( ( ) (1 ( )))] / ( ),e x l x L a a a N a2

2
h h h

a x
#.

=
/
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where N(x) is the number of persons in the health survey sample aged x used to compute 
the health proportions. In this calculation, the standard errors are only approximate, in 
part because uncertainty in mortality is ignored: the mortality data are measured at the 
population level.

Table 1 presents an abbreviated empirical example of Sullivan’s method applied to 
2002 mortality data from the National Center for Health Statistics and 2002 data from the 
NHIS. The mortality data are disaggregated by age, sex, and race; and our table shows 
total and healthy life expectancy for black males. Being healthy is de  ned by a response 
of “excellent,” “very good,” or “good” to a self-rated health measure, and being unhealthy 
is de  ned by a response of “fair” or “poor.” In the table, and throughout this article, we 
assume that the mortality data used are probabilities and not rates. If rates are all that are 
available, they should be converted to probabilities prior to their use in our method (see 
Preston, Heuveline, and Guillot 2000).

In constructing this table, we used the linear assumption for person-years lived in 
each age interval, and we estimated the table for ages 30–84. Although the vital statistics 
mortality data cover ages up to 100+, the measurement of age in the NHIS peaks at 85+. 
We therefore use data on the age interval 84–85 years to close our table because it is the 
last single-year interval for which both mortality probabilities and health proportions can 
be obtained.

The  rst seven columns of this table constitute a typical single-decrement life 
table (see Preston et al. 2000). The last four columns are Sullivan’s additions. Column 8 
 contains age-speci  c proportions of healthy persons from the NHIS (n in parentheses). 
Column 9—the product of columns 5 and 8—contains the number of person-years lived 
healthy in the age interval. Column 10 is the analog to column 6: it is the sum of person-
years lived healthy from age x forward. Finally, column 11 is the analog of column 7: it is 
the expectation of healthy years yet to be lived by a person at age x.

Table 1 is useful in helping describe, under a typical stationarity assumption, healthy 
life expectancy (HLE) and total life expectancy (TLE) for the black male population. As 
this table shows, TLE at age 30 for black males was just over 42 years in 2002, 33 of which 
could be expected to be spent healthy (78.7%).

This table also shows the sample sizes used to calculate the unhealthy prevalence 
proportions (column 8), highlighting a limitation of using Sullivan’s method on disaggre-
gated data, even at a coarse level as done here (by age, sex, and race). Although the sample 
consisted of more than 15,000 individuals, only 870 were black males. After the data were 
disaggregated by age, there were generally fewer than 30 observations used to calculate 
each age-speci  c health prevalence proportion. Thus, disaggregating the data further, even 
if doing so were possible in the mortality  le, would lead to highly unstable prevalence 
proportions. A parametric method for smoothing these proportions, as discussed in Land et 
al. (1994) and Lynch and Brown (2005), is appropriate and is part of the method that we 
describe in this article.

Sullivan’s method, although straightforward to implement, has not been without criti-
cism. There has been long-standing debate regarding what Sullivan’s method assumes about 
mortality and health prevalence, as well as regarding whether Sullivan’s method produces 
reasonable estimates. Barendregt, Bonneux, and Van der Maas (1994), for example, argued 
that Sullivan’s method works poorly when disability and mortality rates are changing rap-
idly. In contrast, Mathers and Robine (1997) argued that as long as disability and mortality 
changes are smooth, the method works quite well. Most recently, Imai and Soneji (2007) 
showed that Sullivan’s method produces unbiased and consistent estimates under  stationarity 
assumptions for both health and mortality, assumptions that are often  required even if one 
is using panel data, given the relatively short-term nature of most panels. We would add 
(concurring with Mathers and Robine 1997) that although true multistate methods may be 
the best approach, when panel data are not available, Sullivan’s method is the only option.
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EXTENDING SULLIVAN’S METHOD

The method we develop reformulates Sullivan’s method as a multistate method. The key 
difference between a true multistate approach and Sullivan’s approach is that under a 
true multistate approach, age-speci  c transition probabilities are calculated directly from 
the data, or they are modeled, as in Land et al. (1994) and Lynch and Brown (2005). In 
other words, incidence is observed or modeled. In contrast, under Sullivan’s method, no 
transitions are observed; instead, age-speci  c prevalence is observed. Nonetheless, under 
the typical stationarity assumption invoked to produce period life tables, we can estimate 
the transition probabilities that produced the prevalence probabilities by using ecological 
inference to ultimately produce true multistate life tables that compensate for both sam-
pling uncertainty inherent in sample-based prevalence data and uncertainty inherent in 
the distinction between measuring prevalence versus incidence. Our method involves the 
following steps:

1. Construct a suitable data set.

2. Specify a bivariate regression model predicting prevalence proportions in 
healthy, unhealthy, and dead states, with desired covariates obtained from the 
survey prevalence  le. Simulate G samples of the model parameters using Gibbs 
sampling.

3. Specify a  xed covariate pro  le and compute predicted age-speci  c preva-
lence proportions for each state for the covariate pro  le using each of the G Gibbs 
samples of parameters. Convert these prevalence proportions into transition prob-
ability matrices using ecological inference, again, for all G sets of prevalence 
proportions.

4. Convert each of the G sets of age-speci  c transition probability matrices into 
age-speci  c, continuous-time hazard matrices, and generate G multistate life tables 
by using standard demographic calculations.

Table 2 provides a graphic depiction of this multistep process. In the following sec-
tions, we discuss each step. In the penultimate section, we compare results obtained under 
this method with those obtained using two alternative methods by using panel data from the 
1987 and 1992 waves of the NHEFS treated both as panel data and as cross-sectional data. 
In the  nal section, we illustrate the method empirically by using mortality probabilities 
from 2002 vital statistics life tables and health data from the 2002 NHIS to estimate the 
extent to which black-white differences in HLE are attributable to SES differences between 
blacks and whites in 2002.

Step 1: Constructing the Data
The data for our approach consist of a set of cross-sectional mortality probabilities and an 
n-individual cross-sectional survey data set measuring prevalence in two states (healthy/
unhealthy). Repeated cross-sectional data may be used, with year (or cohort) included as 
a covariate. Age must be measured consistently across data sets and should be recoded as 
xi = xi + (1/2)—halfway through the observed single-year age interval—to compensate for 
the fact that individuals measured in a survey are not exactly age x at the time of inter-
view. Let Xh be an n × k design matrix (including a column of ones for the intercept, age, 
and other covariates) constructed from the survey data, and let yh be an n × 1 vector of 
dichotomous health measures indicating whether respondents are healthy or unhealthy. 
Let Xm be a T × j matrix of covariates in the mortality  le, and let ym be a T × 1 vector 
of mortality probabilities, where T is the product of the number of combinations of the 
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j covariates’ values for which the mortality data can be disaggregated. In our empirical 
example, the mortality data are disaggregated by age, sex, and race, with age having 55 
values (30–84+), sex having two values, and race having two values (white, black). Thus, 
T = 55 × 2 × 2 = 220 and dim(Xm) = (220 × 3).

Typically, j < k: that is, there are more covariates in the health  le than in the mortal-
ity  le. In our example, the health  le contains education as an additional covariate, and 
so k = 5 (intercept, age, sex, race, education), while j = 3 (age, sex, race). These two data 
sources can be merged by Xm, a one-to-many merge from the mortality  le into the health 
 le. The mortality probabilities will not be unique for every individual, given that the level 

of covariate speci  city in the mortality  le will generally be lower than that contained in 
the health  le. The resulting  le will be n × (k + 2) containing Xh and Y, where Y = [yh ym]. 
Thus, for our example, the resulting data  le is n × 7 (a column of ones for the intercept, age, 
sex, race, education, a health indicator, and an age-sex-race–speci  c mortality probability).

Two comments are in order regarding the data setup. First, although we incremented 
age to halfway between the respondent’s stated and next year of age—which is an 
 appropriate strategy for the health outcome—mortality probabilities in vital statistics data 
are typically for persons at exact age x at the start of an interval, making our mortality 
probabilities slightly incorrect. However, two offsetting biases result. On the one hand, 
the mortality probabilities are too high, given that survey respondents at age x + 0.5 have 
(on average) survived half the age interval to which the mortality probabilities assigned to 

Table 2. Graphic Depiction of Process of Implementing New Method
 Step 3 Step 4  _________________________________________   _________________________________________
Step 2 (a) (b) (c) (a) (b)

1    Xa = x 1  Pr(a = x)  P(x,x + 1)    μ(a = x)

    h  h  h    h  Life table 1 for profile X

    Xa = Ω 1  Pr(a = Ω)  P(Ω,Ω+)    μ(a = Ω) 

2    Xa = x 2  Pr(a = x)  P(x,x + 1)    (a = x)

    h  h  h    h  Life table 2 for profile X

    Xa = Ω 2  Pr(a = Ω)  P(Ω,Ω+)    μ(a = Ω)

h | h h h h h h | h h h h

m    Xa = x m  Pr(a = x)  P(x,x + 1)    μ(a = x)
    h  h  h    h  Life table m for profile X

    Xa = Ω m  Pr(a = Ω)  P(Ω,Ω+)    μ(a = Ω)  

Notes: Step 1 (not shown): Construction of data and specifi cation of a bivariate probit model predicting health and 
 mortality.

Step 2: Samples of regression coeffi  cients and error correlation obtained via m Gibbs sampling iterations (entire set of 
parameters represented by , 1... m).

Step 3a: Generation of two-dimensional age-specifi c predicted scores (in z units) from the Gibbs samples (Zt = Xage ).
Step 3b: Computation of age-specifi c prevalence proportions (Pr(age)) from Zt via bivariate normal integration.
 Step 3c: Use of ecological inference to convert Pr(age) to age-specifi c transition probability matrices (P(age, age + 1)).
Step 4a: Conversion of P(age, age + 1) into continuous-time hazard matrices (μ(age)).
Step 4b: Generation of life tables from each set of age-specifi c hazard matrices. 
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them apply. On the other hand, the correct mortality probability that applies to individuals 
at age x + 0.5 should be an average of the mortality probabilities at age x and age x + 1, 
making the  assigned mortality probability slightly too low. We have found that given how 
little mortality probabilities vary from one single-year age interval to the next, coupled 
with our parametric model speci  cation (which itself contains some unavoidable error), 
our  estimates of TLE are similar regardless of whether we adjust mortality. However, 
 adjustment of mortality is relatively straightforward to make if one wishes to do so: aver-
age adjacent mortality probabilities. Second, mortality probabilities from vital statistics 
sources generally cover the entire population. In contrast, survey samples generally include 
only the noninstitutionalized population, which is a healthier population. Therefore, the 
mortality probabilities will tend to be slightly too high for survey respondents. Yet, the 
institutionalized constitute a very small proportion of the total population, and thus do not 
in  uence aggregate mortality probabilities greatly. Nonetheless, adjustment may be made 
to mortality probabilities if the bias is considered severe.

Step 2: Specifying and Estimating a Bivariate Hazard Model
Using the data constructed from Step 1, our goal is to specify a regression model predict-
ing prevalence in healthy, unhealthy, and dead states by using age and whatever additional 
 covariates are desired. The model parameters can then be used in subsequent steps to pro-
duce smoothed age- and covariate-speci  c expected transition probability matrices, similar 
to Land et al. (1994) and Lynch and Brown (2005). These matrices can then be used to 
generate multistate life tables.

Figure 1 shows a basic conceptual path model that contains all the relevant parameters 
for producing state prevalence estimates. For the sake of simplicity, we consolidated covari-
ates based on their availability in the two merged data sets. Age, sex, and race are available 
in both data sets. Age, sex, race, and mortality are available in the mortality  le; and age, 
sex, race, SES (education), and health are available in the health  le.

In Figure 1, paths A and B contain the parameters representing the in  uence of age, 
sex, and race on poor health probabilities and mortality probabilities, respectively. Paths C 

Figure 1. Conceptual Path Model for Bivariate Hazard Model Parameters to Be Estimated

Age
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SES

Health

Mortality

A

B
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D ???
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and D contain the parameters representing the in  uence of SES on poor health probabilities 
and mortality probabilities, respectively. Finally, paths E and F represent the correlations 
between the covariates and outcomes, respectively.

Assuming that all these paths are estimable, the parameters can be used to generate 
age- and covariate-speci  c expected probabilities for use in producing transition prob-
ability matrices. However, as the  gure suggests with question marks, paths D and F are 
only weakly identi  ed because the mortality probabilities are not differentiated by SES. 
In a more general case, the mortality probabilities are not differentiated by values of any 
covariates not measured in the mortality  le. These parameters are identi  ed only to the 
extent that the age-sex-race–speci  c mortality probabilities are not perfectly predicted by 
linear combinations of age, sex, and race. Consider, for example, the case in which age is 
measured with dummy variables (as are sex and race), and all possible interactions between 
these variables are included. In such a case, age, sex, and race perfectly predict the mortal-
ity probabilities, leaving no residual variance to be explained by other covariates. More 
typically, however, a researcher would estimate the effect of age, sex, and race parametri-
cally, leaving some residual variation that may be explained by the additional variables 
present in the health prevalence  le.

With the data merged, we can develop a model for the observed outcome states, Y, 
based on the path diagram. The model we use is a bivariate dichotomous probit predicting 
the probability an individual is in a particular state (healthy, unhealthy, dead), conditional 
on age, sex, race, and other covariates. The two dimensions of the outcome are healthy 
versus unhealthy (0 vs. 1) and alive versus dead (0 vs. 1). Given that no transitions are 
 observed, the model is not a hazard model, but we use the expected prevalence probabilities 
from this model in subsequent steps to produce transition probabilities.

One representation of this model is

Y* = X  + e, (1)

where Y* is an n × 2 matrix of latent propensities to be unhealthy and dead; X is an n × k 
matrix of covariates, one of which is age;  is a k × 2 matrix of coef  cients relating the 
covariates to the outcomes; and e is an n × 2 matrix of errors that are assumed to be stan-
dard bivariate normally distributed with correlation . The error correlation could be con-
strained to 0; however, because the level of detail on the covariates available in the health 
and mortality  les differ, some ef  ciency in the estimation of the regression parameters 
may be gained by estimating  (Zellner 1962), and so we incorporate it as a parameter in 
the model. In this model, the latent propensities, Y*, are linked to the observed data, Y, by
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In this speci  cation, an individual is observed to be in poor health or dead if his/her latent 
propensity exceeds the threshold of 0 in the relevant dimension of the equation. We do 
not observe a dichotomous value for death; instead, we have mortality probabilities. We 
compensate for this deviation from a typical bivariate probit model in the process of model 
estimation (details available from the authors upon request).

An appropriate likelihood function for the observed data is based on the multinomial 
distribution:
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where p(yi1 = r, yi2 = c) is the probability that individual i is in cell (r,c) of the multinomial, 
and I(yi1 = r, yi2 = c) is an indicator for whether the respondent is observed in cell (r,c).

The model parameters are incorporated into the likelihood function by combining Eqs. 
(1), (2), and (3) so that, for example,

( (0,0)) ( 0, 0)p Y p y y1
*

2
*

i i i# #= =

( (1) 0, (2) 0)p X e X e1 2i i i i# #= + +

( (1), ; ),X2 i i3= (2), ;X 3

where 2(a,b;c,d;e) is the standard bivariate normal distribution function with correlation 
e evaluated from a to b in dimension 1 and from c to d in dimension 2. The last equality 
follows from the bivariate normality assumption for the error. The full likelihood function, 
then, is
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where e,f is the fth threshold that divides the eth dimension of the bivariate normal distri-
bution into two bins. There are three thresholds in each dimension, such that 1,0 = 2,0 = –  
and 1,2 = 2,2 = , and 1,1 = Xi (1) and 2,1 = Xi (2) are the individual linear combinations 
of covariates and parameters for each dimension of the model, where (.) references the 
column of .

Although the model parameters may be estimated by using maximum likelihood 
methods, we adopt a Bayesian approach because it facilitates interval estimation and inter-
pretation as discussed in subsequent sections. (See Lynch [2007] for a review of Bayesian 
statistics, and see Chib and Greenberg [1998] for more discussion of the multivariate probit 
model.) To make the model fully Bayesian, the likelihood function is combined with prior 
distributions for all parameters. A common approach to specifying priors for parameters 
in multivariate regression models is to assume  at prior distributions for all regression 
 parameters and a noninformative “reference prior” of p( )?| |–(d + 1) / 2 for the error covari-
ance matrix (Gelman et al. 1995). This approach to prior speci  cation adds little informa-
tion to the model, and so the data drive the results. We adopt this strategy of using a vague 
prior; under this speci  cation, the posterior distribution for the parameters is proportional 
to the product of the likelihood function shown in Eq. (4) and the term | |–3 / 2.

With this prior speci  cation, the in  uence on mortality of covariates that exist in the 
health  le but not in the mortality  le (SES, in this example) will be approximately 0. 
However, our Bayesian approach to estimation captures uncertainty in this estimate that is 
realized in the interval estimates for healthy and TLE. Furthermore, our approach produces 
valid estimates for the proportion of remaining life to be spent healthy, despite not having 
information on mortality disaggregated by all covariates.

In a Bayesian framework, the goal of model estimation is not to maximize the likeli-
hood function and obtain a point estimate for the parameter and its standard error; rather, 
the goal is to summarize the entire posterior distribution. Many summary measures (such 
as the mean and variance) are integrals of the posterior distribution. Such integration 
can sometimes be performed analytically, but more commonly, summaries of parameters 
are obtained by simulating parameters from their posterior distributions and using basic 
sample statistics calculations applied to these samples. A bene  t of having samples from 
the  posterior distribution is that they can also be used to obtain posterior distributions for 
functions of the original parameters, such as state expectancies.

Gibbs sampling is a common method of producing samples from the posterior distri-
bution for parameters (see Lynch 2007). Under Gibbs sampling, the posterior distribution 
for the parameters is decomposed into a set of conditional distributions for subsets of the 
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parameters. Then, samples are alternatingly drawn from each conditional distribution, 
treating the current values of other parameter subsets as known. In the limit, such sampling 
produces samples from the joint distribution of parameters. Gibbs sampling for our model 
involves decomposing the set of parameters into two components: the regression coef  cients 
and the error correlation. The regression coef  cients are simulated from their conditional 
distribution given the current value of the error correlation, and then the  error correlation 
is simulated from its conditional distribution given the new values of the regression coef-
 cients. This process is repeated B + G times, and the  rst B samples are dropped. These 

early samples—the “burn-in”—re  ect sampling prior to convergence of the algorithm on 
the true joint posterior distribution.

Step 3: Computing Transition Probability Matrices
After G samples from the posterior distribution of  and  are obtained (Step 2 of Table 2), 
G sets of age-speci  c expected transition probability matrices can be generated from them 
and used as input for multistate life table generation. This process involves three steps, 
repeated for each Gibbs sample:

1. Select a covariate pro  le, X, for which to generate the life table (e.g., black 
males with 12 years of education) and apply this pro  le to the parameters to 
generate expected, two-dimensional Z scores (Zt ; propensities) for being healthy, 
unhealthy, or dead for each age, x, in the age range of the data.

2. Convert Zt  into age-speci  c expected prevalence probabilities, using bivariate 
normal integration.

3. Perform ecological inference to obtain transition probabilities from the preva-
lence probabilities obtained in the previous step. This step can be considered a 
second-stage model applied to the collection of the age-speci  c marginal prob-
abilities obtained in the previous step.

For the  rst step, we choose a covariate pro  le (X ), for which we would like life 
table estimates, and we apply the parameters obtained from each iteration of the Gibbs 
sampler, incrementally increasing age to obtain expected age-speci  c Z scores for being 
healthy, unhealthy, and dead (Zt (x) = Xage = x ). (See Step 3(a) in Table 2.) In the second 
step, we use bivariate normal integration to convert Zt into age-speci  c prevalence pro-
portions as follows:
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In these equations, pd(x) is the probability of being dead at exact age x, pu(x) is the prob-
ability of being unhealthy (but alive) at exact age x, ph(x) is the probability of being healthy 
(but alive) at exact age x, Zt (a,b) is the value of Zt  for age a in dimension b, and 2(.) is 
the standard bivariate normal distribution function with limits of integration (a,b;c,d ) and 
correlation . These probabilities must be computed for all ages in the life table (x = … ). 
(See Step 3(b) in Table 2.)

True multistate life table calculations require transition probabilities showing the 
movement between states in a state space and not simply prevalence proportions of persons 
in particular states at a given age/time. Indeed, one source of debate over the accuracy of 
Sullivan’s method concerns the combination of period age-speci  c prevalence proportions 
of persons in healthy and unhealthy states with mortality probabilities (see Barendregt 
et al. 1994; and Mathers and Robine 1997). Here, we do not directly attempt to convert 
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prevalence proportions to incidence probabilities mathematically because the conversion of 
estimated prevalence proportions to incidence probabilities is not one-to-one. Instead, state 
prevalence proportions at adjacent ages can imply multiple possible incidence probabilities 
between states. Under the same stationarity assumption that justi  es the construction of 
period life tables, our estimated prevalence proportions can be converted into incidence 
probabilities by treating prevalence proportions at exact, adjacent ages as “starting” and 
“ending” probabilities for discrete age intervals, with one slight adjustment. When a set 
of these age-speci  c prevalence probabilities is considered as a set of ending probabilities 
for an age interval, the probabilities shown in Eq. (5) remain as computed. However, when 
they are considered “starting” probabilities for the next age interval, ph(x) and pu(x) must 
be conditioned on survival because decedents from a previous age interval are not eligible 
to “start” the next age interval. For example, for the age interval [x – n,x), pu(x) remains as 
computed because it is the probability of ending the interval alive but unhealthy. However, 
for the age interval [x, x + n), pu(x) is the proportion of survivors who start the interval 
 unhealthy. Therefore, pu(x) is conditioned on survival (rescaled) as pu(x) = pu(x) / (1 – pd(x)). 
Note that this approach—conditioning on survival—is equivalent to changing the limits of 
integration in the mortality equation for pu(x) in Eq. (5) from (– , ) to (Zt (x,2), ).

These age-speci  c starting and ending prevalence probabilities constitute the margin-
als of 2 × 3 transition probability (i.e., incidence) matrices for each age interval. However, 
the marginals are not suf  cient to complete the transition probability matrices for each age 
interval. Instead, we are left with an ecological inference problem. Figure 2 provides a 
graphic depiction of this ecological setting.

In Figure 2, ph(x) is the probability of being healthy at age x, pu(x) is the probabil-
ity of being unhealthy at age x (both conditional on survival to age x), ph(x + n) is the 
 probability of being healthy at age x + n, pu(x + n) is the probability of being unhealthy at 
age x + n, and pd(x + n) is the probability of being dead at age x + n. These marginals sum 
to 1 in both dimensions.

As Figure 2 shows, we must determine two transition probabilities in the cells of each 
age-speci  c table (labeled U and V ) in order to completely determine the age-speci  c table. 

Figure 2. Ecological Inference Setup for Transition Probability Matrices by Age Interval
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Obviously, U and V cannot be determined as speci  c quantities; instead, they may take a 
range of allowable values. At  rst glance, given that U and V are probabilities, one may 
assume that they can take values anywhere on the unit square: that is, they can be drawn 
from a bivariate uniform distribution.

However, a number of constraints can—and, in some cases, must—be imposed that 
reduce the allowable values for U and V. Table 3 lists the constraints we impose. The  rst 
major set of constraints is that the values in all the cells must be nonnegative, and they 
cannot exceed the marginals. In the ecological inference literature, these constraints are 
collectively called the “methods of bounds” (see King 1997). These constraints can be 
reexpressed in terms of restrictions on the range of U, V, or their sum, as the third column 
of the table shows.

Ultimately, several such constraints, when expressed in terms of transition probabili-
ties, are duplicated. For example, constraints 4 and 8 are identical, as are 5 and 10, and 6 
and 11. If duplicate constraints are ignored, then the allowable ranges for U and V, in any 
particular age-speci  c table, based on the method of bounds are

0, ,p x n p x U p x p x nmax minh u h h# #+ +^ ^_ ^ ^_h hi h hi
0, ,p x n p x p x p x nVmax minu hu u# #+ +^ ^_ ^ ^_h hi h hi . (6)

Additionally, the sum of U and V is constrained to fall in the range:

(0, ( ) ( )) ( ) (1 ( ), ( )) .max p x p x n U V min p x n p xh d d h# #+ + +  (7)

In addition to these constraints, two additional constraints can be imposed that are 
reasonable for most applications of the method. The  rst constraint is that the probability 
of remaining in any particular living state is greater than the probability of transitioning 
into another living state. This constraint imposes some “state dependence” into the model. 
The second constraint we impose is that the conditional probability of transitioning to 
death from the healthy state is less than the probability of transitioning to death from the 
unhealthy state. Although this constraint appears certainly to be speci  c to our focus on 
HLE, this constraint is easily transferred to many other state spaces that may be of interest. 
For example, it is well known that marriage is bene  cial to longevity, and so an application 
concerned with marital expectancies could impose the constraint that transitioning from an 
unmarried state to the dead state is more probable than transitioning from the married state 
to the dead state. These constraints correspond to lines 15–17 in Table 3.

Finally, we impose one additional constraint that, in practice, is largely redundant 
with the state-dependence constraint. Recall that the underlying continuous-time model of 
a multistate life table is a piecewise (within age intervals), continuous-time (age) Markov 
process (see, e.g., Land and Schoen 1982). Singer and Spilerman (1976) showed that a suf-
 cient condition for a discrete-time probability matrix to be embedded in—or have been 

generated by—such an underlying continuous-time process is that the eigenvalues, , of 
the transition probability matrix, P, be distinct, real, and positive; and that det(P) > 0. To 
ensure this, the diagonal elements of the matrix, conditioned on their respective rows, must 
sum to be greater than 1. This constraint can be found on line 18 of Table 3.

Figure 3 shows the theoretical space in the unit square to which U and V are limited 
based on these constraints. Given the marginal probabilities and these constraints, the pos-
terior distribution for U and V, absent any additional prior information, is uniform on the 
intervals represented in Eqs. (6) and (7). Sampling values of U and V, therefore, simply 
requires the simulation from a rectangular bivariate uniform distribution implied by the 
lower and upper limits in each dimension and subjected to the state dependence, mortality, 
and embeddability constraints.
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To obtain values for U and V, then, for each age-speci  c transition probability table 
(and for each G Gibbs-sampled parameter value), a bivariate uniform draw is simulated 
from the appropriate rectangular subregion delineated by the method-of-bounds constraints 
until it meets these latter constraints (see Step 3(c) in Table 2).

Several comments are in order pertaining to this ecological inference step. First, in 
some cases, the marginals are such that no values of U and V will meet the embeddability 
constraint. Indeed, this happens occasionally when the age intervals in the data exceed 
one year. However, the constraint we impose is a necessary and not suf  cient  condition 
for embeddability. In general, with the additional constraints imposed—namely, the 
 state-dependence constraint—the transition probability matrices tend to be diagonally 
dominant and can therefore ultimately be embedded as part of a Markov process (see 
Singer and Spilerman 1976). From a methodological standpoint, if a particular set of U 
and V does not meet this stringent embeddability constraint after, say, 1,000 tries, our 
software drops this constraint. If a life table then cannot be computed, we argue that the 

Table 3. Basic Constraints on U and V Cells in Ecological Table
 Constraint  Simplifi ed in Terms of U and V

All cells must be ≥ 0
1. U ≥ 0 U  ≥ 0

2. V ≥ 0 V  ≥ 0

3. ph(x) – (U + V )  ≥ 0 (U + V ) ≤ ph(x)

4. ph(x + n) – U  ≥ 0 U ≤ ph(x + n)

5. pu(x + n) – V  ≥ 0 V  ≤ pu(x + n)

6. pd(x + n) – ph(x) + (U + V ) ≥ 0 (U + V ) ≥ ph(x) – pd(x + n)

All cells must be ≤ marginals
7. U ≤ ph(x) U ≤ ph(x)

8. U ≤ ph(x + n) U ≤ ph(x + n)

9. V ≤ ph(x) V ≤ ph(x)

10. V ≤ pu(x + n) V ≤ pu(x + n)

11. ph(x) – (U + V ) ≤ pd(x + n) (U + V ) ≥ ph(x) – pd(x + n)

12. ph(x + n) – U ≤ pu(x) U ≥ ph(x + n) – pu(x)

13. pu(x + n) – V ≤ pu(x) V ≥ pu(x + n) – pu(x)

14. pd(x + n) – ph(x) + (U + V ) ≤ pu(x) (U + V ) ≤ 1 – pd(x + n)

State Dependence or “Stickiness” of Health States
15. U / ph(x)  > V / ph(x)   U  >  V

16. [pu(x + n) – V ] / pu(x)  > [ph(x + n) – U ] / pu(x) U – V > ph(x + n) – Pu(x + n)

17. [pd(x + n) – ph(x) + (U + V )] / pu(x) > [ph(x) – (U + V )] / ph(x) (U + V ) > ph(x)pu(x) – 
      ph(x)pd(x + n) + ph(x)2

Embeddability
18. [U / ph(x)] + [[pu(x + n) – V] / pu(x)] >  1  none 

Note: See the text for a description of state dependence and “embeddability.”
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marginal probabilities are not a legitimate draw from the posterior distribution for the 
 desired life tables.

Second, ecological inference is commonly performed by developing a model applicable 
to a set of marginal values, and not a single instance of them as we use here. For example, 
a typical ecological modeling approach might involve using marginal probabilities for race 
(e.g., white vs. nonwhite) and voting outcomes (e.g., Democrat vs. Republican) for a large 
number of precincts in a state and attempt to estimate the cell probabilities (e.g., proportion 
black voting for Republicans) from all precincts simultaneously (see King 1997). In such 
an approach, this would correspond to using all G Gibbs sampled values simultaneously to 
obtain a (posterior) distribution for U and V. Instead, our method involves performing the 
ecological inference individually, one Gibbs sample at a time (and, within one age interval 
at a time). On the one hand, ours is therefore an inef  cient approach because we do not use 
all data simultaneously. On the other hand, our approach cannot suffer from aggregation 
bias because our approach does not involve using pooled aggregate-level data. Instead, our 
approach can be viewed as using a set of ecological inference models applied to a set of 
independent aggregate data, eliminating aggregation bias at the expense of some ef  ciency.

These issues notwithstanding, given a value for U and V, in each age-speci  c  ecological 
table, the entire transition probability matrix P(x) for a speci  c age, x (and therefore 
for an entire age distribution) can be computed simply by conditioning U, V, and the 
other cell values on the row probabilities. For example, phh(x) = U / ph(x), phu(x) = V / ph(x), 
phd(x) = (ph(x) – (U + V)) / ph(x), and so forth, where we have switched notation to double-
subscript the transition probabilities between states over the age interval. To complete the 
construction of P(x) (x = ), we must add a row vector, [001], to the bottom of P(x) to 
make it a 3 × 3 matrix. This  nal row represents the probabilities of transitioning from the 
“dead” starting state.

Figure 3. Ecological Inference Sample Space for U and V

aSubject to state dependence, mortality, and embedability constraints (see items 15–18 in Table 3).
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Step 5: Generating Multistate Life Tables

Generation of life tables, given the discrete-time transition probability matrices P(x) for 
each age, relies on basic demographic calculations. First, the radix for the life table can be 
computed by setting the diagonal of l( ) to [ph( )pu( )], where  corresponds to the pro-
portion of the radix population estimated to be in each state at exact age  (obtained from 
predicted values with age set to  and conditioned on survival to that age).

Next, the transition probability matrices are converted into continuous-time hazard 
matrices, (x). (See Step 4(a) in Table 2.) Under the assumption that the force of transi-
tion is constant over an age interval—the exponential assumption—P(x) = exp{n (x)}; 
thus, (x) = –(1 / n)ln(P(x)). ln(P(x)) can be obtained via Sylvester’s formula (see Singer 
and Spilerman 1976). Under Sylvester’s formula:
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where i is the ith eigenvalue of P.
Given (x), the remaining life table computations include the l(x) matrix and the 

L(x) matrix for each age. (See Step 4(b) in Table 2.) Note that l(x) and L(x) are diagonal 
matrices, but l(x + n) and L(x + n) are not; as we iterate the life table calculations across 
age, l(x + n) and L(x + n) must be converted to diagonal matrices (see Palloni 2000, and 
Schoen 1988). Under the exponential assumption, l(x + n) = l(x)exp{–n (x)}, where 

{ ( )} (( ) ( ) ( )) / !exp n x I n x x i1
i i

i= + 3
=/  is the series expansion representing the expo-

nential function. In practice, the summation generally requires fewer than 10 iterations to 
converge.

L(x) = x
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=7 A/  

Finally, we can compute state expectancies as e(x) = L(x)l(x)–1; and for the oldest age group, 
to close out the table, we can compute e( ) = l( ) ( )–1. Given that we have speci  ed a 
parametric pattern for age dependence of health and mortality (linear in the probit), we can 
carry out our life table calculations to any age.

The net result of this multistep process, after repeating it for each of the G samples of 
model parameters, is that we obtain distributions of multistate life tables for each covariate 
pro  le we select. We can summarize these distributions of life tables by using basic sum-
mary statistics. For example, we can compute the mean, median, mode, variance, range, and 
so on for multistate life table quantities. We can also compute empirical interval estimates 
by sorting the life table quantities and selecting the values that represent the quantile cut-
points of interest. We can also perform statistical tests to compare populations with differ-
ent covariate pro  les. We highlight this process in the next sections.

In sum, this process involves multiple steps, each of which produces high-dimensional 
matrices. For example, suppose that we are interested in constructing life tables for ages 
65 and above (say 85+, yielding a total of 21 age groups), and we have age, sex, and race 
as covariates. After the data have been constructed appropriately, we would use Gibbs 
sampling to produce, say, G = 1,000 samples from the posterior distribution of the model 
parameters (Step 2 from Table 2). This would result in 1,000 sets of nine parameters (a 
regression coef  cient for the intercept and each covariate for both health and mortality 
equations, plus an error correlation).

Following Step 3(a) from Table 2, we would select a covariate pro  le for which to 
produce the life tables (e.g., black males), and apply it to each of the 1,000 parameter 
samples, incrementing age—one of the covariates—from 65 to 85, to produce expected 
two-dimensional age-speci  c z scores. For each parameter sample, this step results in a 
21 × 2 matrix of z scores (one row for each age). Following Step 3(b) from Table 2, we 
would then convert this 21 × 2 matrix of z scores into expected age-speci  c prevalence 
proportions for being healthy, unhealthy, and dead, using integration of the bivariate 
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 normal distribution. The result would be a 21 × 3 matrix of expected prevalence propor-
tions. This matrix would then be duplicated, and one set would condition out mortality, 
so that we would have a 21 × 2 matrix representing prevalence in healthy and unhealthy 
states at the start of each age interval. The other matrix would remain as is to represent 
prevalence in healthy, unhealthy, and dead states at the end of each age interval.

Following Step 3(c) from Table 2, ecological inference would be performed within 
each age interval to obtain a set of 21 age-speci  c 3 × 3 expected discrete-time transition 
probability matrices. In Step 4(a) from Table 2, we would convert each of these discrete-
time matrices into hazard matrices, yielding a set of 21 age-speci  c 3 × 3 hazard matrices. 
Finally, in Step 4(b), we would apply standard multistate calculations to each age-speci  c 
set of hazard matrices to obtain a multistate life table. Repeating this process for each of 
the 1,000 parameter samples results in a distribution of 1,000 multistate life tables.

Although this process involves numerous steps and many tedious calculations, 
 annotated software and a user’s manual are available to make implementing the 
meth od straightforward.

COMPARISON OF APPROACHES TO MULTISTATE LIFE TABLE ESTIMATION
We demonstrate this new method, and compare results obtained with it to other approaches, 
using data from the NHEFS. The NHEFS is a panel study in which a subset of respondents 
from the original 1971 NHANES were followed up on at least three occasions: 1982, 1987, 
and 1992. Here, we use data from the 1987 and the 1992 waves. Our state space has three 
states: healthy, unhealthy, and dead, with “healthy” de  ned as a response of “excellent” 
or “good” to a self-rated health item, and age is measured in  ve-year intervals from 45 
through 85+.

Given that the data are from a panel, age-speci  c transition probabilities between states 
between the two waves were observed, and so a true multistate life table can be produced 
directly from the data, following standard demographic calculations shown in the previous 
section. However, for purposes of comparison, approximate cross-sectional age-speci  c 
mortality and health prevalence proportions can also be constructed from the data. For mor-
tality, we use the incidence of mortality between age intervals, and we replace individuals’ 
known indicators for mortality with their age-speci  c sample-level mortality probability. 
For health, we use 1992 health values for individuals surviving to 1992; we use 1987 health 
values for those dying during the interval. Table 4 shows the age-speci  c health and mortal-
ity transition and prevalence probabilities. The prevalence values approximate, but are not 
exactly, those that would be obtained in a cross-section, but there is no absolutely correct 
approach to producing cross-sectional prevalence proportions from transition data that do 
not rely on assumptions about transitions. Furthermore, given that the NHEFS survey data 
are at the individual level, it is not clear how to assign health scores to individuals based on 
aggregate prevalence proportions, even if we were able to construct them perfectly. So, we 
note at the outset that our comparison between panel and cross-sectional data is not perfect.

We present results of three sets of analyses. In the  rst set of analyses, we include no 
covariates other than age, and we compare results from (1) true multistate calculations 
applied to the transition probabilities shown in Table 4, (2) the panel method described in 
Lynch and Brown (2005) applied to the individual-level NHEFS data shown in the table, 
and (3) the new method described in this article using the individual-level NHEFS data with 
the age-speci  c mortality probabilities shown in the table replacing the observed individual- 
level measure for death. This approach is akin to using a cross-sectional health survey with 
mortality probabilities from an external source merged into the individual-level  le.

Given that we know the true transition probabilities, the multistate approach is the 
“gold standard”: that is, it constitutes the “best” estimates for HLE and TLE that can be 
obtained from real data. We call estimates derived from this approach the “true” values 
although they are not true in an absolute sense. The panel method described in Lynch and 
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Table 4. Transition Probabilities and Prevalence Proportions From the 
1987–1992 NHEFS Data

  Transition Probabilities  ________________________________
 Start  End  Prevalence
Age   Healthy  Unhealthy  Dead Proportions (n)

45–49  H  .892  .099  .009  .851 (423) 
 U  .412  .510  .078  .149 (74) 
 D  0  0  1  .016 

50–54  H  .884  .100  .016  .811 (361)
 U  .303  .621  .076  .189 (84)
 D  0  0  1  .025

55–59  H  .898  .076  .026  .790 (347)
 U  .305  .568  .126  .210 (92)
 D  0  0  1  .048

60–64  H  .802  .134  .064  .737 (411)
 U  .307  .550  .143  .273 (154)
 D  0  0  1  .083

65–69  H  .761  .162  .076  .707 (384)
 U  .266  .500  .234  .293 (159)
 D  0  0  1  .112

70–74  H  .731  .141  .127  .665 (268)
 U  .208  .450  .342  .335 (135)
 D  0  0  1  .191

75–79  H  .589  .172  .239  .587 (165)
 U  .158  .406  .436  .413 (116)
 D  0  0  1  .310

80–84  H  .403  .151  .446  .548 (125)
 U  .079  .281  .640  .452 (103)
 D  0  0  1  .522

85+  H  .130  .043  .826  .468 (44)
 U  0  .146  .854  .532 (50)
 D  0  0  1  .840

Notes: Sample sizes are the number of healthy and unhealthy individuals at the start of each age 
interval. Death counts can be obtained by subtracting the total in one age group from the total in the 
previous one.

Brown (2005) involves true multistate calculations applied to estimated expected transition 
probabilities, where the estimated transition probabilities are obtained via bivariate probit 
regression. That approach is similar to that of the new method in its use of a parametric 
regression model to obtain smoothed estimates of transition probabilities. We refer to this 
method as the LB method.

In the second set of analyses, we examine the case in which a covariate—education—is 
measured in the health  le but not in the mortality  le. To accomplish this, we compute 
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mortality probabilities by age, and we replace each individual’s observed mortality measure 
with his/her age-speci  c mortality probability. Thus, mortality varies only by age, while 
health varies across both age and education. We restrict our covariates to age and educa-
tion, where education is measured dichotomously (12+ years vs. <12 years) because of the 
limited sample size. That is, we wish to compare the results obtained via the true multistate 
approach with the new method, but the panel data cannot be disaggregated much beyond 
age and education (9 × 2 = 18 cells) because of cell size limitations.

In the third set of analyses, we include sex and race in addition to age and education. 
Given sample size limitations, we are unable to compute true multistate life tables, and so 
we compare the LB method and the new method.

Figure 4 shows the results of the  rst set of analyses. The top panel shows TLE at ages 
45–49 as computed by using typical multistate calculations (a point estimate), with the LB 
method and the method discussed here. The top panel shows that TLE at ages 45–49 is 31 
years, and both parametric methods appear to estimate this quantity very well. There is a 
nonsigni  cant difference between all three approaches: that is, the interval estimates for the 
two parametric methods overlap substantially, and both capture the point estimate produced 
by traditional multistate calculations.

The bottom panel of Figure 4 shows the estimated proportion of remaining life to be 
spent healthy for this age group. The value estimated using standard multistate life table cal-
culations was .782. The 95% probability interval estimates for the two parametric  approaches 
were [.757,.794] for the LB method and [.763,.792] for the new method  described in this 
article. As with TLE, the three sets of values are statistically indistinguishable.

Figure 4. Total Life Expectancy (top panel) and Proportion of Remaining Life to Be Lived Healthy 
(bottom panel) at Ages 45–49

Notes: Vertical lines in the fi gure are the true values as computed using (nonparametric) multistate life table calculations 
 applied to observed transition probabilities. Histograms are the samples obtained using (1) the parametric panel regression 
method described in Lynch and Brown (2005) and (2) the new method described here.
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Figure 5 shows the results of the second set of analyses. The top panel of the  gure 
shows TLE at ages 45–49. Under the true multistate approach and the LB approach, there 
are two sets of estimates (the vertical lines): one for persons with low education, and one 
for persons with high education. As computed under the true multistate methods, TLE was 
28.08 years for persons with low education and 31.61 years for persons with high educa-
tion, a difference of approximately 3.5 years. The LB estimates are approximately 1 year 
higher each, at 29.18 and 32.68 years, respectively, also re  ecting a difference of about 3.5 
years in total life. In contrast, as the  gure shows, the life expectancy estimates for the new 
approach are roughly equal for both high- and low-education groups. The reason is that 
mortality is not differentiated by education level in the contrived “cross-sectional” data. 
As a consequence, the estimate for TLE for the new method is a compromise (weighted 
average) between the two education groups.

The bottom panel of Figure 5 shows the estimated proportion of remaining life to be 
spent healthy for high- and low-education groups at ages 45–49. According to the  gure, the 
multistate results show that persons with low education can expect to spend about 66% of 
their remaining life healthy, and persons with high education can expect to spend about 82% 
of their remaining life healthy. The results show remarkable consistency between the results 
of the three approaches. Once again, the interval estimates are statistically indistinguishable 
from each other and the “true” values produced using traditional multistate calculations.

It may seem surprising that the proportion of remaining life to be spent healthy is 
accurately estimated using the new approach, given that education-speci  c mortality 

Notes: Vertical lines in the fi gure are the true values as computed using (nonparametric) multistate life table calculations 
 applied to observed transition probabilities. Histograms are the samples obtained using (1) the parametric panel regression 
method described in Lynch and Brown (2005) and (2) the new method described here.

Figure 5. Total Life Expectancy (top panel) and Proportion of Remaining Life to Be Lived Healthy 
(bottom panel) at Ages 45–49 for Low and High Education Groups
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 probabilities were not “available” to the model, and thus total life remaining was estimated 
to be comparable across high- and low-education groups. However, the method works 
 because the health equation predicts the proportion healthy and unhealthy by education level 
among those who have survived to the age at which they were observed in the cross section. 
That is, the model accurately predicts the probability a survivor is healthy (vs. unhealthy). 
The variance in this probability is increased, however, when it is used to produce transition 
probabilities because the mortality data were not measured at as re  ned of a level as the 
health data. Therefore, the proportion of remaining life to be spent healthy is accurate, but 
it is somewhat imprecise because of the poor measurement of mortality.

Figure 6 shows the results of the  nal set of analyses. The upper two panels show the 
distributions for the proportion of remaining life to be spent healthy for black males (upper 
left) and for white females (upper right) by level of education. The lower two panels show 
the distribution of the percentage point difference in the proportion of healthy life that is 
produced by education. The upper-left panel shows that the new method tends to produce 
slightly higher (although not statistically distinguishable) estimates than the LB method for 
the proportion of remaining life black males can expect to spend healthy. The  lower-left 

Figure 6. Proportion of Remaining Life to Be Lived Healthy (top panel) and Education-Based 
 Diff erence in Proportions (bottom panel) for Black Males and White Females

Note: In upper plots, histograms on the left are the distributions for persons with low education; histograms on the right are 
for persons with high education. 
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panel, however, shows that the in  uence of education, in terms of its percentage point  effect 
on healthy life, is estimated virtually identically for both the new and LB methods. The 
results for white females yield a similar conclusion.

AN EMPIRICAL EXAMPLE
In this section, we provide a more realistic example involving the new method. The 
question we seek to address is, What proportion of the black-white difference in HLE is 
 explained by SES differences between races? We use data from the 2002 NHIS and 2002 
vital statistics mortality data. The mortality data are disaggregated by age, sex (male = 1), 
and race (black vs. white; others excluded), and merged into the NHIS data at that level. 
From the NHIS, we use age, sex, race, an interaction between age and race, region of the 
country (South = 1 vs. non-South), education (years of schooling), and income (log dol-
lars). After obtaining samples of model parameters via Gibbs sampling as described earlier, 
we generate three sets of life tables. For all three sets, we  x sex and region at sample 
means (.4 and .3, respectively). With those variables held constant, we generate life tables 
(1) for blacks with education and income set to black means for these variables, (2) for 
whites with education and income set to white means, and (3) for blacks with education 
and income set to white means.

Figure 7 shows the three distributions of proportion of healthy life remaining. As 
the  gure shows, at age 30, whites can expect to live about 86% of their remaining lives 
healthy (95% interval estimate of [.86,.87]), while blacks can expect to live about 78% 
of their remaining lives healthy (interval estimate of [.76,.81]). Thus, there is about a 
10% disparity (8 percentage points) between races. If blacks had comparable levels of 

Figure 7. Histograms of Proportion of Remaining Life to Be Lived Healthy at Age 30 for Blacks and 
Whites
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education and income to whites, the black estimate would increase to approximately 83% 
( interval = [.80,.85]).

We can determine the extent to which the black-white difference in HLE is explained 
by SES differences between races by computing

1 ( | ) ( | )
( | ) ( | ) .HLE white white SES HLE black black SES

HLE white white SES HLE black white SES% attributable to SES =

Because this calculation can be performed for all 1,000 Gibbs samples for HLE, we can 
obtain a posterior mean and an empirical interval for this quantity. This calculation shows 
that 52.9% of the black-white difference is explained by SES differences, with an empirical 
interval for this difference of [41.2% , 68.4%].

CONCLUSIONS
Sullivan’s method has been used extensively in place of multistate life tables when panel 
data are unavailable. However, Sullivan’s method has been limited in its ability to incorpo-
rate covariates into the process of estimation because mortality data are often disaggregated 
only coarsely, and survey samples are often small enough that aggregation to highly re  ned 
subpopulation levels yields unstable prevalence estimates. In this article, we have proposed 
a regression-based extension to Sullivan’s method that enables the construction of multi-
state life tables for highly re  ned subpopulations and produces estimates even when the 
mortality data cannot be disaggregated at the desired level. The method not only produces 
estimates of multistate life table quantities, but it also provides for interval estimation, 
thereby compensating for uncertainty inherent in using sample data and having data disag-
gregated/aggregated at different levels in mortality and survey prevalence  les. The results 
of our comparisons to other methods indicate that the method works quite well, and our 
empirical example shows how the method can be used to address research questions that 
may be of interest to a broad social science audience.

Although our approach is an improvement over the use of traditional Sullivan’s 
 method, several issues should be discussed and addressed in future research. First, our 
approach inherently assumes that the sample data come from a simple random sample; 
and most, if not all, major data sets from which prevalence proportions would be  obtained 
involve complex sampling. Therefore, one could argue that our interval estimates are 
 incorrect. Our approach here could be adapted relatively easily to compensate for 
some types of complex sample designs by using a Bayesian bootstrap involving post-
strati  cation weights provided in the data combined with our Gibbs sampler (see Rubin 
1981). In fact, we have incorporated a similar weighted bootstrap into our program. We 
have also  undertaken  extensive analyses investigating the importance of sample  design 
and found that compensating for design has little effect on substantive conclusions 
( detailed report available from the authors upon request).

Second, our method produces TLE estimates that are identical across values of 
 covariates across which mortality probabilities cannot be disaggregated. The result is that 
years of healthy life (or years in some other state) will also be incorrect because they will 
re  ect the number of years remaining in given states as a proportion of total life. Thus, 
one should use proportions as the metric for the results, not years. The method produces 
valid estimates of the proportion of remaining life to be lived in different states. This is 
not a limitation of the method; rather, it is a limitation of the data used in estimation. 
Although estimates of years of healthy life and total life can be obtained and used if the 
mortality data can be disaggregated across all covariates, if mortality cannot be disagre-
gated, there simply is not enough information available to obtain unique estimates of total 
life for all subpopulations. If, however, one has strong prior information for the in  uence 
of a particular covariate on mortality, this information could be incorporated in the prior 
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distribution for the regression coef  cients and would allow one to obtain unique estimates 
of total years of life for each subpopulation.

Third, although we limited our presentation here to healthy life expectancy and to only 
two non-absorbing states and one absorbing state, the model can be used with any state 
space, and the state space need not be limited to two non-absorbing (or one absorbing) 
states. Expanding the state space involves extending the bivariate dichotomous probit model 
described here to a full multivariate probit model or extending one dimension to more than 
two categories if the non-absorbing states can be ordered. In addition to changes in the re-
gression modeling step, using alternative state spaces will require reconsidering some of the 
constraints imposed in the ecological inference step, and this process may be quite dif  cult.

Finally, it is important to note again that Sullivan’s method technically requires that 
the populations to which the mortality probabilities and the state prevalence proportions 
apply are the same. In our example, they were not. The mortality probabilities were for 
the entire U.S. population, while the NHIS is a survey of noninstitutionalized individuals. 
Care should be taken when applying Sullivan’s method, or this extension of it, to ensure 
that populations are equivalent or at least that the biases in estimates resulting from using 
data from noncomparable populations are known.
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