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Abstract 
 

This paper presents an empirical comparison of the 
growth characteristics of four code coverage measures, 
block, decision, c-use and p-use, as testing is increased. 
Due to the theoretical foundations underlying the 
lognormal software reliability growth model, we 
hypothesize that the growth for each coverage measure is 
lognormal. Further, since for a given program the 
breadth and the depth of the different coverage measures 
are similar, we expect that the parameters of the 
lognormal coverage growth model for each of the four 
coverage measures to be similar. We confirm these 
hypotheses using coverage data generated from extensive 
testing of an application which has 30 KLOC. We then 
discuss how the lognormal coverage growth function 
could be used to control the testing process and to guide 
decisions about when to stop testing, since it can provide 
an estimate of the marginal testing effort necessary to 
achieve a given level of improvement in the coverage.   

Keywords: lognormal, code coverage, data flow 
coverage, software reliability, software testing, testing 
criteria. 

1. INTRODUCTION 
The growing dependence of our society on the 

services provided by software applications places a high 
premium on their reliable operation. Ensuring high 
reliability in the face of increasing size and complexity 
of these applications, however, is elusive. Software 
testing is a commonly used approach to reveal defects so 
as to improve the application reliability. It is natural then 
that a significant portion of the development costs 
(approximately one-third to one-half) of a software 
application are spent in testing. For testing to be cost-
effective, it is thus necessary to use a good sample of 
test cases, one which has a high potential of exposing 
defects. To guide the selection of such test cases, varied 
criteria have been proposed. An important class of these 
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criteria is based on code coverage. In the ideal case, the 
code-based criteria attempt to select test cases that 
would exercise all the possible paths along the program 
control flow graph at least once. The code-based criteria 
are thus often referred to as path-based. Since 
exhaustive testing to cover all the possible paths is 
infeasible in practice, all the proposed code-based 
criteria attempt to approximate path coverage by 
identifying specific elements (control flow and data 
flow) of a program that may be relevant for revealing 
defects, and by requiring that enough paths be executed 
to cover all such elements. In data-flow based testing, 
the graph model is annotated with information about 
how the program variables are defined and used, and a 
test case is aimed at exercising how a value assigned to a 
variable is used along different control-flow graphs. 
Rapps et al. provide an example of a family of code 
coverage measures based on both control flow and data 
flow [34].  

Logical relationships among coverage measures have 
been derived statically in the form of subsumption 
hierarchies [6]. The dynamic characteristics of code 
coverage measures which are manifested upon code 
execution have also been examined by some researchers. 
These dynamic characteristics include the fault detection 
effectiveness of the coverage measures [10] [25] [32] 
and the relationship between code coverage and defect 
coverage [4]. The connection between code coverage 
and reliability has also been explored, in many cases by 
incorporating the coverage parameter into time-based 
software reliability growth models [5] [13] [22].  

Due to the intuitive correlation between code 
coverage and defect coverage [8], [10], [16], [23] [39] 
[40], achieving a high level of code coverage is often 
considered an objective to be pursued towards ensuring 
high reliability. Further, since the amount of testing 
depends on the level of coverage that needs to be 
achieved, code coverage growth may be a useful 
parameter to control the testing process. This makes it 
critical to understand and analyze the coverage growth 
phenomenon and possibly characterize it using a well-
known distribution which can then form the basis of 
projections such as determining the level of testing 
necessary for achieving a given level of coverage. A few 
research efforts have studied code coverage growth as a 
function of testing. Piworaski, Ohba and Caruso [33] 
analyze block coverage growth during function test and 
derive an exponential model isomorphic to the Goel-
Okumoto [11] and Musa’s Basic Execution Time [28] 
software reliability growth model relating the number of 
tests to block coverage. Grottke [14] presents a vector 
Markov model of code coverage growth and extends it 
to a model of failure occurrences. The model, however, 
is not validated with empirical data. 

The above efforts did not seek to compare the 
growth phenomenon of the different coverage measures. 
Such a comparison is needed to serve three purposes.  
First, practitioners need a quantitative sense of efforts 
and benefits to choose among coverage measures and 
concomitant goals. Second, it can provide a common 
yardstick enabling translation and interchange of 
methods and results.  Lastly, we wish to understand and 
model the way in which coverage increases without 
being tied to a specific measure.  Put simply: if 
achieving 100% coverage is not feasible, understanding 
the growth curve is essential to select a practical 
stopping point. 

In this paper we study the coverage growth of 
different data-flow and control-flow coverage measures 
as a function of testing. We consider four coverage 
measures, namely, block, decision, computation use (c-
use) and predicate use (p-use) [17]. For each one of 
these measures we hypothesize the coverage growth to 
be lognormal, due to the theoretical foundations 
underpinning the lognormal software reliability growth 
model [26]. To validate this hypothesis we generate 
empirical coverage data from extensive testing of a 
software application named SHARPE [36], which has 
approximately 30 KLOC. We then fit three functions to 
this empirical data, namely, exponential, lognormal and 
log-Poisson and compare the quality of the fits using 
Akaike Information Criteria (AIC) [2] and log 
likelihood (LLH) [15] [31]. A comparison of the quality 
of fits according to the above two indicators supports the 
hypothesis that the coverage growth is lognormal for all 
the coverage measures considered. Further, the 
parameters of the fitted lognormal distributions for the 
coverage measures are close. We then discuss how these 
observations could be used to control the software 
testing process. The paper thus takes a significant step in 
using the context of software execution to link concepts 
from prior studies of software test sufficiency, test 
efficiency and reliability.   

The layout of the paper is as follows: Section 2 
provides some insights behind the lognormal hypothesis 
and derives the lognormal coverage growth model. 
Section 3 describes the experimental set up used to 
obtain empirical coverage measurements from 
SHARPE. Section 4 presents an analysis of the coverage 
data, discusses the results of the analysis and its 
implications for testing. Section 5 provides conclusions 
and directions for future research.  
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2. LOGNORMAL HYPOTHESIS 
The lognormal distribution is related to the normal or 

Gaussian distribution: By definition, the logarithm of a 
lognormal random variable follows the normal 
distribution [1].  Alternatively, one may say it is the 
exponentiation of a normal random variable. Plotted on 
a log-axis the lognormal is symmetric, but on a linear 
axis the lognormal variate is always positive and may 
have a long tail to the right, possibly spanning many 
orders of magnitude. Just as a normal distribution is 
approached by sums of random variables, the lognormal 
is approached by products of random variables. A 
detailed overview of the lognormal distribution and 
alternative forms of the central limit theorem can be 
obtained from [1] [7] [18] [27] and the references in 
these. In this section we summarize prior evidence for 
the lognormal distribution of event rates in software as 
well as its causes.  We then extend that research to 
develop a coverage growth model based on the 
lognormal and interpret its parameters. 

2.1. ORIGIN OF LOGNORMAL EXECUTION RATES 
There is increasing evidence that the lognormal 

distribution can be successfully applied to a number of 
software reliability engineering problems, particularly 
those dependent on rates of events.  Mullen [27] 
suggested the distribution of failure rates of software 
faults tends to the lognormal because software event 
rates, including block execution rates, tend to the 
lognormal. The proposed lognormal failure rate 
distribution was validated by analyzing careful studies 
of failure rates of faults previously published by IBM 
and Boeing. Bishop and Bloomfield [3] showed block 
execution rates, as well as fault failure rates, are indeed 
lognormal in the PREPRO application of the European 
Space Agency. Mullen and Gokhale [28] [29] 
determined that the distribution of occurrence counts of 
defects encountered during customer usage follows a 
Discrete Lognormal distribution which can be derived 
from an underlying Lognormal distribution of rates.  
Miller [24] pointed out the mathematical transformation 
from a rate distribution to first occurrence times 
(discovery times) is equivalent to the Laplace transform 
of the rate distribution. Mullen [26] derived the 
Lognormal Software Reliability Growth Model by 
approximating the Laplace transform of the lognormal. 
This model was validated using Stratus computer data 
and Musa data.  

In short, key elements of the lognormal hypothesis 
have already been confirmed in studies of over 30 
applications ranging from several thousand to several 
million lines of code, in both test and production 
environments. We use those results to motivate our 
derivation of a lognormal coverage growth model.  

2.2. LOGNORMAL COVERAGE GROWTH MODEL  
 In this section we discuss the origin of the 

lognormal execution rates of code elements. We then 
formulate the Lognormal coverage growth model, based 
on the same techniques used to derive Lognormal 
Software Reliability Growth Model [26].  

The branching nature of software programs tends to 
generate a lognormal distribution of execution rates of 
code elements. We first make the argument for block 
execution rates. The probability of execution flowing to 
a given block in the code is the product of the 
probabilities of the conditional branches leading to that 
block. There are a large number of conditional 
statements guarding the execution of typical code 
blocks; therefore there will be a large number of factors 
multiplied in order to determine the probability. The 
central limit theorem tells us that under very general 
conditions the distribution of the products of those 
factors is asymptotically lognormal.  Therefore the 
distribution of the block execution rates tends to the 
lognormal. A more specific model of the processes that 
lead to the lognormal distribution of block execution 
rates is provided by Bishop and Bloomfield [3]. They 
also provide reasons and evidence that the distribution 
remains lognormal even in the presence of loops and 
other variations in program structure. Similar arguments 
can be made for the execution rates of the decisions, c-
uses, and p-uses.  

To say the execution rate distribution is lognormal is to 
say the logarithms of the execution rates, ln(�), follow the  
Gaussian or normal probability distribution function (pdf).  
For   )0( >λ    

 

( ) ( ) λσµλ
πλσ

λ dedL
22/2)ln(

2

1 −−=

 
There are two parameters, the mean of the log rates, µ, 

and the variance of the log rates, σ. If σ is zero, all blocks 
have the same execution rate. 

 Let N be the number of blocks in the application. The 
probability of a single block of execution rate (per test) λ is 
not encountered during the first t tests is  exp (-λt).  The 
probability that block was executed at least once during the 
execution of the first t tests is  1 - exp(-λt).  The mean 
contribution of that block to the rate of increasing block 
coverage of the system at test t is  λexp(-λt).  If λ is 
distributed as L(λ|µ, σ2) then M(t), the cumulative mean 
number of blocks covered (that is, having at least one 
execution) at the completion of t tests, can be 
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Table 1: Characteristics of SHARPE files 

File Name LOC 
# 

Block 
#Dec 

#C-
use 

#P-
use 

analyze.c 946 334 177 643 365 

bind.c 2358 911 610 1535 795 

bitlib.c 383 75 42 126 117 

cexpo.c 1267 406 278 1043 591 

cg.c 910 202 123 666 299 

debug.c 259 94 47 119 79 

expo.c 621 186 99 240 181 

ftree.c 3560 993 591 1454 882 

in_qn_pn.c 1246 441 235 346 212 

inchain.c 1203 404 270 518 533 

indist.c 680 243 129 123 139 

inshare.c 1592 608 358 600 654 

inspade.c 880 303 164 351 244 

maketree.c 554 176 72 436 192 

mpfqn.c 1142 429 241 747 589 

multpath.c 387 128 54 248 92 

newcg.c 704 230 132 711 364 

newlinear.c 1376 489 285 1932 1210 

newphase.c 1271 414 209 1103 844 

pfqn.c 1155 325 216 992 715 

phase.c 1957 544 304 1699 1153 

reachgraph.c 1791 524 363 1293 848 

read1.c 1292 421 320 468 406 

results.c 1322 604 341 653 388 

share.c 1977 702 485 925 833 

sor.c 820 269 161 645 456 

symbol.c 1490 527 293 531 404 

uniform.c 819 227 110 378 330 

util.c 1119 407 294 1112 949 

Total 35081 11616 7093 21936 15122 

 

Table 2: Coverage for SHARPE files 

File Name Block Dec. C-use 
P-
use 

analyze.c 97 93 90 79 

Bind.c 98 97 87 78 

bitlib.c 96 93 76 76 

cexpo.c 88 84 81 73 

cg.c 76 80 56 71 

debug.c 69 72 69 66 

expo.c 99 97 95 88 

ftree.c 93 92 87 79 

in_qn_pn.c 88 86 68 73 

inchain.c 99 97 83 64 

indist.c 98 91 98 97 

inshare.c 98 94 62 56 

inspade.c 99 99 96 83 

maketree.c 99 99 90 68 

mpfqn.c 99 98 84 71 

multpath.c 97 93 90 62 

newcg.c 85 82 52 66 

newlinear.c 93 85 63 57 

newphase.c 95 90 71 57 

pfqn.c 98 96 82 69 

phase.c 91 87 71 65 

reachgraph.c 76 72 68 56 

read1.c 98 95 91 88 

results.c 99 96 95 88 

share.c 93 92 87 76 

sor.c 93 88 88 68 

symbol.c 98 96 84 87 

uniform.c 92 93 80 78 

util.c 86 74 54 41 

Total 93 90 76 68 
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obtained by integrating over blocks of all rates, and is given 
by  

 

( ) ( )λ
λ

λ dLtNNtM ∫
∞

=
−⋅−=

0
exp)(  

 

This integral is formally equivalent to the Laplace 
transform of the lognormal, which has no simple form.  
Details of how to numerically approximate this function 
are provided in [26].  In what follows we will refer to 
this proposed coverage growth model as the lognormal 
model because it is based on an underlying lognormal 
distribution of execution rates, although in fact it is the 
Laplace transform of the lognormal. 

An important benchmark is that many coverage 
measures provide insight into the behavior of program 
features that relate to defect discovery, but inevitably 
they all must relate to the same defect discovery rate. 
Because they cannot differ significantly from one 
another, we hypothesize that one model will fit all four 
measures and that their parameters will be close.  

2.3. INTERPRETATION OF PARAMETERS 
Conceptual advantages of the lognormal include the 

relative transparency of its parameters and the way it 
links various observed properties of coverage growth.  
Here we provide a brief discussion of how the parameter 
values are related to the characteristics of software 
applications.  

The parameter � makes the greatest qualitative 
difference and allows the lognormal its flexibility. The 
standard deviation of the log rates, � increases with 
increasing complexity of the software, in particular with 
greater depth of conditionals [3]. It determines the ratio 
of the highest and the lowest coverage rates of the code 
elements. It thus determines the range over which the 
rates vary: the higher the �, the higher the range of 
variation.  If � is zero, all code elements have the same 
coverage rate, leading to the exponential model [M75] 
of software reliability growth. Values from 1 to 3 are 
more commonly seen.  Values of 4 or above are unusual 
and carry large uncertainties [12]. 

The parameter � has a simple interpretation: if rates 
are plotted on a log scale, changing � merely moves the 
distribution to the right or left.  A change in � is obtained 
by changing the coverage rates of all the code elements 
by a constant factor, for example a system speedup or 
merely using different units of time.  For � = -3, the 
median rate is exp (-3) or .05 per test.  At that rate 
almost half the code will not be covered by the first 
twenty tests (the exact proportions depending on �). 
Changing either � or � --- both of which relate to ln(rate) 

--- does not affect the other.  However changing either � 
or � affects both the mean and variance of the rates 
themselves [1].  

The final parameter is N, the total number of code 
elements, which scales the pdf. We can view N in a 
formal sense as just another number needed to fit the 
model, or we can view it more physically as the 
maximum level of coverage that is feasible. If the 
coverage is measured in terms of the actual number of 
code elements, then under the latter interpretation, the 
maximum value of N would the total number of 
elements, which can be obtained directly from the code. 
However, due to the presence of unreachable code, the 
maximum feasible value of N is likely to be smaller than 
the maximum number of code elements. Further, in 
practice, limited testing time and resources will prevent 
coverage from reaching its maximum feasible value. 
Coverage may also be measured as a percentage, in 
which case the maximum value of N would be 100% 
and the estimate of N will represent the approximate 
feasible percentage coverage that can be achieved given 
infinite testing time and resources. In this paper, we use 
coverage measurements reported as a percentage. 

3. EXPERIMENTAL SETUP 
In this section we describe the experimental set up 

used to obtain empirical coverage measurements from 
the testing of an application termed SHARPE, to 
validate the lognormal coverage growth model derived 
in Section 2.2.  

3.1. OVERVIEW OF SHARPE 
The Symbolic Hierarchical Automated Reliability 

and Performance Evaluator (SHARPE) that solves 
stochastic models was selected as our subject [36]. This 
application was first developed in 1986 for three user 
groups: practicing engineers, researchers in performance 
and reliability modeling, and science and engineering 
students. SHARPE was chosen as our system-under-test 
because it is well-known, of manageable size, well 
instrumented and has a readily available test suite with 
fairly high coverage.  It is important to note that we do 
not use SHARPE for our modeling and calculations. 
Instead, we use SHARPE only as the application being 
studied. In other words, we did not use the output of 
SHARPE, we measured how its code coverage increased 
as a function of testing. 

SHARPE contains 35,081 lines of C code in 29 files 
and has a total of 373 functions. Table 1 shows the 
number of lines of code, blocks, decisions, c-uses and p-
uses in each file of SHARPE. 
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3.2. TESTING OF SHARPE 
We used an existing suite of 735 test cases created 

by developers and testers for testing modifications and 
enhancements in previous releases of SHARPE. When 
SHARPE is exercised once with this test suite, a single 
realization of code coverage growth is obtained. It is 
necessary to generate additional coverage growth 
realizations, since a comparison of models using a single 
realization may not be conclusive, because, as indicated 
by Miller [24], the statistical fluctuations within a single 
realization would often mask differences among similar 
models. These additional realizations were obtained by 
conducting multiple testing runs with the same 735 test 
cases in each run. In each run a random ordering of the 
735 test cases was used. In other words, for each run a 
test sequence of 735 test cases was generated from the 
original test suite by sampling without replacement.  

 

3.3. COLLECTING COVERAGE MEASUREMENTS 
SHARPE was instrumented with Automatic Test 

Analyzer for C (ATAC) which is a part of Telcordia 
Software Visualization and Analysis Tool Suite 
(TSVAT) [21]  to measure coverage during the 
execution of the application with test cases. The use of 
ATAC focuses on three main activities: instrumenting 
the software, executing software tests, and measuring 
coverage to determine how well the code has been 
covered. ATAC can report coverage with respect to the 
function entry, block, decision, c-uses, and p-uses [17]. 

Many other coverage tools which collect data on the 
variants of these coverage measures [37] [9] can also be 
used to provide such data.  

We used four coverage measures, namely, block, 
decision, c-use and p-use. A brief description of each 
of these coverage measures as used in ATAC is as 
follows [17]. 

 

 

Table 4: analyze.c: Average coverage growth over 10 runs 

Test # Block Dec. C-use P-use 

1 14.3 11.7 12.3 9.4 

2 20.2 16.7 17.1 13.6 

3 21.5 17.8 18.0 14.8 

4 22.1 18.8 18.6 15.4 

6 27.0 23.8 21.6 18.6 

8 33.4 28.6 26.5 22.1 

12 44.7 36.5 36.5 28.9 

16 49.9 40.9 41.2 32.5 

24 54.2 44.7 45.3 35.8 

32 57.9 48.1 48.6 37.9 

48 69.8 58.8 58.5 46.4 

64 73.3 62.9 61.3 49.6 

96 81.2 71.5 69.6 56.6 

128 84.9 75.8 73.9 61.0 

192 90.8 82.3 80.3 67.6 

256 93.0 85.9 83.5 71.6 

384 94.4 88.6 86.5 75.2 

512 95.7 91.5 87.9 77.6 

623 96.7 92.6 89.5 78.2 

735 97.0 93.0 90.0 79.0 

 

Table 3: analyze.c: Coverage growth  for a single run 

Test # Block Dec. C-use P-use 

1 23 16 23 18 

2 42 32 39 32 

3 42 32 39 32 

4 42 32 39 32 

6 50 40 43 36 

8 50 40 43 36 

12 50 40 43 36 

16 50 40 44 37 

24 64 45 60 41 

32 75 59 65 48 

48 81 69 69 55 

64 81 70 72 58 

96 81 72 73 59 

128 88 79 78 64 

192 94 87 83 72 

256 94 87 83 73 

384 94 89 85 75 

512 94 90 86 77 

623 96 92 89 78 

735 97 93 90 79 
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Figure 1: Cumulative coverage for analyze.c for four coverage measures.end_caption 

Block: A basic block or simply a block is a sequence 
of instructions, which except for the last instruction is 
free of branches and function calls. A block may contain 
more than one statement if no branching occurs between 
the statements, a statement may contain multiple blocks 
if branching occurs inside the statement, an expression 
may contain multiple blocks if branching is implied 
within the expression. Also, in a basic block only the 
first statement can be a target of a branch.  

Branch or Decision: A branch or a decision consists 
of a Boolean expression in its control structure.  

C-use: A c-use is defined as a path through a 
program from each point where the value of a variable is 
defined to its computation use, without the variable 
being modified along the path.  

P-use: A p-use is a path from each point where the 
value of a variable is defined to its use in a predicate or a 

decision, without modifications to the variable along the 
path.  

The execution time of each test case is assumed to be 
one. Thus the cumulative execution time is measured as 
the number of test cases executed. The level of coverage 
achieved for each measure for each file is in Table 2. 

3.4. DATA REDUCTION AND AGGREGATION 
ATAC reports block (decision, c-use, p-use) 

coverage in the form of percentage of blocks (decisions, 
c-uses, p-uses) executed. When the percentage coverage 
is reported, consecutive blocks (decisions, c-uses, p-
uses) are treated to be independent. However, it may be 
the case that the consecutive blocks (decisions, c-uses, 
p-uses) are actually dependent.   

It would be better for statistical analysis, to know the 
number of such independent sets or groups for each 
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measure rather than the percentages. In any case, use of 
percentages (rather than the elements) will vary the 
absolute log-likelihood, but does not change the 
maximum likelihood estimates of the key lognormal 
parameters µ and σ. Likelihood ratio tests, log-
likelihood differences, and AIC-computations are also 
unchanged by using percentages instead of counts 
provided the counts are on the order of 100. Standard 
deviations of the parameters were determined by 
inverting the Fischer Information Matrix [38].  

We observed from the coverage data, that for each 
measure, some test cases are redundant and generate no 
additional coverage beyond the previous ones. A 
minimized test set which achieves the same level of 
coverage as the original one can thus be obtained for 
each measure [19] [34] [40].  For example, for block 
coverage less than 300 test cases achieve the same 
coverage as the entire suite of 735 test cases. Due to the 
presence of redundant test cases, we analyze the data by 

dividing the whole execution sequence into 20 segments of 
proportionately increasing length. This makes it more likely 
that later buckets have at least some increase in the 
marginal coverage.  

Cumulative coverage for each measure was obtained 
for each file of SHARPE and for the entire source code, 
for each run. As an example, for all measures we show 
the cumulative coverage for a single run, as well as the 
average over ten runs for the file analyze.c in Tables 3 
and 4 respectively. It was observed that the cumulative 
coverage for individual files for a single run had very 
few increments, making it difficult to see true form of 
coverage growth. Therefore, for a single file, average 
cumulative coverage was computed using the 
cumulative coverage over ten runs to discover the mean 
function of coverage growth. This average cumulative 
coverage was used for analysis. Ten replications were 
chosen since it was visually observed that the average 
cumulative coverage computed using the data collected 

Table 5: SHARPE: Coverage growth for a single run 

Test # Block Dec. C-use P-use 

1 13.57 12.15 7.64 6.69 

2 15.36 13.44 8.60 7.40 

3 15.54 13.59 8.72 7.54 

4 20.22 18.02 12.00 10.27 

6 27.47 24.45 18.45 16.06 

8 32.68 29.03 22.59 19.77 

12 36.51 32.84 26.01 22.67 

16 48.24 43.55 33.65 29.49 

24 56.18 51.42 39.68 34.76 

32 58.52 53.81 41.40 36.50 

48 71.61 65.50 55.40 47.72 

64 75.48 69.34 58.25 50.59 

96 78.99 73.20 62.22 53.83 

128 80.01 74.73 63.68 55.38 

192 83.56 78.75 67.01 59.21 

256 86.93 82.55 70.07 62.51 

384 89.47 85.25 72.08 64.44 

512 91.13 87.32 73.49 65.84 

623 92.75 89.16 75.09 67.20 

735 93.51 90.29 76.02 68.05 

 

Table 6: SHARPE: Average coverage growth over 10 runs 

Test # Block Dec. C-use P-use 

1 16.48 14.32 10.94 9.35 

2 20.66 17.98 13.95 11.87 

3 24.72 21.35 17.02 14.45 

4 27.04 23.46 18.56 15.91 

6 31.78 27.67 22.20 18.91 

8 38.06 33.05 27.56 23.49 

12 44.13 38.68 32.00 27.22 

16 49.48 43.29 35.90 30.67 

24 56.28 49.77 41.80 35.68 

32 61.29 54.50 46.18 39.41 

48 67.81 61.09 52.18 44.67 

64 72.07 65.59 56.04 48.41 

96 77.04 70.99 60.11 52.70 

128 79.96 74.24 63.37 55.21 

192 84.22 78.74 67.00 58.73 

256 86.80 81.79 69.36 61.18 

384 89.85 85.52 72.37 64.35 

512 91.54 87.71 73.93 65.94 

623 92.65 89.16 75.10 67.13 

735 93.51 90.29 76.02 68.05 
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over ten runs is reasonably smooth. 

The coverage growth for the four measures for the 
entire SHARPE for a single run and average over ten 
runs is shown in Tables 5 and 6 respectively. Similar to 
Tables 3 and 4, Tables 5 and 6 also show the data 
divided into twenty segments. For the entire code 
coverage growth for a single run is also reasonably 
smooth. For the entire code, analysis was thus conducted 
using the coverage growth obtained from a single run 
and the average over ten runs. 

4. ANALYSIS AND DISCUSSION 
The data analysis is conducted in three parts, as 

follows: (a) Coverage growth for each measure for a 
single run and average over ten runs for a single file, 
namely, analyze.c, (b) Coverage growth for each 
measure for a single run and average over ten runs for 
the entire SHARPE application, (c) Comparative 
analysis of the coverage growth for each measure for 
average of ten sequences for individual files.  

We will consider data sufficiency, run-to-run 
variation and the quality of the fits using log-likelihood 
(LLH), AIC and charts. We consider two alternative 
models, namely, the exponential model and the log-
Poisson model. For the exponential model [M75], all 
blocks have identical execution rates, therefore the LLH 

is the same as the lognormal with σ=0.0. For the log-
Poisson (LP) model, we used the function [20]. 

))ln(1()( btatM +=  

to determine the MLE estimates of the parameters a and b 
and use the associated LLH value.  

The Akaike Information Criteria (AIC)  can be 
computed for each model as follows [35]: 

 

tersnum_parame*2hoodlog_likeliAIC +−= *2  

 

The AIC is similar to a likelihood ratio test. It 
penalizes the model with more parameters, in this case 
the lognormal. The model with a lower AIC value is 
better. Two units of AIC is significant, four very 
significant [2]. 

4.1.  ANALYSIS OF ANALYZE.C  
The coverage growth of a single sequence and 

average over ten sequences for the file analyze.c are 
reported in Tables 3 and 4 respectively. An examination 
of the data in these tables provides some indication of 
how a particular replication differs from the overall 
average.  To determine the average of all ten 
replications, we sum the coverage of each run; 

Table 8: analyze.c: comparative fits for average coverage growth 

 Block Dec. C-use P-use 

LN σ 1.83 2.12 2.14 2.34 

LN s.d. 
σ 

0.34 0.43 0.44 0.56 

LN µ -3.31 -3.87 -3.80 -4.27 

LN s.d. 
µ 

0.26 0.38 0.39 0.56 

LN N 100.6 101.8 98.2 91.42 

LN s.d. 
N 

10.56 12.16 11.86 13.80 

Neg LN 
LLH 

25.94 23.90 28.93 26.55 

Neg LP 
LLH 

32.54 27.13 32.32 28.51 

Neg Exp 
LLH 

58.01 53.28 59.02 50.08 

LN AIC  
over LP 

11.2 4.46 4.78 1.92 

 

Table 7: analyze.c: comparative fits for a single run 

 Block Dec. C-use P-use 

LN σ 2.45 2.62 3.18 3.57 

LN s.d. 
σ 

0.41 0.50 0.66 0.91 

LN µ -2.51 -3.41 -3.02 -3.85 

LN s.d. 
µ 

0.34 0.46 0.59 0.98 

LN N 101.3 102.8 101.3 97.57 

LN s.d. 
N 

10.72 12.47 13.25 18.18 

neg LN 
LLH 

77.41 68.36 60.38 51.12 

neg LP 
LLH 

78.53 69.78 61.07 51.00 

neg Exp 
LLH 

149.41 122.49 143.83 111.68 

LN AIC  
over LP 

0.24 0.70 -0.62 -2.24 
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determine the averages and the MLE fits of the models. 
The parameters of the LN are provided in Tables 7 and 
8.  Figure 1 shows the average coverage and the three 
MLE fits for block, decision, c-use and p-use coverage 
for the file analyze.c. It is shown in a linear form to 
illustrate the ability of the lognormal to fit both early 
and late data. Visually the lognormal is a better fit.  

To form an objective judgment, we examined the 
log-likelihood of the data being generated by the three 
models. The LLH values reported in Tables 7 and 8 (for 
a single sequence and average over ten sequences 
respectively) indicate that the exponential model has far 
less likelihood of generating the observed data, than 
either the lognormal or the log-Poisson. Hence we will 
not analyze the exponential model any further. 

Next we compare the log-Poisson and lognormal 
models using the AIC. The AIC values of analyze.c 
reported in Tables 7 and  8 (for a single sequence and 
average over ten sequences respectively) indicate that 
the lognormal can give the best fit for a single file, at 
least in this case when averaged over ten sequences. The 
parameters fitted to a single run, especially σ, can vary 
widely from the average; indeed the AIC for the selected 

single run chose LP as a significantly better fit to the p-
use data. The average growth is more likely to be 
generated by the lognormal than the log-Poisson for 
each coverage measure, and very significantly so for 
three.  

4.2.  ANALYSIS OF ENTIRE APPLICATION 
Because there is more activity (more increments) 

when summing coverage over the entire application, 
even coverage growth obtained from a single run 
provide sufficient data to constitute significant evidence. 
The LLH values for single runs in Table 9 show that the 
exponential model is a much poorer fit. The LLH are 
closer for LN and LP, so we use the AIC for 
comparison. For each measure the coverage growth is 
significantly better modeled by the lognormal even for 
the single sequence case.  

To combine the ten replications of the whole, we 
formed and fitted their total in Table 10. With ten times 
the data, the uncertainty of � is reduced to 0.17 or less. 
We find all four coverage measures have values of � that 
are within 0.17 of 2.30. The similarity of the marginal 
coverage growth curves in Figure 2 reflects the 
closeness of � values. 

 

 

Table 9: SHARPE: comparative fits for a single run 

 Block Dec. C-use P-use 

LN σ 1.80 1.90 1.57 1.63 

LN s.d. σ 0.34 0.37 0.34 0.38 

LN µ -3.35 -3.60 -3.66 -3.77 

LN s.d. µ 0.27 0.30 0.27 0.30 

LN N 96.99 95.37 78.67 71.1 

LN s.d. N 10.37 10.68 9.30 9.02 

neg LN 
LLH 

46.91 44.91 42.27 39.30 

neg LP 
LLH 

53.06 49.08 47.12 42.89 

neg Exp 
LLH 

86.89 83.11 67.01 60.58 

LN AIC  
over LP 

10.3 6.34 7.7 5.18 

 

Table 10: SHARPE: comparative fits for average coverage growth 

 Block Dec. C-use P-use 

LN σ 2.28 2.44 2.19 2.31 

LN s.d. σ 0.13 0.16 0.15 0.17 

LN µ -3.28 -3.71 -3.61 -3.85 

LN s.d. µ 0.11 0.15 0.13 0.16 

LN N 998 1006 822 757 

LN s.d. N 34.57 40.13 33.26 34.64 

neg LN 
LLH 

72.48 68.99 70.45 66.45 

neg LP 
LLH 

108.80 90.88 95.55 82.97 

neg Exp 
LLH 

575.40 524.60 417.80 368.48 

LN AIC  
over LP 

70.64 41.78 48.20 31.04 
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Figure 2: Marginal coverages as a function of number of tests 

The advantage of the lognormal is most visible in 
Figure 2 which shows marginal (i.e. incremental) 
coverage per test for the four measures on a log-log 
scale. The fitted lines were generated from the 
parameters in Table 10. Ten replications were used to 
determine the standard deviation of the sample mean at 
each of the 20 points. For each coverage measure the 
data falls within one standard deviation of the lognormal 
fit over half the time, as expected. 

4.3.  ANALYSIS OF INDIVIDUAL FILES 
As noted, in individual files there were considerably 

fewer increments (from 3 to 15) than for the entire 
application. This implies that there were intervals where 
no test caused any execution within a specific file. We 

saw the consequences in case of analyze.c in Table 3.  
analyze.c was not atypical, but its coverage growth 
appeared somewhat less erratic than most files. Overall 
it is not useful to study coverage growth in single files, 
unless we replicate test realizations. Thus to discover the 
mean function for other files, we combine ten test 
realizations, as we did in analyze.c. 

Table 11 provides the AIC advantage to the LN for 
each file for each coverage measure. For block, decision 
and c-uses, one or two are significantly more likely to be 
generated by the LP and 23 or more by the LN. Three or 
four others are inconclusive. For p-uses, although only 
debug.c seemed to fit the LP better, there were 12 that 
were equally likely to derive from the LP as the LN.  As 
with SHARPE taken as a whole, we find the AIC 
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advantage to the LN is largest for block coverage, then 
less for c-use, decision, and p-use in that order.  The 
same ranking applies if we consider either the mean or 
median of the AIC  advantage over all 29 files.  

Tables 12 and 13 summarize the mean and the 
standard deviation of � and � for each file for each 
measure. The relative similarity of the four � values is 
displayed in Figure 3, in which the files are ordered by � 
of block coverage. We see the spread widening as � 
exceeds 2.0, and becoming very erratic above 4.0. The 
mean value of a LN distribution can be computed as 
exp(�+�2/2). This must approximate the initial values of 
the total rate. Because the coverage measures initially 
grow at similar rates, we expect that these also will be 
very similar among the measures.  We compare those in 
Figure 4. Again we find similarity among the values, but 
the greatest divergence is found among the files with 
large values of �.  

Bishop and Bloomfield [3] observed and explained a 
rough relationship between program size and the 
lognormal �. The depth of conditionals is proportional to 
the log of the program size, and �, the spread in the rates, 
is proportional to the square root of that.  This 
relationship seems to imply that the elements of the 
different coverage measures exist at similar logical (or 
conditional depth) in the program. That is, the depth of a 
decision is nearly the same as the depth of the block it 
guards. Furthermore, the function will not vary much for 
files whose lengths barely range over a factor of  ten. 
We found that the individual SHARPE files are the 
smallest studied to-date, and generally have � values 
lower than those seen before, and lower than those of 
SHARPE as a whole. As seen already, some of the files 
were not convincingly fit by the lognormal and others 
yielded either high or erratic values of �.  

Figure 5 displays the relation between all four � 
values and file size in LOC, for this application.  
Visually there is quite a bit of scatter, in particular due 
to the four files with � > 4 and the largest file, which 
happens to have a low � value. We find that for these 29 
individual files there is only a weak dependence of � on 
code size. The R-squared of a simple linear trend is less 
than .07 in every case. We interpret this as additional 
evidence that the conditions leading to the lognormal are 
not always present in single programs or small files. On 
the other hand, the behavior of SHAPE as a whole and 
many of its files are certainly fit by the lognormal.  The 
depth of conditionals in files with fewer than 2000 LOC 

are evidently too shallow to consistently approximate 
the conditions of the Central Limit Theorem and 
therefore may not always exhibit the lognormal.  Above 
that size, and certainly with replication, the lognormal is 
generally observed 

 

Table: 11: SHARPE files: Comparative AIC advantage 

File Name Block Dec. C-use P-use 

analyze.c 11.20 4.45 4.78 1.94 

bind.c 1.02 2.03 1.54 1.60 

bitlib.c 43.24 23.48 -4.92 0.82 

cexpo.c 5.48 2.46 3.22 2.72 

cg.c 27.06 38.21 23.72 38.50 

debug.c -2.56 -2.36 -2.52 -2.98 

expo.c 15.48 7.65 22.04 9.14 

ftree.c 12.12 8.28 7.54 8.56 

in_qn_pn.c 9.52 3.83 5.52 0.78 

inchain.c 1.44 -0.39 4.78 -0.44 

indist.c 5.06 0.74 10.75 2.58 

inshare.c 0.78 -0.31 -0.50 -0.48 

inspade.c 12.80 2.59 9.70 -0.16 

maketree.c 35.00 12.78 20.00 -0.24 

mpfqn.c 14.92 7.87 7.70 6.42 

multpath.c 11.34 12.74 8.52 4.36 

newcg.c 10.28 7.28 3.14 4.12 

newlinear.c 8.90 3.08 3.16 0.68 

newphase.c 33.02 9.25 8.48 0.34 

pfqn.c 21.48 13.27 9.12 9.38 

phase.c 36.78 27.81 20.80 10.24 

reachgraph.c 46.26 37.28 24.08 16.62 

read1.c -0.24 -0.86 9.12 0.60 

results.c 5.78 8.78 8.06 7.90 

share.c 6.66 3.92 7.70 0.94 

sor.c -1.74 -2.69 -1.18 -1.32 

symbol.c 5.50 2.88 9.30 3.32 

uniform.c 53.70 34.79 57.96 30.92 

util.c 4.40 4.848 7.72 4.66 

Mean 14.99 9.44 9.98 5.57 

Median 9.52 4.45 7.70 1.94 
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Figure 3: � of coverage measures for each file of SHARPE 

 

Figure 4: Computed mean rates for each file of SHARPE 
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Figure 5: Lognormal � as a function of  lines of code 

 

4.4. IMPLICATIONS FOR TESTING 
One of our objectives was to provide a quantitative 

feel for the similarities and differences among the 
growth characteristics of coverage measures. For this 
application, the number of code elements (blocks, 

decisions, etc) differed by approximately a factor of 
three, with the most  being p-uses and the least being 
decisions.  The test suite used provided coverage 
exceeding 90% for blocks and decisions, but only close 
to three-quarters or two-thirds coverage for c-use and p-
use respectively.  It is unclear whether the lower c-use 

Table 12: SHARPE files: LN σ 

Block Decision C-use P-use File Name 

Mean S.d Mean S.d. Mean S.d. Mean S.d. 

analyze.c 1.83 0.34 2.12 0.43 2.14 0.39 2.34 0.56 

bind.c 3.05 0.70 3.07 0.74 3.22 1.08 3.75 2.24 

bitlib.c 1.35 0.22 1.71 0.27 4.00 2.10 2.44 0.42 

cexpo.c 3.41 0.74 3.55 0.82 3.18 0.49 3.24 0.52 

cg.c 1.03 0.19 1.14 0.20 1.18 0.22 0.98 0.18 

debug.c 1.32 0.50 1.25 0.43 1.79 1.44 1.39 0.67 

expo.c 2.07 0.34 2.43 0.44 1.79 0.24 2.11 0.31 

ftree.c 1.64 0.29 1.76 0.32 1.71 0.27 1.64 0.27 

in_qn_pn.c 1.73 0.35 1.90 0.42 1.80 0.33 1.90 0.35 

inchain.c 3.39 0.73 3.33 0.73 2.80 0.41 3.13 0.72 

indist.c 2.12 0.37 2.05 0.38 1.83 0.30 1.90 0.34 

inshare.c 2.56 0.51 2.95 0.71 2.52 0.66 2.41 0.69 

inspade.c 1.80 0.28 1.97 0.34 1.86 0.30 2.13 0.40 

maketree.c 1.51 0.23 1.9 0.29 1.64 0.27 2.32 0.50 

mpfqn.c 1.40 0.25 1.45 0.27 1.41 0.30 1.33 0.32 

multpath.c 0.75 0.28 0.74 0.27 0.75 0.31 0.85 0.36 

newcg.c 1.06 0.27 1.05 0.28 0.98 0.35 1.01 0.32 

newlinear.c 1.35 0.27 1.48 0.33 1.39 0.35 1.48 0.43 

newphase.c 1.07 0.20 1.47 0.27 1.41 0.30 1.70 0.42 

pfqn.c 1.37 0.23 1.51 0.26 1.48 0.28 1.40 0.30 

phase.c 1.26 0.21 1.32 0.23 1.26 0.25 1.50 0.30 

reachgraph.c 0.58 0.20 0.61 0.21 0.84 0.25 0.90 0.27 

read1.c 6.00 2.15 6.00 2.50 4.52 1.33 6.00 2.09 

results.c 5.17 2.32 5.58 1.74 4.90 2.00 5.01 1.88 

share.c 2.79 0.53 2.29 0.42 2.25 0.32 2.40 0.49 

sor.c 5.45 2.16 4.59 1.49 5.29 3.98 4.43 1.60 

symbol.c 2.38 0.43 2.76 0.57 2.05 0.30 2.64 0.54 

uniform.c 0.68 0.17 0.79 0.19 0.45 0.14 0.75 0.20 

util.c 6.00 2.56 6.00 2.06 4.91 3.87 5.34 1.88 
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and p-use coverage is due to their being  “more 
numerous, demanding, and thorough” or merely 
“including infeasible cases”.  

With few exceptions these orderings, if not the 
exact ratios, held for the individual files as well.  
Because the growth curves follow from lognormal 
behavior seen in other applications, as well as in files 
within this application, we believe our results are of 
general interest.  

Our results confirming lognormal coverage growth 
together with the proportionality proposed by Bishop 
and Bloomfield [3] allow us to establish an important 
connection between a dynamic phenomenon which is 
manifested through code execution (namely, code 
coverage growth) and the static structure of the code. 
This connection can be exploited to estimate � of the 
lognormal coverage growth model by examining static 
aspects of the code such as its size or logical depth. 
Further, the parameter � of the lognormal, which is a 

Table 13: SHARPE files: LN µ 

Block Decision C-use P-use File Name 

Mean S.d. Mean S.d. Mean S.d. Mean S.d. 

analyze.c -3.31 0.26 -3.87 0.38 -3.80 0.39 -4.27 0.56 

bind.c -4.07 0.74 -4.43 0.23 -4.71 1.08 -3.75 2.24 

bitlib.c -2.08 0.19 -2.32 0.54 -5.80 2.10 -3.05 0.42 

cexpo.c -1.02 0.48 -1.48 0.19 -1.82 0.49 -1.69 0.52 

cg.c -2.33 0.18 -2.58 0.85 -2.82 0.22 -2.74 0.18 

debug.c -6.02 0.66 -5.78 0.52 -7.03 1.44 -6.00 0.67 

expo.c -2.38 0.27 -2.66 0.34 -2.32 0.24 -2.91 0.30 

ftree.c -3.34 0.24 -3.50 0.27 -3.65 0.27 -3.52 0.27 

in_qn_pn.c -3.52 0.27 -4.08 0.36 -3.62 0.33 -3.76 0.35 

inchain.c -2.62 0.60 -3.37 0.70 -2.05 0.41 -3.12 0.72 

indist.c -3.35 0.32 -3.87 0.36 -3.09 0.25 -3.76 0.30 

inshare.c -3.89 0.51 -4.76 0.89 -4.27 0.70 -4.54 0.76 

inspade.c -2.92 0.24 -3.67 0.31 -3.04 0.26 -3.73 0.38 

maketree.c -3.40 0.20 -2.72 0.25 -2.68 0.23 -3.62 0.47 

mpfqn.c -3.52 0.20 -3.95 0.23 -3.94 0.24 -4.05 0.25 

multpath.c -4.62 0.16 -4.56 0.16 -4.74 0.17 -4.73 0.22 

newcg.c -4.26 0.19 -4.50 0.21 -4.64 0.26 -4.65 0.24 

newlinear.c -4.00 0.22 -4.32 0.28 -4.20 0.29 -4.50 0.37 

newphase.c -3.24 0.17 -3.74 0.23 -3.68 0.25 -4.13 0.38 

pfqn.c -3.20 0.19 -3.41 0.22 -3.64 0.24 -3.60 0.25 

phase.c -2.56 0.19 -2.81 0.20 -3.03 0.21 -3.24 0.26 

reachgraph.c -3.24 0.15 -3.44 0.16 -3.54 0.18 -3.59 0.20 

read1.c -3.08 2.17 -4.81 3.03 -0.47 0.68 -2.72 1.98 

results.c -8.45 5.16 -10.93 4.83 -9.58 5.00 -10.04 4.94 

share.c -2.79 0.39 -3.22 0.36 -2.61 0.32 -3.47 0.45 

sor.c -5.75 3.40 -4.52 1.91 -5.92 3.98 -4.46 2.00 

symbol.c -3.13 0.36 -3.48 0.51 -2.86 0.30 -3.12 0.45 

uniform.c -3.29 0.14 -3.70 0.15 -3.27 0.14 -3.69 0.16 

util.c -9.39 6.07 -9.65 5.05 -10.33 3.87 -10.17 4.87 
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location parameter in the corresponding reliability 
growth model, is here a measure of individual test 
efficiency.  As such an approximate estimate of � may be 
obtained from previous projects by the same team. 
Finally, in a reliability growth model a third parameter, 
N, represents the ultimate number of defects and must be 
estimated – in fact this is the key purpose of such a 
model.  

Since there is no a priori limit on the number of 
defects, the error in the estimated value of N may be 
quite large.  But in the case of code coverage the total 
number of code elements provides a known upper 
bound. As indicated in Section 2.3, in the coverage 
growth model, the estimated value of N will represent 
the coverage that can be feasibly achieved, given infinite 
testing time and resources. This estimated value of N 
may fall short of the upper bound by the number of 
unreachable elements, i.e. those that cannot be executed. 

  Referring to Table 6 and Figure 2 it can be 
observed that the coverage for all the four measures 
was increasing with additional testing, right up to 
the last test interval. Although the coverage values 
at the end of the last interval represent what can be 
achieved with our given test suite, this implies that 
additional tests are likely to increase the coverage 
further, to a point where all the feasible code is 
covered. The estimates of N obtained through fitting 
the lognormal model can then provide a projection 
of the level of feasible coverage. The values of N in 
Table 10 estimate approximately 100% feasible 
coverage for both block and decision coverage 
measures. The other two measures, however, are 
converging on lower values, namely, 78.67% for p-
use coverage and 82.8% for c-use coverage. It is 
important to note that the model does not assume 
that achieving 100% coverage is feasible. The fit is 
based on the shape of the growth curve, not on an 
expectation that it will reach 100%.. 

A significant outcome of these results is that 
approximate estimates of the parameters describing 
coverage growth can be obtained a priori, even before 
testing commences. This advance knowledge can be 
used to control the testing process or to decide a specific 
testing strategy by enabling projections regarding the 
amount of testing necessary to achieve a certain level of 
coverage. For example, if over 50% of the coverage can 
be gained by executing only a randomized 10% of the 
test cases, it suggests the strategy of initially testing a 
new product by rapidly interleaving truncated test cycles 
with periods of defect reproduction, debug, and fix. 

The parameter estimates obtained a priori can also 
be used to estimate the marginal effort needed to 
achieve a certain improvement in coverage.  Such 

marginal effort is a function of � of the lognormal 
because the shape of the growth curve depends on this 
parameter. For the sake of illustration, the relative 
testing effort necessary to improve coverage from 75% 
to 90% (95% and 99%) for different values of � is 
tabulated in Table 14. In each row the effort to achieve 
75% coverage has been normalized to unity in order to 
remove dependencies on other characteristics. Referring 
to the table, it can be observed that for � = 0 the number 
of tests necessary to cover 99% of the code is double the 
number required to cover 90%.. A zero value of � 
corresponds to a “memoryless” exponential decay 
process, which is the easiest case, but an uncommon 
one. For realistic values of �, the proportion of additional 
tests needed for this additional percentage coverage is a 
sensitive function of � and increases rapidly. Finally, 
since the value of � is proportional to a function of the 
size or the logical depth of the program [3], practical 
coverage goals can be established in advance, 
independent of problem domain. 

5.  CONCLUSIONS AND FUTURE RESEARCH 
In this paper we study the growth characteristics of 

four coverage measures, namely, block, decision, c-use 
and p-use. We hypothesize and empirically establish that 
the coverage growth for each one of the coverage types 
can be derived from a lognormal distribution. In 
addition, we also confirm the hypothesis that the 
parameters of the lognormal distribution for each one of 
the coverage types are close. By using randomized 
repetitive test sequences we empirically and 
quantitatively unify concepts from software test 
sufficiency, test efficiency and reliability growth. We 
then discuss how the lognormal coverage growth model 
could be used to guide and control the testing process by 
providing estimates of marginal testing effort to achieve 
different degrees of coverage improvements.  

There are several related questions that provide 
opportunities for further research. What would be the 
impact of generating test suites by randomly sampling 

Table 14: Relative testing needed to increase coverage from75% 
to 90%, 95%, and 99% as a function of LN � 

LN σ 75% 90% 95% 99% 

0 1 1.67 2.18 3.36 

1 1 2.30 3.71 8.87 

2 1 3.94 8.84 39.7 

3 1 6.96 22.10 190.8 

4 1 12.47 56.36 942.9 
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test suites with replacement, instead of without 
replacement as used in this paper?  Directly measuring 
the execution of the code elements (as was done by [3]), 
determining whether that distribution is lognormal as 
expected, and then comparing those parameters to the 
ones obtained from code coverage growth data would 
provide a useful cross-check. The three-way relationship 
between code coverage growth, test-count, and test 
execution time needs to be established. A related 
opportunity is the further exploration of how the size of 
programs (measured in various ways) affects the 
parameters of the lognormal for each coverage measure.  
Given that, it should be possible to do predictions based 
on a combination of early test experience with prior 
static information bounding lognormal �, �, and the 
number of code elements. 

The techniques used in this paper, particularly that of 
measuring coverage achieved by randomized sequences 
of tests, could well be used to determine the practical 
limits on the accuracy of coverage and defect 
predictions.  
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