

The Marginal Value of Increased
Testing: An Empirical Analysis

using Four Code Coverage Measures

Swapna S. Gokhale1, Robert E. Mullen2

1Dept. of Computer Science & Engineering
Univ. of Connecticut, Storrs CT 06269.

Phone: 860-486-2772.
Fax: 860-486-4817.
ssg@engr.uconn.edu

2New England Development Center

Cisco Systems
1414 Massachusetts Avenue

Boxborough MA, 01719
Phone: 978-936-1585
bomullen@cisco.com

Abstract

This paper presents an empirical comparison of the
growth characteristics of four code coverage measures,
block, decision, c-use and p-use, as testing is increased.
Due to the theoretical foundations underlying the
lognormal software reliability growth model, we
hypothesize that the growth for each coverage measure is
lognormal. Further, since for a given program the
breadth and the depth of the different coverage measures
are similar, we expect that the parameters of the
lognormal coverage growth model for each of the four
coverage measures to be similar. We confirm these
hypotheses using coverage data generated from extensive
testing of an application which has 30 KLOC. We then
discuss how the lognormal coverage growth function
could be used to control the testing process and to guide
decisions about when to stop testing, since it can provide
an estimate of the marginal testing effort necessary to
achieve a given level of improvement in the coverage.

Keywords: lognormal, code coverage, data flow
coverage, software reliability, software testing, testing
criteria.

1. INTRODUCTION
The growing dependence of our society on the

services provided by software applications places a high
premium on their reliable operation. Ensuring high
reliability in the face of increasing size and complexity
of these applications, however, is elusive. Software
testing is a commonly used approach to reveal defects so
as to improve the application reliability. It is natural then
that a significant portion of the development costs
(approximately one-third to one-half) of a software
application are spent in testing. For testing to be cost-
effective, it is thus necessary to use a good sample of
test cases, one which has a high potential of exposing
defects. To guide the selection of such test cases, varied
criteria have been proposed. An important class of these

Swapna S. Gokhale The Marginal Value of Increased Testing
& Robert E. Mullen An Empirical Anaysis

 14

criteria is based on code coverage. In the ideal case, the
code-based criteria attempt to select test cases that
would exercise all the possible paths along the program
control flow graph at least once. The code-based criteria
are thus often referred to as path-based. Since
exhaustive testing to cover all the possible paths is
infeasible in practice, all the proposed code-based
criteria attempt to approximate path coverage by
identifying specific elements (control flow and data
flow) of a program that may be relevant for revealing
defects, and by requiring that enough paths be executed
to cover all such elements. In data-flow based testing,
the graph model is annotated with information about
how the program variables are defined and used, and a
test case is aimed at exercising how a value assigned to a
variable is used along different control-flow graphs.
Rapps et al. provide an example of a family of code
coverage measures based on both control flow and data
flow [34].

Logical relationships among coverage measures have
been derived statically in the form of subsumption
hierarchies [6]. The dynamic characteristics of code
coverage measures which are manifested upon code
execution have also been examined by some researchers.
These dynamic characteristics include the fault detection
effectiveness of the coverage measures [10] [25] [32]
and the relationship between code coverage and defect
coverage [4]. The connection between code coverage
and reliability has also been explored, in many cases by
incorporating the coverage parameter into time-based
software reliability growth models [5] [13] [22].

Due to the intuitive correlation between code
coverage and defect coverage [8], [10], [16], [23] [39]
[40], achieving a high level of code coverage is often
considered an objective to be pursued towards ensuring
high reliability. Further, since the amount of testing
depends on the level of coverage that needs to be
achieved, code coverage growth may be a useful
parameter to control the testing process. This makes it
critical to understand and analyze the coverage growth
phenomenon and possibly characterize it using a well-
known distribution which can then form the basis of
projections such as determining the level of testing
necessary for achieving a given level of coverage. A few
research efforts have studied code coverage growth as a
function of testing. Piworaski, Ohba and Caruso [33]
analyze block coverage growth during function test and
derive an exponential model isomorphic to the Goel-
Okumoto [11] and Musa’s Basic Execution Time [28]
software reliability growth model relating the number of
tests to block coverage. Grottke [14] presents a vector
Markov model of code coverage growth and extends it
to a model of failure occurrences. The model, however,
is not validated with empirical data.

The above efforts did not seek to compare the
growth phenomenon of the different coverage measures.
Such a comparison is needed to serve three purposes.
First, practitioners need a quantitative sense of efforts
and benefits to choose among coverage measures and
concomitant goals. Second, it can provide a common
yardstick enabling translation and interchange of
methods and results. Lastly, we wish to understand and
model the way in which coverage increases without
being tied to a specific measure. Put simply: if
achieving 100% coverage is not feasible, understanding
the growth curve is essential to select a practical
stopping point.

In this paper we study the coverage growth of
different data-flow and control-flow coverage measures
as a function of testing. We consider four coverage
measures, namely, block, decision, computation use (c-
use) and predicate use (p-use) [17]. For each one of
these measures we hypothesize the coverage growth to
be lognormal, due to the theoretical foundations
underpinning the lognormal software reliability growth
model [26]. To validate this hypothesis we generate
empirical coverage data from extensive testing of a
software application named SHARPE [36], which has
approximately 30 KLOC. We then fit three functions to
this empirical data, namely, exponential, lognormal and
log-Poisson and compare the quality of the fits using
Akaike Information Criteria (AIC) [2] and log
likelihood (LLH) [15] [31]. A comparison of the quality
of fits according to the above two indicators supports the
hypothesis that the coverage growth is lognormal for all
the coverage measures considered. Further, the
parameters of the fitted lognormal distributions for the
coverage measures are close. We then discuss how these
observations could be used to control the software
testing process. The paper thus takes a significant step in
using the context of software execution to link concepts
from prior studies of software test sufficiency, test
efficiency and reliability.

The layout of the paper is as follows: Section 2
provides some insights behind the lognormal hypothesis
and derives the lognormal coverage growth model.
Section 3 describes the experimental set up used to
obtain empirical coverage measurements from
SHARPE. Section 4 presents an analysis of the coverage
data, discusses the results of the analysis and its
implications for testing. Section 5 provides conclusions
and directions for future research.

Swapna S. Gokhale The Marginal Value of Increased Testing
& Robert E. Mullen An Empirical Anaysis

 15

2. LOGNORMAL HYPOTHESIS
The lognormal distribution is related to the normal or

Gaussian distribution: By definition, the logarithm of a
lognormal random variable follows the normal
distribution [1]. Alternatively, one may say it is the
exponentiation of a normal random variable. Plotted on
a log-axis the lognormal is symmetric, but on a linear
axis the lognormal variate is always positive and may
have a long tail to the right, possibly spanning many
orders of magnitude. Just as a normal distribution is
approached by sums of random variables, the lognormal
is approached by products of random variables. A
detailed overview of the lognormal distribution and
alternative forms of the central limit theorem can be
obtained from [1] [7] [18] [27] and the references in
these. In this section we summarize prior evidence for
the lognormal distribution of event rates in software as
well as its causes. We then extend that research to
develop a coverage growth model based on the
lognormal and interpret its parameters.

2.1. ORIGIN OF LOGNORMAL EXECUTION RATES
There is increasing evidence that the lognormal

distribution can be successfully applied to a number of
software reliability engineering problems, particularly
those dependent on rates of events. Mullen [27]
suggested the distribution of failure rates of software
faults tends to the lognormal because software event
rates, including block execution rates, tend to the
lognormal. The proposed lognormal failure rate
distribution was validated by analyzing careful studies
of failure rates of faults previously published by IBM
and Boeing. Bishop and Bloomfield [3] showed block
execution rates, as well as fault failure rates, are indeed
lognormal in the PREPRO application of the European
Space Agency. Mullen and Gokhale [28] [29]
determined that the distribution of occurrence counts of
defects encountered during customer usage follows a
Discrete Lognormal distribution which can be derived
from an underlying Lognormal distribution of rates.
Miller [24] pointed out the mathematical transformation
from a rate distribution to first occurrence times
(discovery times) is equivalent to the Laplace transform
of the rate distribution. Mullen [26] derived the
Lognormal Software Reliability Growth Model by
approximating the Laplace transform of the lognormal.
This model was validated using Stratus computer data
and Musa data.

In short, key elements of the lognormal hypothesis
have already been confirmed in studies of over 30
applications ranging from several thousand to several
million lines of code, in both test and production
environments. We use those results to motivate our
derivation of a lognormal coverage growth model.

2.2. LOGNORMAL COVERAGE GROWTH MODEL
 In this section we discuss the origin of the

lognormal execution rates of code elements. We then
formulate the Lognormal coverage growth model, based
on the same techniques used to derive Lognormal
Software Reliability Growth Model [26].

The branching nature of software programs tends to
generate a lognormal distribution of execution rates of
code elements. We first make the argument for block
execution rates. The probability of execution flowing to
a given block in the code is the product of the
probabilities of the conditional branches leading to that
block. There are a large number of conditional
statements guarding the execution of typical code
blocks; therefore there will be a large number of factors
multiplied in order to determine the probability. The
central limit theorem tells us that under very general
conditions the distribution of the products of those
factors is asymptotically lognormal. Therefore the
distribution of the block execution rates tends to the
lognormal. A more specific model of the processes that
lead to the lognormal distribution of block execution
rates is provided by Bishop and Bloomfield [3]. They
also provide reasons and evidence that the distribution
remains lognormal even in the presence of loops and
other variations in program structure. Similar arguments
can be made for the execution rates of the decisions, c-
uses, and p-uses.

To say the execution rate distribution is lognormal is to
say the logarithms of the execution rates, ln(�), follow the
Gaussian or normal probability distribution function (pdf).
For)0(>λ

() () λσµλ
πλσ

λ dedL
22/2)ln(

2

1 −−=

There are two parameters, the mean of the log rates, µ,

and the variance of the log rates, σ. If σ is zero, all blocks
have the same execution rate.

 Let N be the number of blocks in the application. The
probability of a single block of execution rate (per test) λ is
not encountered during the first t tests is exp (-λt). The
probability that block was executed at least once during the
execution of the first t tests is 1 - exp(-λt). The mean
contribution of that block to the rate of increasing block
coverage of the system at test t is λexp(-λt). If λ is
distributed as L(λ|µ, σ2) then M(t), the cumulative mean
number of blocks covered (that is, having at least one
execution) at the completion of t tests, can be

Swapna S. Gokhale The Marginal Value of Increased Testing
& Robert E. Mullen An Empirical Anaysis

 16

Table 1: Characteristics of SHARPE files

File Name LOC

Block
#Dec

#C-
use

#P-
use

analyze.c 946 334 177 643 365

bind.c 2358 911 610 1535 795

bitlib.c 383 75 42 126 117

cexpo.c 1267 406 278 1043 591

cg.c 910 202 123 666 299

debug.c 259 94 47 119 79

expo.c 621 186 99 240 181

ftree.c 3560 993 591 1454 882

in_qn_pn.c 1246 441 235 346 212

inchain.c 1203 404 270 518 533

indist.c 680 243 129 123 139

inshare.c 1592 608 358 600 654

inspade.c 880 303 164 351 244

maketree.c 554 176 72 436 192

mpfqn.c 1142 429 241 747 589

multpath.c 387 128 54 248 92

newcg.c 704 230 132 711 364

newlinear.c 1376 489 285 1932 1210

newphase.c 1271 414 209 1103 844

pfqn.c 1155 325 216 992 715

phase.c 1957 544 304 1699 1153

reachgraph.c 1791 524 363 1293 848

read1.c 1292 421 320 468 406

results.c 1322 604 341 653 388

share.c 1977 702 485 925 833

sor.c 820 269 161 645 456

symbol.c 1490 527 293 531 404

uniform.c 819 227 110 378 330

util.c 1119 407 294 1112 949

Total 35081 11616 7093 21936 15122

Table 2: Coverage for SHARPE files

File Name Block Dec. C-use
P-
use

analyze.c 97 93 90 79

Bind.c 98 97 87 78

bitlib.c 96 93 76 76

cexpo.c 88 84 81 73

cg.c 76 80 56 71

debug.c 69 72 69 66

expo.c 99 97 95 88

ftree.c 93 92 87 79

in_qn_pn.c 88 86 68 73

inchain.c 99 97 83 64

indist.c 98 91 98 97

inshare.c 98 94 62 56

inspade.c 99 99 96 83

maketree.c 99 99 90 68

mpfqn.c 99 98 84 71

multpath.c 97 93 90 62

newcg.c 85 82 52 66

newlinear.c 93 85 63 57

newphase.c 95 90 71 57

pfqn.c 98 96 82 69

phase.c 91 87 71 65

reachgraph.c 76 72 68 56

read1.c 98 95 91 88

results.c 99 96 95 88

share.c 93 92 87 76

sor.c 93 88 88 68

symbol.c 98 96 84 87

uniform.c 92 93 80 78

util.c 86 74 54 41

Total 93 90 76 68

Swapna S. Gokhale The Marginal Value of Increased Testing
& Robert E. Mullen An Empirical Anaysis

 17

obtained by integrating over blocks of all rates, and is given
by

() ()λ
λ

λ dLtNNtM ∫
∞

=
−⋅−=

0
exp)(

This integral is formally equivalent to the Laplace
transform of the lognormal, which has no simple form.
Details of how to numerically approximate this function
are provided in [26]. In what follows we will refer to
this proposed coverage growth model as the lognormal
model because it is based on an underlying lognormal
distribution of execution rates, although in fact it is the
Laplace transform of the lognormal.

An important benchmark is that many coverage
measures provide insight into the behavior of program
features that relate to defect discovery, but inevitably
they all must relate to the same defect discovery rate.
Because they cannot differ significantly from one
another, we hypothesize that one model will fit all four
measures and that their parameters will be close.

2.3. INTERPRETATION OF PARAMETERS
Conceptual advantages of the lognormal include the

relative transparency of its parameters and the way it
links various observed properties of coverage growth.
Here we provide a brief discussion of how the parameter
values are related to the characteristics of software
applications.

The parameter � makes the greatest qualitative
difference and allows the lognormal its flexibility. The
standard deviation of the log rates, � increases with
increasing complexity of the software, in particular with
greater depth of conditionals [3]. It determines the ratio
of the highest and the lowest coverage rates of the code
elements. It thus determines the range over which the
rates vary: the higher the �, the higher the range of
variation. If � is zero, all code elements have the same
coverage rate, leading to the exponential model [M75]
of software reliability growth. Values from 1 to 3 are
more commonly seen. Values of 4 or above are unusual
and carry large uncertainties [12].

The parameter � has a simple interpretation: if rates
are plotted on a log scale, changing � merely moves the
distribution to the right or left. A change in � is obtained
by changing the coverage rates of all the code elements
by a constant factor, for example a system speedup or
merely using different units of time. For � = -3, the
median rate is exp (-3) or .05 per test. At that rate
almost half the code will not be covered by the first
twenty tests (the exact proportions depending on �).
Changing either � or � --- both of which relate to ln(rate)

--- does not affect the other. However changing either �
or � affects both the mean and variance of the rates
themselves [1].

The final parameter is N, the total number of code
elements, which scales the pdf. We can view N in a
formal sense as just another number needed to fit the
model, or we can view it more physically as the
maximum level of coverage that is feasible. If the
coverage is measured in terms of the actual number of
code elements, then under the latter interpretation, the
maximum value of N would the total number of
elements, which can be obtained directly from the code.
However, due to the presence of unreachable code, the
maximum feasible value of N is likely to be smaller than
the maximum number of code elements. Further, in
practice, limited testing time and resources will prevent
coverage from reaching its maximum feasible value.
Coverage may also be measured as a percentage, in
which case the maximum value of N would be 100%
and the estimate of N will represent the approximate
feasible percentage coverage that can be achieved given
infinite testing time and resources. In this paper, we use
coverage measurements reported as a percentage.

3. EXPERIMENTAL SETUP
In this section we describe the experimental set up

used to obtain empirical coverage measurements from
the testing of an application termed SHARPE, to
validate the lognormal coverage growth model derived
in Section 2.2.

3.1. OVERVIEW OF SHARPE
The Symbolic Hierarchical Automated Reliability

and Performance Evaluator (SHARPE) that solves
stochastic models was selected as our subject [36]. This
application was first developed in 1986 for three user
groups: practicing engineers, researchers in performance
and reliability modeling, and science and engineering
students. SHARPE was chosen as our system-under-test
because it is well-known, of manageable size, well
instrumented and has a readily available test suite with
fairly high coverage. It is important to note that we do
not use SHARPE for our modeling and calculations.
Instead, we use SHARPE only as the application being
studied. In other words, we did not use the output of
SHARPE, we measured how its code coverage increased
as a function of testing.

SHARPE contains 35,081 lines of C code in 29 files
and has a total of 373 functions. Table 1 shows the
number of lines of code, blocks, decisions, c-uses and p-
uses in each file of SHARPE.

Swapna S. Gokhale The Marginal Value of Increased Testing
& Robert E. Mullen An Empirical Anaysis

 18

3.2. TESTING OF SHARPE
We used an existing suite of 735 test cases created

by developers and testers for testing modifications and
enhancements in previous releases of SHARPE. When
SHARPE is exercised once with this test suite, a single
realization of code coverage growth is obtained. It is
necessary to generate additional coverage growth
realizations, since a comparison of models using a single
realization may not be conclusive, because, as indicated
by Miller [24], the statistical fluctuations within a single
realization would often mask differences among similar
models. These additional realizations were obtained by
conducting multiple testing runs with the same 735 test
cases in each run. In each run a random ordering of the
735 test cases was used. In other words, for each run a
test sequence of 735 test cases was generated from the
original test suite by sampling without replacement.

3.3. COLLECTING COVERAGE MEASUREMENTS
SHARPE was instrumented with Automatic Test

Analyzer for C (ATAC) which is a part of Telcordia
Software Visualization and Analysis Tool Suite
(TSVAT) [21] to measure coverage during the
execution of the application with test cases. The use of
ATAC focuses on three main activities: instrumenting
the software, executing software tests, and measuring
coverage to determine how well the code has been
covered. ATAC can report coverage with respect to the
function entry, block, decision, c-uses, and p-uses [17].

Many other coverage tools which collect data on the
variants of these coverage measures [37] [9] can also be
used to provide such data.

We used four coverage measures, namely, block,
decision, c-use and p-use. A brief description of each
of these coverage measures as used in ATAC is as
follows [17].

Table 4: analyze.c: Average coverage growth over 10 runs

Test # Block Dec. C-use P-use

1 14.3 11.7 12.3 9.4

2 20.2 16.7 17.1 13.6

3 21.5 17.8 18.0 14.8

4 22.1 18.8 18.6 15.4

6 27.0 23.8 21.6 18.6

8 33.4 28.6 26.5 22.1

12 44.7 36.5 36.5 28.9

16 49.9 40.9 41.2 32.5

24 54.2 44.7 45.3 35.8

32 57.9 48.1 48.6 37.9

48 69.8 58.8 58.5 46.4

64 73.3 62.9 61.3 49.6

96 81.2 71.5 69.6 56.6

128 84.9 75.8 73.9 61.0

192 90.8 82.3 80.3 67.6

256 93.0 85.9 83.5 71.6

384 94.4 88.6 86.5 75.2

512 95.7 91.5 87.9 77.6

623 96.7 92.6 89.5 78.2

735 97.0 93.0 90.0 79.0

Table 3: analyze.c: Coverage growth for a single run

Test # Block Dec. C-use P-use

1 23 16 23 18

2 42 32 39 32

3 42 32 39 32

4 42 32 39 32

6 50 40 43 36

8 50 40 43 36

12 50 40 43 36

16 50 40 44 37

24 64 45 60 41

32 75 59 65 48

48 81 69 69 55

64 81 70 72 58

96 81 72 73 59

128 88 79 78 64

192 94 87 83 72

256 94 87 83 73

384 94 89 85 75

512 94 90 86 77

623 96 92 89 78

735 97 93 90 79

Swapna S. Gokhale The Marginal Value of Increased Testing
& Robert E. Mullen An Empirical Anaysis

 19

Figure 1: Cumulative coverage for analyze.c for four coverage measures.end_caption

Block: A basic block or simply a block is a sequence
of instructions, which except for the last instruction is
free of branches and function calls. A block may contain
more than one statement if no branching occurs between
the statements, a statement may contain multiple blocks
if branching occurs inside the statement, an expression
may contain multiple blocks if branching is implied
within the expression. Also, in a basic block only the
first statement can be a target of a branch.

Branch or Decision: A branch or a decision consists
of a Boolean expression in its control structure.

C-use: A c-use is defined as a path through a
program from each point where the value of a variable is
defined to its computation use, without the variable
being modified along the path.

P-use: A p-use is a path from each point where the
value of a variable is defined to its use in a predicate or a

decision, without modifications to the variable along the
path.

The execution time of each test case is assumed to be
one. Thus the cumulative execution time is measured as
the number of test cases executed. The level of coverage
achieved for each measure for each file is in Table 2.

3.4. DATA REDUCTION AND AGGREGATION
ATAC reports block (decision, c-use, p-use)

coverage in the form of percentage of blocks (decisions,
c-uses, p-uses) executed. When the percentage coverage
is reported, consecutive blocks (decisions, c-uses, p-
uses) are treated to be independent. However, it may be
the case that the consecutive blocks (decisions, c-uses,
p-uses) are actually dependent.

It would be better for statistical analysis, to know the
number of such independent sets or groups for each

0

50

100

0 200 400 600 800

test number (analyze.c)

cu
m

u
la

ti
ve

 p
er

ce
n

t

block avg

LN

LP

EXP

0

50

100

0 200 400 600 800

test number (analyze.c)

cu
m

u
la

ti
ve

 p
er

ce
n

t

puse avg

LN

LP

EXP

0

50

100

0 200 400 600 800

test number (analyze.c)

cu
m

u
la

ti
ve

 p
er

ce
n

t

decision avg

LN

LP

EXP

0

50

100

0 200 400 600 800

test number (analyze.c)

cu
m

u
la

ti
ve

 p
er

ce
n

t

cuse avg

LN

LP

EXP

Swapna S. Gokhale The Marginal Value of Increased Testing
& Robert E. Mullen An Empirical Anaysis

 20

measure rather than the percentages. In any case, use of
percentages (rather than the elements) will vary the
absolute log-likelihood, but does not change the
maximum likelihood estimates of the key lognormal
parameters µ and σ. Likelihood ratio tests, log-
likelihood differences, and AIC-computations are also
unchanged by using percentages instead of counts
provided the counts are on the order of 100. Standard
deviations of the parameters were determined by
inverting the Fischer Information Matrix [38].

We observed from the coverage data, that for each
measure, some test cases are redundant and generate no
additional coverage beyond the previous ones. A
minimized test set which achieves the same level of
coverage as the original one can thus be obtained for
each measure [19] [34] [40]. For example, for block
coverage less than 300 test cases achieve the same
coverage as the entire suite of 735 test cases. Due to the
presence of redundant test cases, we analyze the data by

dividing the whole execution sequence into 20 segments of
proportionately increasing length. This makes it more likely
that later buckets have at least some increase in the
marginal coverage.

Cumulative coverage for each measure was obtained
for each file of SHARPE and for the entire source code,
for each run. As an example, for all measures we show
the cumulative coverage for a single run, as well as the
average over ten runs for the file analyze.c in Tables 3
and 4 respectively. It was observed that the cumulative
coverage for individual files for a single run had very
few increments, making it difficult to see true form of
coverage growth. Therefore, for a single file, average
cumulative coverage was computed using the
cumulative coverage over ten runs to discover the mean
function of coverage growth. This average cumulative
coverage was used for analysis. Ten replications were
chosen since it was visually observed that the average
cumulative coverage computed using the data collected

Table 5: SHARPE: Coverage growth for a single run

Test # Block Dec. C-use P-use

1 13.57 12.15 7.64 6.69

2 15.36 13.44 8.60 7.40

3 15.54 13.59 8.72 7.54

4 20.22 18.02 12.00 10.27

6 27.47 24.45 18.45 16.06

8 32.68 29.03 22.59 19.77

12 36.51 32.84 26.01 22.67

16 48.24 43.55 33.65 29.49

24 56.18 51.42 39.68 34.76

32 58.52 53.81 41.40 36.50

48 71.61 65.50 55.40 47.72

64 75.48 69.34 58.25 50.59

96 78.99 73.20 62.22 53.83

128 80.01 74.73 63.68 55.38

192 83.56 78.75 67.01 59.21

256 86.93 82.55 70.07 62.51

384 89.47 85.25 72.08 64.44

512 91.13 87.32 73.49 65.84

623 92.75 89.16 75.09 67.20

735 93.51 90.29 76.02 68.05

Table 6: SHARPE: Average coverage growth over 10 runs

Test # Block Dec. C-use P-use

1 16.48 14.32 10.94 9.35

2 20.66 17.98 13.95 11.87

3 24.72 21.35 17.02 14.45

4 27.04 23.46 18.56 15.91

6 31.78 27.67 22.20 18.91

8 38.06 33.05 27.56 23.49

12 44.13 38.68 32.00 27.22

16 49.48 43.29 35.90 30.67

24 56.28 49.77 41.80 35.68

32 61.29 54.50 46.18 39.41

48 67.81 61.09 52.18 44.67

64 72.07 65.59 56.04 48.41

96 77.04 70.99 60.11 52.70

128 79.96 74.24 63.37 55.21

192 84.22 78.74 67.00 58.73

256 86.80 81.79 69.36 61.18

384 89.85 85.52 72.37 64.35

512 91.54 87.71 73.93 65.94

623 92.65 89.16 75.10 67.13

735 93.51 90.29 76.02 68.05

Swapna S. Gokhale The Marginal Value of Increased Testing
& Robert E. Mullen An Empirical Anaysis

 21

over ten runs is reasonably smooth.

The coverage growth for the four measures for the
entire SHARPE for a single run and average over ten
runs is shown in Tables 5 and 6 respectively. Similar to
Tables 3 and 4, Tables 5 and 6 also show the data
divided into twenty segments. For the entire code
coverage growth for a single run is also reasonably
smooth. For the entire code, analysis was thus conducted
using the coverage growth obtained from a single run
and the average over ten runs.

4. ANALYSIS AND DISCUSSION
The data analysis is conducted in three parts, as

follows: (a) Coverage growth for each measure for a
single run and average over ten runs for a single file,
namely, analyze.c, (b) Coverage growth for each
measure for a single run and average over ten runs for
the entire SHARPE application, (c) Comparative
analysis of the coverage growth for each measure for
average of ten sequences for individual files.

We will consider data sufficiency, run-to-run
variation and the quality of the fits using log-likelihood
(LLH), AIC and charts. We consider two alternative
models, namely, the exponential model and the log-
Poisson model. For the exponential model [M75], all
blocks have identical execution rates, therefore the LLH

is the same as the lognormal with σ=0.0. For the log-
Poisson (LP) model, we used the function [20].

))ln(1()(btatM +=

to determine the MLE estimates of the parameters a and b
and use the associated LLH value.

The Akaike Information Criteria (AIC) can be
computed for each model as follows [35]:

tersnum_parame*2hoodlog_likeliAIC +−= *2

The AIC is similar to a likelihood ratio test. It
penalizes the model with more parameters, in this case
the lognormal. The model with a lower AIC value is
better. Two units of AIC is significant, four very
significant [2].

4.1. ANALYSIS OF ANALYZE.C
The coverage growth of a single sequence and

average over ten sequences for the file analyze.c are
reported in Tables 3 and 4 respectively. An examination
of the data in these tables provides some indication of
how a particular replication differs from the overall
average. To determine the average of all ten
replications, we sum the coverage of each run;

Table 8: analyze.c: comparative fits for average coverage growth

 Block Dec. C-use P-use

LN σ 1.83 2.12 2.14 2.34

LN s.d.
σ

0.34 0.43 0.44 0.56

LN µ -3.31 -3.87 -3.80 -4.27

LN s.d.
µ

0.26 0.38 0.39 0.56

LN N 100.6 101.8 98.2 91.42

LN s.d.
N

10.56 12.16 11.86 13.80

Neg LN
LLH

25.94 23.90 28.93 26.55

Neg LP
LLH

32.54 27.13 32.32 28.51

Neg Exp
LLH

58.01 53.28 59.02 50.08

LN AIC
over LP

11.2 4.46 4.78 1.92

Table 7: analyze.c: comparative fits for a single run

 Block Dec. C-use P-use

LN σ 2.45 2.62 3.18 3.57

LN s.d.
σ

0.41 0.50 0.66 0.91

LN µ -2.51 -3.41 -3.02 -3.85

LN s.d.
µ

0.34 0.46 0.59 0.98

LN N 101.3 102.8 101.3 97.57

LN s.d.
N

10.72 12.47 13.25 18.18

neg LN
LLH

77.41 68.36 60.38 51.12

neg LP
LLH

78.53 69.78 61.07 51.00

neg Exp
LLH

149.41 122.49 143.83 111.68

LN AIC
over LP

0.24 0.70 -0.62 -2.24

Swapna S. Gokhale The Marginal Value of Increased Testing
& Robert E. Mullen An Empirical Anaysis

 22

determine the averages and the MLE fits of the models.
The parameters of the LN are provided in Tables 7 and
8. Figure 1 shows the average coverage and the three
MLE fits for block, decision, c-use and p-use coverage
for the file analyze.c. It is shown in a linear form to
illustrate the ability of the lognormal to fit both early
and late data. Visually the lognormal is a better fit.

To form an objective judgment, we examined the
log-likelihood of the data being generated by the three
models. The LLH values reported in Tables 7 and 8 (for
a single sequence and average over ten sequences
respectively) indicate that the exponential model has far
less likelihood of generating the observed data, than
either the lognormal or the log-Poisson. Hence we will
not analyze the exponential model any further.

Next we compare the log-Poisson and lognormal
models using the AIC. The AIC values of analyze.c
reported in Tables 7 and 8 (for a single sequence and
average over ten sequences respectively) indicate that
the lognormal can give the best fit for a single file, at
least in this case when averaged over ten sequences. The
parameters fitted to a single run, especially σ, can vary
widely from the average; indeed the AIC for the selected

single run chose LP as a significantly better fit to the p-
use data. The average growth is more likely to be
generated by the lognormal than the log-Poisson for
each coverage measure, and very significantly so for
three.

4.2. ANALYSIS OF ENTIRE APPLICATION
Because there is more activity (more increments)

when summing coverage over the entire application,
even coverage growth obtained from a single run
provide sufficient data to constitute significant evidence.
The LLH values for single runs in Table 9 show that the
exponential model is a much poorer fit. The LLH are
closer for LN and LP, so we use the AIC for
comparison. For each measure the coverage growth is
significantly better modeled by the lognormal even for
the single sequence case.

To combine the ten replications of the whole, we
formed and fitted their total in Table 10. With ten times
the data, the uncertainty of � is reduced to 0.17 or less.
We find all four coverage measures have values of � that
are within 0.17 of 2.30. The similarity of the marginal
coverage growth curves in Figure 2 reflects the
closeness of � values.

Table 9: SHARPE: comparative fits for a single run

 Block Dec. C-use P-use

LN σ 1.80 1.90 1.57 1.63

LN s.d. σ 0.34 0.37 0.34 0.38

LN µ -3.35 -3.60 -3.66 -3.77

LN s.d. µ 0.27 0.30 0.27 0.30

LN N 96.99 95.37 78.67 71.1

LN s.d. N 10.37 10.68 9.30 9.02

neg LN
LLH

46.91 44.91 42.27 39.30

neg LP
LLH

53.06 49.08 47.12 42.89

neg Exp
LLH

86.89 83.11 67.01 60.58

LN AIC
over LP

10.3 6.34 7.7 5.18

Table 10: SHARPE: comparative fits for average coverage growth

 Block Dec. C-use P-use

LN σ 2.28 2.44 2.19 2.31

LN s.d. σ 0.13 0.16 0.15 0.17

LN µ -3.28 -3.71 -3.61 -3.85

LN s.d. µ 0.11 0.15 0.13 0.16

LN N 998 1006 822 757

LN s.d. N 34.57 40.13 33.26 34.64

neg LN
LLH

72.48 68.99 70.45 66.45

neg LP
LLH

108.80 90.88 95.55 82.97

neg Exp
LLH

575.40 524.60 417.80 368.48

LN AIC
over LP

70.64 41.78 48.20 31.04

Swapna S. Gokhale The Marginal Value of Increased Testing
& Robert E. Mullen An Empirical Anaysis

 23

Figure 2: Marginal coverages as a function of number of tests

The advantage of the lognormal is most visible in
Figure 2 which shows marginal (i.e. incremental)
coverage per test for the four measures on a log-log
scale. The fitted lines were generated from the
parameters in Table 10. Ten replications were used to
determine the standard deviation of the sample mean at
each of the 20 points. For each coverage measure the
data falls within one standard deviation of the lognormal
fit over half the time, as expected.

4.3. ANALYSIS OF INDIVIDUAL FILES
As noted, in individual files there were considerably

fewer increments (from 3 to 15) than for the entire
application. This implies that there were intervals where
no test caused any execution within a specific file. We

saw the consequences in case of analyze.c in Table 3.
analyze.c was not atypical, but its coverage growth
appeared somewhat less erratic than most files. Overall
it is not useful to study coverage growth in single files,
unless we replicate test realizations. Thus to discover the
mean function for other files, we combine ten test
realizations, as we did in analyze.c.

Table 11 provides the AIC advantage to the LN for
each file for each coverage measure. For block, decision
and c-uses, one or two are significantly more likely to be
generated by the LP and 23 or more by the LN. Three or
four others are inconclusive. For p-uses, although only
debug.c seemed to fit the LP better, there were 12 that
were equally likely to derive from the LP as the LN. As
with SHARPE taken as a whole, we find the AIC

0.001

0.01

0.1

1

10

100

1 10 100 1000
test number

p
er

ce
n

t
in

cr
ea

se

block avg

LN

LP

0.001

0.01

0.1

1

10

1 10 100 1000

test number
p

e
rc

e
n

t
in

c
re

a
s

e

puse avg

LN

LP

0.001

0.01

0.1

1

10

100

1 10 100 1000

test number

pe
rc

en
t i

nc
re

as
e

cuse

LN

LP

0.01

0.1

1

10

100

1 10 100 1000

test number

p
e

rc
e

n
t i

n
cr

e
a

se

decision avg

LN

LP

Swapna S. Gokhale The Marginal Value of Increased Testing
& Robert E. Mullen An Empirical Anaysis

 24

advantage to the LN is largest for block coverage, then
less for c-use, decision, and p-use in that order. The
same ranking applies if we consider either the mean or
median of the AIC advantage over all 29 files.

Tables 12 and 13 summarize the mean and the
standard deviation of � and � for each file for each
measure. The relative similarity of the four � values is
displayed in Figure 3, in which the files are ordered by �
of block coverage. We see the spread widening as �
exceeds 2.0, and becoming very erratic above 4.0. The
mean value of a LN distribution can be computed as
exp(�+�2/2). This must approximate the initial values of
the total rate. Because the coverage measures initially
grow at similar rates, we expect that these also will be
very similar among the measures. We compare those in
Figure 4. Again we find similarity among the values, but
the greatest divergence is found among the files with
large values of �.

Bishop and Bloomfield [3] observed and explained a
rough relationship between program size and the
lognormal �. The depth of conditionals is proportional to
the log of the program size, and �, the spread in the rates,
is proportional to the square root of that. This
relationship seems to imply that the elements of the
different coverage measures exist at similar logical (or
conditional depth) in the program. That is, the depth of a
decision is nearly the same as the depth of the block it
guards. Furthermore, the function will not vary much for
files whose lengths barely range over a factor of ten.
We found that the individual SHARPE files are the
smallest studied to-date, and generally have � values
lower than those seen before, and lower than those of
SHARPE as a whole. As seen already, some of the files
were not convincingly fit by the lognormal and others
yielded either high or erratic values of �.

Figure 5 displays the relation between all four �
values and file size in LOC, for this application.
Visually there is quite a bit of scatter, in particular due
to the four files with � > 4 and the largest file, which
happens to have a low � value. We find that for these 29
individual files there is only a weak dependence of � on
code size. The R-squared of a simple linear trend is less
than .07 in every case. We interpret this as additional
evidence that the conditions leading to the lognormal are
not always present in single programs or small files. On
the other hand, the behavior of SHAPE as a whole and
many of its files are certainly fit by the lognormal. The
depth of conditionals in files with fewer than 2000 LOC

are evidently too shallow to consistently approximate
the conditions of the Central Limit Theorem and
therefore may not always exhibit the lognormal. Above
that size, and certainly with replication, the lognormal is
generally observed

Table: 11: SHARPE files: Comparative AIC advantage

File Name Block Dec. C-use P-use

analyze.c 11.20 4.45 4.78 1.94

bind.c 1.02 2.03 1.54 1.60

bitlib.c 43.24 23.48 -4.92 0.82

cexpo.c 5.48 2.46 3.22 2.72

cg.c 27.06 38.21 23.72 38.50

debug.c -2.56 -2.36 -2.52 -2.98

expo.c 15.48 7.65 22.04 9.14

ftree.c 12.12 8.28 7.54 8.56

in_qn_pn.c 9.52 3.83 5.52 0.78

inchain.c 1.44 -0.39 4.78 -0.44

indist.c 5.06 0.74 10.75 2.58

inshare.c 0.78 -0.31 -0.50 -0.48

inspade.c 12.80 2.59 9.70 -0.16

maketree.c 35.00 12.78 20.00 -0.24

mpfqn.c 14.92 7.87 7.70 6.42

multpath.c 11.34 12.74 8.52 4.36

newcg.c 10.28 7.28 3.14 4.12

newlinear.c 8.90 3.08 3.16 0.68

newphase.c 33.02 9.25 8.48 0.34

pfqn.c 21.48 13.27 9.12 9.38

phase.c 36.78 27.81 20.80 10.24

reachgraph.c 46.26 37.28 24.08 16.62

read1.c -0.24 -0.86 9.12 0.60

results.c 5.78 8.78 8.06 7.90

share.c 6.66 3.92 7.70 0.94

sor.c -1.74 -2.69 -1.18 -1.32

symbol.c 5.50 2.88 9.30 3.32

uniform.c 53.70 34.79 57.96 30.92

util.c 4.40 4.848 7.72 4.66

Mean 14.99 9.44 9.98 5.57

Median 9.52 4.45 7.70 1.94

Swapna S. Gokhale The Marginal Value of Increased Testing
& Robert E. Mullen An Empirical Anaysis

 25

Figure 3: � of coverage measures for each file of SHARPE

Figure 4: Computed mean rates for each file of SHARPE

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500 4000

L
o

g
n

o
rm

al
 s

ig
m

a

Block

Decision

C-Use

P-Use

-6

0

6

12

18

re
ac

hg
ra

ph
.c

un
ifo

rm
.c

m
ul

tp
at

h.
c

cg
.c

ne
w

cg
.c

ne
w

ph
as

e.
c

ph
as

e.
c

de
bu

g.
c

bi
tli

b.
c

ne
w

lin
ea

r.
c

pf
qn

.c

m
pf

qn
.c

m
ak

et
re

e.
c

ft
re

e.
c

in
_q

n_
pn

.c

in
sp

ad
e.

c

an
al

yz
e.

c

ex
po

.c

in
di

st
.c

sy
m

bo
l.c

in
sh

ar
e.

c

sh
ar

e.
c

bi
nd

.c

in
ch

ai
n.

c

ce
xp

o.
c

re
su

lts
.c

so
r.

c

re
ad

1.
c

ut
il.

c

ln
 (

m
ea

n
 r

at
e)

Block

Decision

C-use
P-use

0

1

2

3

4

5

6
an

al
yz

e.
c

bi
nd

.c

bi
tli

b.
c

ce
xp

o.
c

cg
.c

de
bu

g.
c

ex
po

.c

ftr
ee

.c

in
_q

n_
pn

.c

in
ch

ai
n.

c

in
di

st
.c

in
sh

ar
e.

c

in
sp

ad
e.

c

m
ak

et
re

e.
c

m
pf

qn
.c

m
ul

tp
at

h.
c

ne
w

cg
.c

ne
w

lin
ea

r.c

ne
w

ph
as

e.
c

pf
qn

.c

ph
as

e.
c

re
ac

hg
ra

ph
.c

re
ad

1.
c

re
su

lts
.c

sh
ar

e.
c

so
r.c

sy
m

bo
l.c

un
ifo

rm
.c

ut
il.

c

Lo
gn

or
m

al
 s

ig
m

a

Block

Decision

C-use
P-use

Swapna S. Gokhale The Marginal Value of Increased Testing
& Robert E. Mullen An Empirical Anaysis

 26

Figure 5: Lognormal � as a function of lines of code

4.4. IMPLICATIONS FOR TESTING
One of our objectives was to provide a quantitative

feel for the similarities and differences among the
growth characteristics of coverage measures. For this
application, the number of code elements (blocks,

decisions, etc) differed by approximately a factor of
three, with the most being p-uses and the least being
decisions. The test suite used provided coverage
exceeding 90% for blocks and decisions, but only close
to three-quarters or two-thirds coverage for c-use and p-
use respectively. It is unclear whether the lower c-use

Table 12: SHARPE files: LN σ

Block Decision C-use P-use File Name

Mean S.d Mean S.d. Mean S.d. Mean S.d.

analyze.c 1.83 0.34 2.12 0.43 2.14 0.39 2.34 0.56

bind.c 3.05 0.70 3.07 0.74 3.22 1.08 3.75 2.24

bitlib.c 1.35 0.22 1.71 0.27 4.00 2.10 2.44 0.42

cexpo.c 3.41 0.74 3.55 0.82 3.18 0.49 3.24 0.52

cg.c 1.03 0.19 1.14 0.20 1.18 0.22 0.98 0.18

debug.c 1.32 0.50 1.25 0.43 1.79 1.44 1.39 0.67

expo.c 2.07 0.34 2.43 0.44 1.79 0.24 2.11 0.31

ftree.c 1.64 0.29 1.76 0.32 1.71 0.27 1.64 0.27

in_qn_pn.c 1.73 0.35 1.90 0.42 1.80 0.33 1.90 0.35

inchain.c 3.39 0.73 3.33 0.73 2.80 0.41 3.13 0.72

indist.c 2.12 0.37 2.05 0.38 1.83 0.30 1.90 0.34

inshare.c 2.56 0.51 2.95 0.71 2.52 0.66 2.41 0.69

inspade.c 1.80 0.28 1.97 0.34 1.86 0.30 2.13 0.40

maketree.c 1.51 0.23 1.9 0.29 1.64 0.27 2.32 0.50

mpfqn.c 1.40 0.25 1.45 0.27 1.41 0.30 1.33 0.32

multpath.c 0.75 0.28 0.74 0.27 0.75 0.31 0.85 0.36

newcg.c 1.06 0.27 1.05 0.28 0.98 0.35 1.01 0.32

newlinear.c 1.35 0.27 1.48 0.33 1.39 0.35 1.48 0.43

newphase.c 1.07 0.20 1.47 0.27 1.41 0.30 1.70 0.42

pfqn.c 1.37 0.23 1.51 0.26 1.48 0.28 1.40 0.30

phase.c 1.26 0.21 1.32 0.23 1.26 0.25 1.50 0.30

reachgraph.c 0.58 0.20 0.61 0.21 0.84 0.25 0.90 0.27

read1.c 6.00 2.15 6.00 2.50 4.52 1.33 6.00 2.09

results.c 5.17 2.32 5.58 1.74 4.90 2.00 5.01 1.88

share.c 2.79 0.53 2.29 0.42 2.25 0.32 2.40 0.49

sor.c 5.45 2.16 4.59 1.49 5.29 3.98 4.43 1.60

symbol.c 2.38 0.43 2.76 0.57 2.05 0.30 2.64 0.54

uniform.c 0.68 0.17 0.79 0.19 0.45 0.14 0.75 0.20

util.c 6.00 2.56 6.00 2.06 4.91 3.87 5.34 1.88

Swapna S. Gokhale The Marginal Value of Increased Testing
& Robert E. Mullen An Empirical Anaysis

 27

and p-use coverage is due to their being “more
numerous, demanding, and thorough” or merely
“including infeasible cases”.

With few exceptions these orderings, if not the
exact ratios, held for the individual files as well.
Because the growth curves follow from lognormal
behavior seen in other applications, as well as in files
within this application, we believe our results are of
general interest.

Our results confirming lognormal coverage growth
together with the proportionality proposed by Bishop
and Bloomfield [3] allow us to establish an important
connection between a dynamic phenomenon which is
manifested through code execution (namely, code
coverage growth) and the static structure of the code.
This connection can be exploited to estimate � of the
lognormal coverage growth model by examining static
aspects of the code such as its size or logical depth.
Further, the parameter � of the lognormal, which is a

Table 13: SHARPE files: LN µ

Block Decision C-use P-use File Name

Mean S.d. Mean S.d. Mean S.d. Mean S.d.

analyze.c -3.31 0.26 -3.87 0.38 -3.80 0.39 -4.27 0.56

bind.c -4.07 0.74 -4.43 0.23 -4.71 1.08 -3.75 2.24

bitlib.c -2.08 0.19 -2.32 0.54 -5.80 2.10 -3.05 0.42

cexpo.c -1.02 0.48 -1.48 0.19 -1.82 0.49 -1.69 0.52

cg.c -2.33 0.18 -2.58 0.85 -2.82 0.22 -2.74 0.18

debug.c -6.02 0.66 -5.78 0.52 -7.03 1.44 -6.00 0.67

expo.c -2.38 0.27 -2.66 0.34 -2.32 0.24 -2.91 0.30

ftree.c -3.34 0.24 -3.50 0.27 -3.65 0.27 -3.52 0.27

in_qn_pn.c -3.52 0.27 -4.08 0.36 -3.62 0.33 -3.76 0.35

inchain.c -2.62 0.60 -3.37 0.70 -2.05 0.41 -3.12 0.72

indist.c -3.35 0.32 -3.87 0.36 -3.09 0.25 -3.76 0.30

inshare.c -3.89 0.51 -4.76 0.89 -4.27 0.70 -4.54 0.76

inspade.c -2.92 0.24 -3.67 0.31 -3.04 0.26 -3.73 0.38

maketree.c -3.40 0.20 -2.72 0.25 -2.68 0.23 -3.62 0.47

mpfqn.c -3.52 0.20 -3.95 0.23 -3.94 0.24 -4.05 0.25

multpath.c -4.62 0.16 -4.56 0.16 -4.74 0.17 -4.73 0.22

newcg.c -4.26 0.19 -4.50 0.21 -4.64 0.26 -4.65 0.24

newlinear.c -4.00 0.22 -4.32 0.28 -4.20 0.29 -4.50 0.37

newphase.c -3.24 0.17 -3.74 0.23 -3.68 0.25 -4.13 0.38

pfqn.c -3.20 0.19 -3.41 0.22 -3.64 0.24 -3.60 0.25

phase.c -2.56 0.19 -2.81 0.20 -3.03 0.21 -3.24 0.26

reachgraph.c -3.24 0.15 -3.44 0.16 -3.54 0.18 -3.59 0.20

read1.c -3.08 2.17 -4.81 3.03 -0.47 0.68 -2.72 1.98

results.c -8.45 5.16 -10.93 4.83 -9.58 5.00 -10.04 4.94

share.c -2.79 0.39 -3.22 0.36 -2.61 0.32 -3.47 0.45

sor.c -5.75 3.40 -4.52 1.91 -5.92 3.98 -4.46 2.00

symbol.c -3.13 0.36 -3.48 0.51 -2.86 0.30 -3.12 0.45

uniform.c -3.29 0.14 -3.70 0.15 -3.27 0.14 -3.69 0.16

util.c -9.39 6.07 -9.65 5.05 -10.33 3.87 -10.17 4.87

Swapna S. Gokhale The Marginal Value of Increased Testing
& Robert E. Mullen An Empirical Anaysis

 28

location parameter in the corresponding reliability
growth model, is here a measure of individual test
efficiency. As such an approximate estimate of � may be
obtained from previous projects by the same team.
Finally, in a reliability growth model a third parameter,
N, represents the ultimate number of defects and must be
estimated – in fact this is the key purpose of such a
model.

Since there is no a priori limit on the number of
defects, the error in the estimated value of N may be
quite large. But in the case of code coverage the total
number of code elements provides a known upper
bound. As indicated in Section 2.3, in the coverage
growth model, the estimated value of N will represent
the coverage that can be feasibly achieved, given infinite
testing time and resources. This estimated value of N
may fall short of the upper bound by the number of
unreachable elements, i.e. those that cannot be executed.

 Referring to Table 6 and Figure 2 it can be
observed that the coverage for all the four measures
was increasing with additional testing, right up to
the last test interval. Although the coverage values
at the end of the last interval represent what can be
achieved with our given test suite, this implies that
additional tests are likely to increase the coverage
further, to a point where all the feasible code is
covered. The estimates of N obtained through fitting
the lognormal model can then provide a projection
of the level of feasible coverage. The values of N in
Table 10 estimate approximately 100% feasible
coverage for both block and decision coverage
measures. The other two measures, however, are
converging on lower values, namely, 78.67% for p-
use coverage and 82.8% for c-use coverage. It is
important to note that the model does not assume
that achieving 100% coverage is feasible. The fit is
based on the shape of the growth curve, not on an
expectation that it will reach 100%..

A significant outcome of these results is that
approximate estimates of the parameters describing
coverage growth can be obtained a priori, even before
testing commences. This advance knowledge can be
used to control the testing process or to decide a specific
testing strategy by enabling projections regarding the
amount of testing necessary to achieve a certain level of
coverage. For example, if over 50% of the coverage can
be gained by executing only a randomized 10% of the
test cases, it suggests the strategy of initially testing a
new product by rapidly interleaving truncated test cycles
with periods of defect reproduction, debug, and fix.

The parameter estimates obtained a priori can also
be used to estimate the marginal effort needed to
achieve a certain improvement in coverage. Such

marginal effort is a function of � of the lognormal
because the shape of the growth curve depends on this
parameter. For the sake of illustration, the relative
testing effort necessary to improve coverage from 75%
to 90% (95% and 99%) for different values of � is
tabulated in Table 14. In each row the effort to achieve
75% coverage has been normalized to unity in order to
remove dependencies on other characteristics. Referring
to the table, it can be observed that for � = 0 the number
of tests necessary to cover 99% of the code is double the
number required to cover 90%.. A zero value of �
corresponds to a “memoryless” exponential decay
process, which is the easiest case, but an uncommon
one. For realistic values of �, the proportion of additional
tests needed for this additional percentage coverage is a
sensitive function of � and increases rapidly. Finally,
since the value of � is proportional to a function of the
size or the logical depth of the program [3], practical
coverage goals can be established in advance,
independent of problem domain.

5. CONCLUSIONS AND FUTURE RESEARCH
In this paper we study the growth characteristics of

four coverage measures, namely, block, decision, c-use
and p-use. We hypothesize and empirically establish that
the coverage growth for each one of the coverage types
can be derived from a lognormal distribution. In
addition, we also confirm the hypothesis that the
parameters of the lognormal distribution for each one of
the coverage types are close. By using randomized
repetitive test sequences we empirically and
quantitatively unify concepts from software test
sufficiency, test efficiency and reliability growth. We
then discuss how the lognormal coverage growth model
could be used to guide and control the testing process by
providing estimates of marginal testing effort to achieve
different degrees of coverage improvements.

There are several related questions that provide
opportunities for further research. What would be the
impact of generating test suites by randomly sampling

Table 14: Relative testing needed to increase coverage from75%
to 90%, 95%, and 99% as a function of LN �

LN σ 75% 90% 95% 99%

0 1 1.67 2.18 3.36

1 1 2.30 3.71 8.87

2 1 3.94 8.84 39.7

3 1 6.96 22.10 190.8

4 1 12.47 56.36 942.9

Swapna S. Gokhale The Marginal Value of Increased Testing
& Robert E. Mullen An Empirical Anaysis

 29

test suites with replacement, instead of without
replacement as used in this paper? Directly measuring
the execution of the code elements (as was done by [3]),
determining whether that distribution is lognormal as
expected, and then comparing those parameters to the
ones obtained from code coverage growth data would
provide a useful cross-check. The three-way relationship
between code coverage growth, test-count, and test
execution time needs to be established. A related
opportunity is the further exploration of how the size of
programs (measured in various ways) affects the
parameters of the lognormal for each coverage measure.
Given that, it should be possible to do predictions based
on a combination of early test experience with prior
static information bounding lognormal �, �, and the
number of code elements.

The techniques used in this paper, particularly that of
measuring coverage achieved by randomized sequences
of tests, could well be used to determine the practical
limits on the accuracy of coverage and defect
predictions.

ACKNOWLEDGMENTS
We thank Dr. Bob Horgan of Telcordia Technologies

for giving us access to ATAC. We thank Prof. Kishor
Trivedi of Duke University for the source code of
SHARPE, and Dr. Robin Sahner for the SHARPE test
suite. We thank Cisco management, especially Tricia Baker
and John Intintolo, for their encouragement. The research
at Univ. of Connecticut was supported in part by a Large
Grant from the Univ. of Connecticut Research Foundation
and in part by a CAREER award (#CNS-0643971) from
the National Science Foundation.

REFERENCES
[1] J. Aitchison and J.A.C. Brown, The Lognormal

Distribution, Cambridge University Press, NY,
1969.

[2] H. Akaike, Prediction and Entropy, MRC Technical
Summary Report #2397, NTIS, Springfield, VA,
1982.

[3] P. Bishop and R. Bloomfield, Using a Log-normal
Failure Rate Distribution for Worst Case Bound
Reliability Prediction. In Proceedings of
International. Symposium on Software Reliability
Engineering, pages 237-245, 2003.

[4] L. Briand and D. Pfahl, Using simulation for
assessing the real impact of test coverage on defect
coverage, IEEE Transactions on Reliability, 49(1):
60-70, 2000.

[5] M. H. Chen, M. R. Lyu and W. E. Wong, Effect of
code coverage on software reliability measurement,
IEEE Transactions on Reliability, 50(2): 165-170,
2001.

[6] L. Clarke, A. Podgurski, D. J. Richardson and S. J.
Zeil, A formal evaluation of data flow path selection
criteria, IEEE Transactions on Software
Engineering, 15(11): 1318-1332, 1989.

[7] E.L. Crow and K. Shimizu, ed., Lognormal
Distributions: Theory and Applications, Marcel
Dekker, NY, 1988.

[8] S. R. Dalal, J. R. Horgan and J. R. Kettenring,
Reliable software and communications: Software
quality, reliability and safety. In Proceedings of
International. Conference on Software Engineering,
pages 425-435, 1993.

[9] E. Diaz, J. Tuya and R. Blanco, A modular tool for
automated coverage in software testing. In
Proceedings of Eleventh Annual International
Workshop on Software Technology and Engineering
Practice, pages 241-246, 2003.

[10] P. Frankl and P. J. Weiss, An experimental
comparison of the effectiveness of branch testing
and data flow testing, IEEE Transactions on
Software Engineering, 19(8): 747-787, 1993.

[11] A. L. Goel and K. Okumoto, Time-dependent error
detection rate models for software reliability and
other performance measures, IEEE Transactions on
Reliability, R-28(3): 206-211, 1979.

[12] S. Gokhale and R. Mullen, From test count to code
coverage using the Lognormal. In Proceedings of
International Symposium on Software Reliability
Engineering, pages 295-395, 2004.

[13] S. Gokhale and K. S. Trivedi, A time/structure based
software reliability model, Annals of Software
Engineering, 8: 85-121, 1999.

[14] M. Grottke, A vector Markov model for structural
coverage growth and number of failure occurrences.
In Proceedings of International Symposium on
Software Reliability Engineering, pages 304-315,
2002.

[15] H. Hirose, Estimation of threshold stress in
accelerated life-testing, IEEE Transactions on
Reliability, 42(4): 650-657, 1993.

[16] M. Hutchings, T. Goradia and T. Ostrand,
Experiments on the effectiveness of control-flow and
data-flow based test adequacy criteria. In
Proceedings of International Conference on
Software Engineering, pages 191-200, 1994.

Swapna S. Gokhale The Marginal Value of Increased Testing
& Robert E. Mullen An Empirical Anaysis

 30

[17] J.R. Horgan and S.A. London, Dataflow Coverage
and the C Language. In Proceedings of Fourth
International Symposium on Testing, Analysis and
Verification, pages 87-97, 1991.

[18] .L. Johnson, S. Kotz, and N. Balakrishnan,
Continuous Univariate Distributions, vol. 1, Wiley,
New York, 1994.

[19] J. A. Jones and M. J. Harrold, Test-suite reduction
and prioritization for modified condition/decision
coverage, IEEE Transactions. on Software
Engineering, 29(3): 195-209, 2003.

[20] P. A. Keiller and D. R. Miller, On the use and
performance of software reliability growth models,
Reliability Engineering and Systems Safety, 32: 95-
117, 1991.

[21] M. R. Lyu, J. R. Horgan and S. London, A coverage
analysis tool for the effectiveness of software testing,
IEEE Transactions on Reliability, 43 (4): 527-535,
1994.

[22] Y. K. Malaiya, N. Li, J. Beiman and R. Karcich,
Software reliability growth with test coverage, IEEE
Transactions on Reliability, 51(4): 420-426, 2002.

[23] Y. Malaiya, N. Li, J. Beiman et al., The relationship
between test coverage and reliability, In
Proceedings of International Symposium on
Software Reliability Engineering, pages 186-195,
1994.

[24] D.R. Miller, Exponential Order Statistic Models of
Software Reliability Growth, NASA Contractor
Report 3909, NTIS, Springfield, VA 22161, 1985.

[25] S. Misra, Evaluating four white-box test coverage
methodologies. In Proceedings of IEEE Canadian
Conference on Electrical and Computer
Engineering, pages 1739-1743, 2003.

[26] R.E. Mullen, The Lognormal distribution of
software failure rates: Application to software
reliability growth modeling. In Proceedings of
International Symposium on Software Reliability
Engineering, pages 134-142, 1998.

[27] R.E. Mullen, The Lognormal distribution of
software failure rates: Origin and evidence. In
Proceedings of International Symposium on
Software Reliability Engineering, pages 124-133,
1998.

[28] J. D. Musa, A theory of software reliability and its
application, IEEE Transactions on Software
Engineering, SE-1(1): 312-317, 1975.

[29] R. Mullen and S. Gokhale, Software defect
rediscoveries: A Discrete Lognormal model. In

Proceedings of International Symposium on
Software Reliability Engineering, pages 203-212,
2005.

[30] R. Mullen and S. Gokhale, A Discrete Lognormal
model for software defects affecting QoP. In
Quality of Protection: Security Measurements and
Metrics, D. Gollmann and F. Massacci and A.
Yautsiukhin (Eds.), pages 37-48, Advances in
Information Security Series, Springer Verlag, 2006.

[31] W. Nelson, Accelerated Testing, Wiley, New York,
1990.

[32] P. Netisopakul, L. J. White, and J. Morris, Data
coverage testing. In Proceedings of Asia Pacific
Software Engineering Conference, pages 465-472,
2002.

[33] P. Piworaski, M. Ohba and J. Caruso, Coverage
measurement experience during functional test. In
Proceedings of International Conference on
Software Engineering, pages 287-293, 1993.

[34] S. Rapps and E. J. Weyuker, Selecting test data using
data flow information, IEEE Transasctions on
Software Engineering, SE-11(4): 367-375, 1985.

[35] Y. Sakamoto, M. Ishiguro, and G. Kitagawa, Akaike
Information Criterion Statistics, D.Reidel, Holland,
1986.

[36] R. A. Sahner, K. S. Trivedi and A. Puliafito,
Performance and Reliability Analysis of Computer
Systems: An Example-Based Approach Using the
SHARPE Software Package, Kluwer Academic
Publishers, Boston, 1996.

[37] S. K. S. Sze and M. R. Lyu, ATACOBOL – a
COBOL test coverage analysis tool and its
applications. In Proceedings of International
Symposium on Software Reliability Engineering,
pages 327-335, 2000.

[38] K. S. Trivedi, Probability and Statistics with
Reliability, Queuing and Computer Science
Applications, John Wiley and Sons, New York,
2001.

[39] M. Vouk, Using reliability models during testing
with non operational profiles. In Proceedings of
Second Bellcore/Purdue workshop on Issues in
Software Reliability Estimation, pages 103-111,
1992.

[40] W. E. Wong, J. R. Horgan, S. London and A. P.
Mathur, Effect of test set size and block coverage on
fault detection effectiveness. In Proceedings of
International Symposium on Software Reliability
Engineering, pages 230-238, 1994.

