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Pressure Transient Analysis of Arbitrarily Shaped Fractured Reservoirs
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Abstract: Reservoir boundary shape has a great influence on the transient pressure response of oil wells located in
arbitrarily shaped reservoirs. Conventional analytical methods can only be used to calculate transient pressure response in
regularly shaped reservoirs. Under the assumption that permeability varies exponentially with pressure drop, a
mathematical model for well test interpretation of arbitrarily shaped deformable reservoirs was established. By using the
regular perturbation method and the boundary element method, the model could be solved. The pressure behavior of
wells with wellbore storage and skin effects was obtained by using the Duhamel principle. The type curves were plotted
and analyzed by considering the effects of permeability modulus, arbitrary shape and impermeable region.
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permeability modulus, arbitrary shape and impermeable
barriers.

2. Mathematical model

For single-phase slightly compressible fluid flow in
deformable double-porosity media, n, including n;
sinks of strengths ql, the corresponding equations may
be written as:

where it is assumed that the flow is in a horizontal plane
and that the Darcy's law is applicable; r, is the external

1. Introduction

Many methods use radial and circular systems to
interpret unsteady state double-porosity reservoir flow
problems (Chen and Jiang, 1980; Mavor and Cinco-Ley,
1979;Zhang and Zeng, 1992),but very little information is
available for arbitrarily shaped reservoirs. For many cases,
however, the double-porosity reservoir drainage shape is
too complicated to be approximated by a circular shape.
The existence of one or more impermeable regions further
complicates the problem. So a numerical means is required
(Britto,and Grader, 1987; Kikani and Home, 1988; Liu, et
al., 2001; Liu and Duan, 2004; Masukawa and Home,
1988; Paulo and Abraham, 1988; Sato and Home, 1993a;
1993b; Wang, et al., 2000; Yin, et al., 2005; Zhang and
Zeng, 1992). Numerical techniques for solving partial
differential equations describing various physical
processes can be categorized into two distinct classes: the
domain methods and the boundary methods. Finite
difference and finite element methods fall in the first class,
and the boundary element methods (BEM) constitute the
second. The BEM is superior to the domain methods in
several ways. The most notable advantage is the high
degree of accuracy that results from its sound
mathematical foundations. Flexibility in defining boundary
geometries and conditions is another feature to be
emphasized. However, the conventional boundary element
method is not applicable to the problem of fluid flow in
porous deformable media. In this paper, under the
assumption that permeability varies exponentially with
pressure drop (Kikani and Pedrosa, 1991; Ning, et al.,
2004), transient pressure response of wells in deformable
double-porosity reservoirs was obtained. The type curves
were developed and analyzed by considering effects of
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boundary of reservoir, r l _1 Ur l_2==rl and r 1_Inrl _2 = 0; r,
(i >1) is the boundary of impenneab1e regions, r;nrj =
0, (i=l=-j); m is the number of boundaries; r5 is Dirac delta
function. Subscripts f and m present fracture and matrix.
The following dimensionless properties are introduced
in the mathematical model:
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Further assuming {Jrt«l (Ning, et al., 2004), by
using the regular perturbation method (Kikani and
Pedrosa, 1991) we obtain the zero order perturbation
equation
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Using the same method to manipulate Eq. (2), we
have

Transforming the corresponding equations to those
in Laplace space, we obtain
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where f(s) = (1- w)(ili' + J. and s is the Laplace
(1- w)s + J.
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parameter.

3. Boundary element method

The zero order perturbation Eq. (11) is associated
with the modified Helmholtz operator. The
corresponding boundary integral equations in terms of
the transformed variable rto can be expressed as
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where Pi is initial formation pressure, Pa; Po is reference
pressure, Pa; A is problem region area, nr'; f.i is fluid
viscosity, Pa-s; K is permeability, m'; Kfi is initial
fracture permeability, rrr'; qt is the strength of source
well I, S-I; c iscompressibility, Pa-I; e is interporosity
flow shape factor, m'; J. is the interporosity flow
coefficient, i.e. the dimensionless matrix fracture
permeability ratio; ca is the dimensionless fracture
storage parameter; P is dimensionless permeability
modulus; rjJ is porosity.

Eq. (1) is not written in a convenient form to be
solved by using the boundary element method. With
Pedrosa's substitution (Ning, et al., 2004)

1
Pm == - P In(1- P'7) (7)

and after some algebraic manipulation, Eq. (1) can be
transformed into

where rt is a dimensionless dependent variable. where a = e/2Jr and eis the internal angle; G is the
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fundamental solution for the modified Helmholtz equation.

where (X'o,yo) and (xo' Yo) are the arbitrary points

over n ; ro is the dimensionless distance,

ro = [(xD- X'D)2 + (YD - YD)2r2
; and Jo is the zero

order modified Bessel function of the second kind.
In order to evaluate the contour integral involved in the

boundary integral equation, the boundary I' is discretized
into nb elements. Nodes are allocated at the edges of
elements, and boundary values are interpolated linearly in
between. The node-numbering direction for outer
boundary is the counterclockwise, and the clockwise
direction is chosen for the inner boundary. A local
(';,0 coordinate system is introduced for convenience's
sake (Fig. 1). The origin of coordinates is at point P, from
which the I;axis is set parallel to the boundary element ~fj
and in the opposite direction of node numbering. The (
axis is defmedby the right-handrule.
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Eq. (18) can be solved for unknown boundary values
in Laplace space by using the conventional BEM. Then
interior solutions in Laplace space can be obtained. The
Laplace space interior solution can be inverted to real
space by using the Stehfest algorithm (Stehfesh, 1970).
By using Duhamel principle (Kikani and Pedrosa, 1991;
Yang and Zhao, 2002), the dimensionless bottom hole
pressure considering wellbore storage and skin effect
can be expressed as:

7JOw =[ _ s + S2CDl)-1
s170 + 81

Fig. 1 Local (,;, S') coordinate system
(20)

and CD is dimensionless

zero order which does not consider wellbore storage

and skin effect; L-l is Laplace inversion transform

operator; PwD is dimensionless bottom hole flowing

where 7Jow is the Laplace space interior solution of

pressure. 8
1

= 8 qll ,and 8 is skin factor;
2JrKfhpo
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In the local (,;, S') coordinate system, boundary
values are interpolated as

According to the previous instruction, the

discretized form ofEq. (16) becomes
wellbore storage coefficient, rw is well radius, m; q is

well flow rate, m3/s; h is formation thickness, m.
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shaped boundary. Fig. 3a shows the transient pressure
responses for arbitrarily shaped stress-sensitive
reservoir with A, ==400 and OJ ==0.04. The shape of
reservoir and well location are shown in Fig. 3b. From
Fig. 3a it can be deduced that the boundary condition of
the reservoir has a great effect on pressure behavior.
Compared with a constant pressure boundary, the
piecewise constant pressure and piecewise closed
boundary delay the decline time of time derivative of
pressure. The pressure-derivative type curves are not on
the 0.5 horizontal lines. As a result of the stress
sensitivity of permeability, the derivative curves rise up
and the slop increases with the increase in permeability
variation coefficient.

Fig. 4a shows the effect of a single impermeable

region on the pressure responses for stress sensitive

reservoir with A, ==200 and OJ ==0.02. The

corresponding shape of reservoir and well location are

shown in Fig. 4b. It can be seen that the impermeable

region has a great influence on the pressure behavior,

making the time of rise-up of the derivative curve

earlier than expected in the case without impermeable

regions.
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Fig. 2 Typical curves for pressure behavior in a closed

circular deformable reservoir

4. Pressure transient analysis

A comparison of the analytical solution and
numerical solution obtained with the boundary element
method for the double-porosity reservoir with a closed
circular boundary is presented in Fig. 2, which shows a
very good agreement between the analytical and
numerical solutions.

One of the advantages of the boundary element
method is the flexibility for the treatment of arbitrarily
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Fig. 3a Type curves for pressure behavior in arbitrarily

shaped deformable reservoirs

Fig. 3b Shape of deformable reservoir without

impermeable regions and well location
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Fig. 4a Effect of impermeable region on type curves

for pressure behavior in deformable reservoirs
Fig.4b Shape of reservoir with a single impermeable

region and well location
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5. Conclusions

1) The transientpressures of a circular reservoir with a
constant pressure boundary and a closed boundary are
analyzedby the boundary element method. Compared with
the analytical solutionthis methodis proved to be correct.

2) The impermeable region has a great influence on
pressure and pressure-derivative type curves, making
the time of rise-up of derivative curve earlier than
expected in the case without impermeable regions.

3) Compared with constant pressure boundary, the
boundary conditions of piecewise constant pressure and
piecewise closed boundary delay the decline time of
derivative ofpressure.
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