Finite-dimensional Lie superalgebras of Cartan type over fields of prime characteristic

ZHANG Yongzheng

Department of Mathematics, Northeast Normal University, Changchun, 130024, China

Keywords: exterior algebra, Lie superalgebra, filtration.

In this note the infinite-dimensional Lie superalgebras of Cartan type $X(m, n)$ $(X = W, S,$ H or K) over field F of prime characteristic are constructed. Then the second class of finitedimensional Lie superalgebras of Cartan type over F is defined. Their simplicity and restrictability are discussed. Finally a conjecture about classification of the finite-dimensional simple Lie superalgebras over F is given.

Let F be a field and char $F = p > 2$. Let n be a positive integer and $n > 1$. $\Lambda(n)$ denotes the exterior algebra over F with generators ξ_1 , \cdots , ξ_n . If $u = (i_1, i_2, \cdots, i_r)$, where $1 \leq i_1 < i_2 < \cdots < i_r \leq n$, then we set $\xi^u = \xi_{i_1} \xi_{i_2} \cdots \xi_{i_r}$, and $|\xi^u| = r$. Let $\overline{D}_i = \frac{\partial}{\partial \xi_i}$, $i = 1, \cdots, n$.

Imitating the situation that the characteristic number of basic field is zero, we can get the

finite-dimensional simple Lie superalgebra of Cartan type over *F[']* :

$$
W(n) = \left| \sum_{i=1}^{n} a_i \overline{D}_i \, | \, a_i \in \Lambda(n) \right|; \, S(n) = \langle D_{ij}(a) | a \in \Lambda(n), \, i, j = 1, \cdots n \rangle, \text{ where } D_{ij}.
$$

 $(a)=\overline{D}_i(a)\overline{D}_j+\overline{D}_j(a)\overline{D}_i$, $;H(n)=\langle D_H(\xi^u) | \xi^u | \leq n-1 \rangle$, where $D_H(\xi^u)=\sum_{i=1}^{n} \overline{D}_i(\xi^u)$ ^{*} \overline{D}_i ; $\tilde{S}(n) = \langle (1 - \xi_1 \xi_2 \cdots \xi_n) D_{ii}(a) | a \in \mathcal{N}(n), i, j = 1, \cdots, n \rangle$, where *n* is a positive even number.

Let $L = L_0 \bigoplus L_1$ be a Lie superalgebra over F. If L_0 is a restricted Lie algebra and L_0 module $L_{\bar{1}}$ is restricted, then *L* is a restricted Lie superalgebra^[2].

Theorem 1. $W(n)$, $S(n)$, $H(n)$ and $\tilde{S}(n)$ are restricted Lie superalgebras.

Proof. Because $W(n) = \text{der}\bigwedge(n)$, $W(n)$ is restricted. Let $D_{ii}(\xi^u) \in S(n)_{\bar{0}}$. If $|\xi^*| > 2$, then we get $(D_{ij}(\xi^*)^2 = 0$, by direct inspection. So $(D_{ij}(\xi^*))^p = 0$. If $|\xi^*| = 2$, we can suppose $\xi^u = \xi_i \xi_j$. Then $(D_{ij} (\xi^u))^p = (\xi_j \overline{D}_j - \xi_j \overline{D}_i)^p = \xi_j \overline{D}_j - \xi_i \overline{D}_i = D_{ij} (\xi^u)$ $\in S(n)_{\bar{0}}$. If $\{k, r\} \neq \{i, j\}$, then $(D_{kr}(\xi^u))^2 = 0$. So $(D_{kr}(\xi^u))^p = 0$.

Let c be any element of $S_{\overline{0}}$. Because degc = $\overline{0}$, (adc)^p = adc^p. By the above proof we know that $c^p \in S(n)_{\overline{0}}$. So $S(n)_{\overline{0}}$ is a restricted Lie algebra by ref. [3]. Let $c \in S(n)_{\overline{0}}$. Because (adc)^{$p = adc^p$, $S(n)_{\overline{0}}$ -module $S(n)_{\overline{1}}$ is restricted. Then $S(n)$ is a restricted Lie su-} peralgebra. Similarly we can prove that $H(n)$ and $\tilde{S}(n)$ are restricted.

We call $W(n)$, $S(n)$, $H(n)$ and $\tilde{S}(n)$ Lie superalgebras of rigid Cartan type.

Let $\mathbb N$ be the set of natural numbers and Let N_0 be the set of nongenative integers. Let s $m + n$, where m, $n \in \mathbb{N}$ and m, $n > 1$. If $\delta = (\delta_1, \dots, \delta_m) \in N_0^m$, $\eta = (\eta_1, \dots, \eta_m) \in \mathbb{N}$ N_0^m , then we can let $\binom{\delta+\eta}{\delta} = \prod\limits_{i=1}^m \binom{\delta_i+\eta_i}{\delta}$. Let \wedge (m , n) be the F -algebra with generators $\{x^{\delta} | \delta \in N_0^m\} \cup \{\xi_i | i = m+1, \dots, s\}$ defining relation

$$
x^{\delta}x^{\eta} = \binom{\delta + \eta}{\delta} x^{\delta + \eta}, \ x^{\delta} \xi_i = \xi_i x^{\delta}, \ \xi_i \xi_j = - \xi_j \xi_i,
$$

where δ , $\eta \in N_0^m$, i , $j = m+1$, \cdots , s. Let $\deg x^{\delta} = \overline{0}$, $\forall \delta \in N_0^m$, $\deg \xi_i = \overline{1}$, $i = m+1$, \cdots , s. Then Λ (m, n) is an F-superalgebra. We write $x^{\epsilon_i} = x_i$, $i = 1, \dots, m$, where $\epsilon_i =$ $(\delta_i, \delta_i, \cdots, \delta_i)$.

Let $B(n) = \bigcup_{i=1}^{n} B_i$, where $B_0 = \{0\}$, $B_r = \{(i_1, \dots, i_r) | m + 1 \leq i_1 < \dots < i_r \leq s\}$. If u $=(i_1, \dots, i_r) \in B_r$, then ξ^u denotes the elements $\xi_{i_1}, \dots, \xi_{i_r}$. Assume that $\xi^0 = 1$. Then $\{x^{\delta} \cdot$ $\xi^u \mid \delta \in N_0^m$, $u \in B(n)$ consists of an F-basis of $\Lambda(m, n)$.

Let $\tau : \{1, 2, \dots, s\} \rightarrow Z_2$ be a mapping such that $\tau(i)=\overline{0}$ $(1 \leq i \leq m), \tau(i)=\overline{1}$ (m < $i \leq s$). Suppose that D_i are the linear mappings, $i = 1, \dots, s$ such that

$$
D_i(x^{\delta}\xi^u) = \begin{cases} x^{\delta-\epsilon_i}\xi^u, & i = 1, \cdots, m, \\ x^{\delta} \frac{\partial \xi^u}{\partial \xi_i}, & i = m+1, \cdots, s \end{cases}
$$

Then D_i is a superderivation of \wedge (*m*, *n*) and deg $D_i = \tau(i)$, $i = 1, \dots, s$. Furthermore $D_i D_j - (-1)^{r(i)r(j)} D_j D_i = [D_i, D_j] = 0, 1 \leq i, j \leq s.$ (1)

By direct inspection we know that $\overline{W}(m, n) \stackrel{d}{\longrightarrow} \left| \sum_{i=1}^{r} a_i D_i \, | \, a_i \in \Lambda(m, n) \right|$ is an infinite-di-

Chines8 Science Bulletin Vol **.42** No. **9 May 1997 72 1**

mensional subalgebra of Lie superalgebra der(\wedge (m , n)).

If deg x occurs in some expression, then it is assumed that x is a homogeneous element

about
$$
Z_2
$$
-grading. Using equality (1) we obtain the following equality:
\n
$$
[aD_i, bD_j] = aD_i(b)D_j - (-1)^{\deg(aD_i)\deg(bD_j)}bD_j(a)D_i.
$$
\n(2)

Let $1 \leq i, j \leq s, a \in \Lambda(m, n)$. Suppose that D_{ii} : $\Lambda(m, n) \rightarrow \overline{W}(m, n)$ is a linear mapping such that $D_{ij}(a) = a_i D_i + a_j D_j$, where $a_i = -(-1)^{\deg a(\tau(i) + \tau(j))} D_j(a)$, $a_j =$ $(-1)^{\tau(i)\tau(j)}D_i(a)$. Let

$$
\bar{S}(m, n) = \langle D_{ij}(a) | a \in \wedge (m, n), i, j = 1, \cdots, S \rangle.
$$

Using equality *(2)* we can prove the following lemmas.

Lemma 1. Let $D_{ij}(a) = a_iD_i + a_jD_j \in \overline{S}(m, n)_a$, $D_{kt}(b) = b_kD_k + b_tD_t \in \overline{S}(m, n)_\beta$, *where* $\alpha, \beta \in \mathbb{Z}_2$. Let $\lambda_{rh} = (-1)^{r(r)(a+r(r)+r(h))}$, where $r \in \{i, j\}$, $h \in \{k, t\}$. Then $[D_{ij}(a), D_{kt}(b)] = \lambda_{ik}D_{ik}(a_ib_k) + \lambda_{il}D_{it}(a_ib_t) + \lambda_{jk}D_{jk}(a_jb_k) + \lambda_{jl}D_{jt}(a_jb_t).$

Let $m = 2k$ be an even number. And let

$$
i' = \begin{cases} i+k, & \text{if } 1 \leq i \leq k, \\ i-k, & \text{if } k < i \leq 2k, \\ i, & \text{if } 2k < i \leq s, \end{cases} \quad \sigma(i) = \begin{cases} 1, & \text{if } 1 \leq i \leq k, \\ -1, & \text{if } k < i \leq 2k, \\ 1, & \text{if } 2k < i \leq s. \end{cases} \tag{3}
$$

Suppose that $a \in \Lambda(m, n)_{a}$, $a \in Z_2$. Let $D_H: \Lambda(m, n) \rightarrow \overline{W}(m, n)$ be a linear mapping such that $D_H(a) = \sum_{i=1}^{s} a_i D_i$, where $a_i = \sigma(i')(-1)^{r(i')a} D_{i'}(a)$, $i = 1, \dots, s$. Then $\deg a_i = a$ $+ \tau(i)$. By direct inspection we have the equality:

$$
D_i(a_{j'}) = (-1)^{r(i)\tau(j)+(\tau(i)+\tau(j))a}\sigma(i)\sigma(j)D_j(a_{i'}),
$$
\n(4)

where *i*, $j = 1$, \cdots *s*, Let $\overline{H}(m, n) = \langle D_H(a) | a \in \Lambda(m, n) \rangle$. Using equalities (2)–(4) and by calculation we can prove

Lemma 2. Let $D_H(a) = \sum_{i=1}^{s} a_i D_i \in \overline{H}(m,n)_a$, $D_H(b) = \sum_{i=1}^{s} b_i D_i \in \overline{H}(m,n)_\beta$, where α , $\beta \in \mathbb{Z}_2$. *Then*

$$
[D_H(a), D_H(b)] = D_H \sum_{i=1}^s \sigma(i) (-1)^{\tau(i)\beta} a_i b_{i'}.
$$

Let $m = 2k + 1$ be an odd number. The definitions of *i'* and $\sigma(i)$ are the same as equality (3), where $1 \leq i \leq s$. Let $a \in \Lambda(m, n)_{\alpha}$, $a \in Z_2$. Let \tilde{D}_k : $\Lambda(m, n) \rightarrow \overline{W}(m, n)$ be a linear mapping such that

$$
\widetilde{D}_k(a) = \sum_{i=1}^{2k} (x_i D_m(a) + \sigma(i') D_{i'}(a)) D_i + \sum_{i=m+1}^{s} (-1)^a (\xi_i D_m(a) + D_i(a)) D_i + \left| 2a - \sum_{i=m+1}^{s} \xi_i D_i - \sum_{i=1}^{2k} x_i D_i(a) \right| D_m.
$$

Lemma 3. Let $a \in \Lambda(m, n)$ _a, $b \in \Lambda(m, n)$ _β, α , $\beta \in Z_2$. Then $[D_k(a), D_k(b)]$ = $\widetilde{D}_k(\widetilde{D}_k(a)(b) - 2D_m(a)b).$

Let $\overline{K}(m,n)=\langle \tilde{D}_k(a)|a\in \Lambda(m,n)\rangle$. By lemmas 1-3 we have

Theorem 2. $\overline{S}(m, n)$, $H(m, n)$ and $\overline{K}(m, n)$ are infinite-dimensional subalgebras $of W(m, n)$.

Equalities $|x_i| = |\xi_i| = 1$ ($i = 1, \dots, m, j = m+1, \dots, s$), $|D_i| = -1$ ($i = 1, \dots,$ **S)** define a Z-grading of $\overline{X}(m, n)$: $X(m, n) = \bigoplus_{i \geq 1} \overline{X}(m, n)_{[i]},$ where $X = W$, S or H. It induces a filtration $\{X(m, n)\}\,_{i=1}^N$ of $\overline{X}(m, n)$. Equalities $|x_i|=|\xi_i|=1, |D_i|=$

 -1 ($i \neq m$), $|x_m| = 2$, $|D_m| = -2$ define a Z-grading of $\overline{K}(m, n)$. It induces a filtration $\{\overline{K}(m, n)\}\)_{i\geq -2}$ of $K(m, n)$.

Suppose that $t=(t_1, \dots, t_m) \in N^m$. Let $q=(q_1, \dots, q_m)$, where $q_i=p^{t_i}-1$. Then subspace $\langle x^{\delta} \xi^u | 0 \leq \delta^i \leq q_i, u \in B(n) \rangle$ is a subalgebra of $\Lambda(m, n)$. This subalgebra is denoted by \bigwedge (m, n, t) . Let

$$
\overline{W}(m,n,t)=\Big|\sum_{i=1}^n a_iD_i\,\big|\,a_i\in\Lambda(m,n,t),\,\,i=1,\cdots,s\Big|.
$$

Then $\overline{W}(m, n, t)$ is a finite-dimensional subalgebra of $\overline{W}(m, n)$.
Suppose that L is a Lie superalgebra, $i \in N_0$. Then $L^{(i)}$ denotes the derived algebra of i degree of L. Let $L^{(\infty)} = \bigcap L^{(i)}$.

Suppose that φ is an automorphism of $\overline{W}(m, n)$. Let

$$
\overline{X}(m, n, t, \varphi) = \varphi(\overline{X}(m, n)) \cap \overline{W}(m, n, t),
$$

where X denote W, S, H or K. Obviously the filtration of $\overline{X}(m, n)$ induces a filtration $\left\{\overline{X}(m, n, t, \varphi)\right\}_{i \geq -\left(1+\delta\right)}$.

Definition 1. If
$$
\overline{X}(m, n, t, \varphi)_{2+\delta_m} \neq 0
$$
, and
\n
$$
\overline{X}(m, n, t, \varphi) + \varphi(\overline{X}(m, n)_{1+\delta_m}) = \varphi(\overline{x}(m, n)),
$$

then we call $\bar{X}(m, n, t, \varphi)$ ^(∞) the Lie superalgebras of generalized Cartan type.

Because the proof and results in sec. 2 of ref. [4] hold for Lie superalgebras, we can prove the following.

Theorem 3. Suppose that $X = W$, S, H or K. Then the finite-demensional Lie superalgebras $\bar{X}(m, n, t, \varphi)^{(\infty)}$ are simple.

If φ is the identical automorphism, then we write $\overline{X}(m, n, t)$ instead of $\overline{X}(m, n, t)$ φ). Then $\bar{X}(m, n, t) = \bar{X}(m, n) \cap \bar{W}(m, n, t)$.

Let $\lambda = \sum_{i=1}^{m} q_i + n$, Then $\Lambda(m, n, t) = \bigoplus_{i=1}^{\lambda} \Lambda(m, n, t)_{[i]}$. Let $W(m, n, t)$ $=\overline{W}(m, n, t); S(m, n, t) = \langle D_{ii}(a) | a \in \Lambda(m, n, t), i, j=1, \cdots, s \rangle; H(m, n, t) =$ $\langle D_H(a)|_a \in \bigoplus_{i=1}^{n-1} \wedge (m,n,t)_{[i]} \rangle$. If $n-m-3 \not\equiv 0 \pmod{p}$, then let $K(m,n,t) = \langle \widetilde{D}_k(a) \rangle$ $|a \in \Lambda$ (m, n, t)). If $n - m - 3 \equiv 0 \pmod{p}$, then let $K(m, n, t) = \langle \tilde{D}_k(a) | a \in$ $\bigoplus_{i=0}^{n-1} \bigwedge (m, n, t)_{[i]} \bigg\rangle.$

Theorem 4. Let $X = W$, *S*, *H* or *K*. *Then* $\overline{X}(m, n, t)^{(\infty)} = X(m, n, t)$. *Thus* $X(m, n, t)$ is the finite-dimensional Lie superalgebra.

We call $X(m, n, t)$ the simple Lie superalgebras of Cartan type, where $X = W$, S, H or K. **Theorem 5.** Let $X = W$, S, H or K. Then $X(m, n, t)$ is a restricted Lie superalgebra if and only if $t = 1$, where $1 = (1, 1, \dots, 1)$.

Imitating the situation that the characteristic number of basic field is zero, we can construct Lie superalgebras over $F: A(m, n), A(n, n), B(m, n), D(m, n), C(n)$, **P(n), Q(n), F(4), G(3)** and $D(2,1:\alpha)^{[1]}$. Because char $F > 2$, some of them have a center which is not zero (for example, $A(m, n)$). By constructing quatient algebra with the center, we can obtain the corresponding simple Lie superalgebra. We call them classical Lie superalgebras. Finally we give a conjecture about classification of the finite-dimensional simple Lie superalgebras over F .

Conjecture. Let charF > 7. Besides Lie algebras (which are Lie superalgebra with triv-

ial Z2-grading), any finite-dimensionul simple Lie superalgebru must be isomorphic to a classical Lie superalgebra, or a Lie superalgebra of rigid Cartan type, or a Lie superalgebra of generalized Cartan type.

(*Receiwd* November 27, 1996)

References

- 1 Kac, V. G., Lie superalgebras. *Advances in Mathematic*, 1977, 26: 8.
- 2 Petrogradski, **V.** M., Identities in the enveloping algebras for modular Iie superalgebras. *I.* **Algebra.** 1992, **45: 1.**
- **3** Strade, **H.,** Fansteriner, R., **Modulnr** *Lie Algebra and ?'heir Representation,* New York: Dekker, 1988, 126,
- 4 Wilson, R. L., A structural characterization of the simple Lie algebras of generalized Cartan type over fields of prime characteristics. *I. Alebra,* 1976, 40: **418.**

Acknowledgement This work **was** supported **by** the National Natural Science Foundation of China (Grant No. 19571019).