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THE DEFINITION AND MEASUREMENT
OF SOME CHARACTERISTICS OF MIXTURES

by P. V. DANCKWERTS

Chemical Engineering Department of the University of Cambridge

Summary

The systematic study of mixing processes requires a quantitative method
of expressing "goodness of mixing", based on conveniently-made measure­
ments. In this paper, mixtures of mutually soluble liquids, fine powders, or
gases are considered. It is shown that the important features of such
mixtures can be expressed by two statistically-defined quantities, the scale
and the intensity of segregation, and methods of measuring these are
suggested. The discussion also throws light on some of the factors which
affect the efficiency of mixing processes.

Notation
a = Concentration (volume-fraction) of component A.
a = Mean concentration of A in mixture.
b = Concentration (volume-fraction) of component B.
b = Mean concentration of B in mixture.
c = a -a.
d = Diameter (of circle, strip, sphere or pipe).
D = Diffusivity.
I = Intensity of segregation (defined by eqn. (14)).
] = Content of A in line sample (eqn. (5)).
k = Reaction-velocity constant.
K = Content of A in volume sample.
1 = Length of section of pipe.
m = Concentration of reactant 1111 in solution A (moles per unit

volume).
n = Concentration of reactant N in solution B.
r = Distance apart-of two points in mixture.
R(r) = Correlation coefficient between points in mixture distance

r apart.
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5 = Linear scale of segregation (defined by eqn. (3)).
t = Time.
T = See eqn. (12).
It = Velocity of flow.
v = Volume of sample.
V = Volume scale of segregation (defined by eqn. (4)).
x = Distance from one end of line-sample, or general space-

coordinate.
X = Length of line-sample.
~ = Value of r for which R(r) falls to O.
e = Mean reaction rate per unit volume of mixture.
a2 = Variance of quantity denoted by subscript.

§ 1. Introduction. The study of mixing processes suffers at the
present time from the lack of any quantitative method of expressing
"goodness of mixing". To be of practical value, such a quantitative
description must fulfil certain conditions: (a) It must be related as
closely as possible to the properties of the mixture which we assess
qualitatively when we judge it to be well or badly mixed; (b) It must
be possible to make the required measurements conveniently; (c) The
method of classification should be applicable without modification
to as many different types of mixture as possible; (d) It should not
depend on purely arbitrary tests, leading to quantities of doubtful
physical significance.

The following notes suggest a system of describing mixtures which
seems to go some way towards fulfilling the above requirements. The
treatment is suitable chiefly for mixtures in which the ultimate
particles (i.e. the smallest capable of independent movement in the
mixture) are very small compared to the size of the portions which
will normally be taken for use or for analysis. Under these conditions
it is possible to speak of the"concentration at a point", and a series
of samples taken from a "completely mixed" mixture will have the
same composition. The discussion will refer mainly to a mixture of
two mutually soluble liquids (which may be a solution and a pure
solvent respectively), but many of the conclusions are applicable to
gases, powders and pastes, and to multi-component systems. Mixtures
of coarse particles, which are not extremely small compared to the
samples taken, present a problem which must be approached in a
different way 1). It will also be assumed that the mixture is uniform
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in texture; that is to say, it cannot be divided into two parts of equal
size in which the mean concentration or the scale or intensity of
segregation (as defined later) differ significantly. This is the most
important limitation on the practical value of the definitions and
tests which will be proposed. Large-scale segregation caused, for
instance, by sedimentation, or by dead space in a mixer, is of great
practical importance, but its study cannot conveniently be combined
with that of the small-scale characteristics, or texture, which are the
subject of the present discussion. The subject of large-scale segrega­
tion in continuous-flow systems will be dealt with on another occasion.

Three different situations have been borne in mind: (a) we may be
confronted with a mass of material already mixed, and desire to
investigate its texture; (b) we may desire to determine the effective­
ness of a continuous mixer, from which a stream of material is
issuing; (c) we may desire to follow the progress of the mixing of a
batch ofmaterial.

§ 2. The mixing process. If two mutually soluble liquids are
mixed together two things happen. In the first place the liquids are
broken up into "clumps", which are intermingled (this will happen
even if the liquids are not mutually soluble). The shape of the clumps
will depend on the mechanism of the mixing-process; they may, for
instance be compact, or in the form of long streaks. Up to a point, at
least, the average size of these clumps will continue to decrease as
mixing is continued.

At the same time, molecular interdiffusion of the two liquids
occurs across the boundaries of the clumps. This process is sponta­
neous and will continue even if the mechanical mixing is stopped.
Diffusion will ultimately reduce any mixture of mutually soluble
liquids to complete uniformity, but the process is slow unless the
liquids have first been broken up into small clumps. Unless diffusion
(or some analogous process) occurs, continuous stirring will not
produce a homogeneous mixture; the composition at any point will
be that of one of the pure components, and it will vary disconti­
nuously from one region to another. In the case of powders, inde­
pendent motion of the ultimate particles will produce an effect
similar to molecular diffusion, but only so long as some kind of
mechanical agitation is continued.

The breaking-up and the interdiffusion are, in the case 0 f liquids,
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largely independent processes which produce distinguishable results.
The former reduces the size of the clumps, while the latter tends to
obliterate differences of concentration between neighbouring regions
of the mixture. It therefore seems desirable to use two quantities to
describe the degree of mixing - namely the scale o] segregation and
the intensity oj segregation. Owing to the lack of geometrical regular­
ity in the mixture, both quantities must be defined and determined
by statistical methods.

§ 3. The scale oj segregation. The measure of the scale of segrega­
tion adopted here is analogous to the "scale of turbulence" used in
the statistical theory of turbulence 5). Considering a mixture of two
liquids, A and B, let their concentrations (volume-fractions) at any
point be a and b respectively, and their mean concentrations in the
mixture as a whole be ti and b. Then

( I )

Suppose the concentrations (at, a2 ) are measured at two points in
the mixture a distance r apart. The deviations of the two concentra­
tions from the mean are multiplied together to give the product
(at - ti). (a2 - ti). If a large number of such pairs are taken, the
points in each pair being the same distance r apart, we can find the

mean value, (at - ti) (a2 - ti), of the corresponding products of the

deviations, and also the mean square deviation, (a - ti)2, of all the
concentrations from the mean. The quantity

(2)

derived from these measurements is called the coefficient of correla­
tion between values of a (or b) at points separated by a distance r.
The denominator is usually called the variance of a (or b), and may
be written ~ or oi (the two are of course equal).

R(r) may have any value from 1 toO. (Negative values will only be
encountered when there is some form of long-range segregation
present, or some regularity in the pattern of the mixture. Such cases
are not considered here, and attention is confined to systems for
which R(r) "7 0 for all values of r). R(O), the value when r = 0, is
identically equal to 1, and in general a valueclose to 1 means that a
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concentration much above the average at a given point is likely to
be associated with an above-average concentration a distance r
away, or that below-average concentrations are similarly related.
A value of 0 means that there is only a random relationship between
the concentrations at points distant r apart. In an imperfect mixture,
R(r) will be greater than 0 for small values of r, because points close
together will often be in the same clump. However, when r exceeds a
certain value the relationship between the two concentrations will
become a random one (provided there is no large-scale segregation or
regular periodicity in the mixture) and R(r) will fall to 0; whatever
the proportions of A and B in the mixture. R(r) will therefore vary
with r somewhat in the manner of fig. I, although the shape of the
curve will differ from case to case.

Fig. 1. Shaded areas are equal.

The curve is known as the correlogram of the mixture. (It is shown
in Appendix C that the slope of the curve is always zero at r = 0 in
systems in which diffusion occurs). Figs. 2 and 3 show correlograms
for two two-dimensional models of mixtures. (The slopes of these
curves are not zero at r = 0, because the "clumps" have sharp
edges).

The value of r for which R(r) falls to zero will be called ~. (If R(r)
approaches zero asymptotically, ~ is assigned a value such that
fJ y2 R(r) dr differs from lo=r2 R(r) dr by a fraction which is small
enough to be ignored in evaluating V - see (4)).

There are two ways in which the correlogram of a mixture can be
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used to define a scale of segregation. The linear scale, 5, is defined as
the area under the correlogram:

g
5 = J R(r) dr = J R(r) dr.

o 0
(3)

The volume scale, V, is defined as 271: times the area under the curve
r 2 R(r) vs. r:

g
V = 2.Jr2 R(r) dr = 271:Jr2 R(r) dr.

o 0
(4)

The relationship between 5 and V depends on the shape of the
dumps and hence of the correlogram. If the latter were linear, for
example, V would be equal to 471:53/3, i.e. to the volume of a sphere
of radius 5. In general, mixtures having equal 5 may have different.. -

• • .,
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Fig. 2. Correlogram. Diameter of circles d, Sid = 0.42.

V, and the ratio of 53 to V in a given system may change during the
course of mixing. When the clumps are not extremely elongated (i.e.
when the mixture is mottled rather than streaky) V will be of the
same order of magnitude as 45 3

. 5 and V will both normally dimin­
ish during the mixing process. The ease with which each can be
measured is likely to determine whether 5 or V is used as a measure
of the scale of segregation in a given situation.

The clumps in a mixture may vary widely in size and shape, and
both will generally be indeterminate because the boundaries will be
diffuse. It is not possible, therefore, to refer with any precision to an
"average diameter" or an "average volume" of the clumps. 5 and V,
on the other hand, are precisely-defined quantities and their magni-
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tudes vary in the same sense as the size of the clumps. For this reason
it is convenient to use them as unambiguous measures of the scale of
segregation, even though their significance is not easily visualised.

Fig. 2 illustrates the point that if clumps of component A are
scattered in an excess of B, S will indicate the size of the clumps of A.
Fig. 3 shows the effect of elongation of the clumps on the shape of
the correlogram and the value of S. The latter would increase
indefinitely as the rectangles were lengthened. Provided the black
elements are scattered at random, the shapes of the correlograms
and the values of S do not depend on the ratio of black areas to
white.

A random collection of spheres of diameter d, analogous to fig. 2,
will give Sid = 0,38, VIS = 4·7.

0'0

0"

R(,)
0,)

0·1

0"

0
0
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Fig. 3. Correlogram. Width of strips d, length of strips IOd, Sid = 1.1.

§ 4. M easuremeni at the scale at segregation. There are a number of
ways in which S and V can be determined. The method used in any
given situation will depend on the circumstances.

(a) By measuring the concentration at a large number of points in
the mixture, R(r) can be determined as a function of r, and hence S
and V found. Even if practicable, such a method is likely to be
laborious.

(b) In a batch mixing-process, the concentrations at two fixed
points a distance r apart might be measured continuously while the
mixture moved past them (electrical or optical methods suggest
themselves). R(r) could be calculated from records of the readings
from each point, or by a modification of one of the methods devised
for measuring the scale of turbulence 3). The value of R(r) for a

Appl. sci. Res. A3
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number of values of r must be found by employing a number of pairs
of measuring points at various distance apart.

(c) A different and more convenient type of method can be used
for finding 5 if a means can be found for measuring the total "con­
tent" of one of the components along a straight line joining two
points. The content,], of component A in a line-sample of length X is
defined by

x
] = fa dx

o
(5)

where a is the concentration of A at a point distance x from one end
of the line. For instance, if both the components are transparent, one
being coloured and one colourless, the content of the coloured mate­
rial in a path of length X is proportional to the colour-density of this
thickness of the mixture. In this case the content could conveniently
be measured by setting up a light-source and photo-cell a distance X
apart, both immersed in the mixture. The method seems particularly
suitable for following a batch mixing-process.

Suppose that] is determined for a large number of such line­
samples in different regions of the mixture. (In a batch-process
this would probably be done by letting the mixture flow across a
fixed line during the mixing process. The observations must then be
confined to a period short enough so that the scale 5 does not alter
appreciably). If the mixture is imperfect, the content] will fluctuate,
and the scale of segregation,S, is related to the magnitude of the
fluctuations by the expression (derived in Appendix A)

(J2
5 =2l if;. , (6)

where aJ' if;. are the variances of ] and a respectively and are
defined by

aJ = (] - a.X? == j2 - (af X 2
;

(J~ = (a - a)2 == a2- (a)2.

(7)

(8)

Ii is the mean concentration of a, which is assumed to be known.
J2 and a2 are the mean square values of ] and a respecively. The
former can be determined in various ways from the output of the
instrument which measures]. Hot-wire ammeters or other instru­
ments capable of measuring root-mean-square voltages directly
would probably provide the most convenient method.
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(9)

a2 might be derived from the output of a simular instrument with
a value of X very much smaller than 5 or by any method by which
point-concentrations could be conveniently and continuously
measured. Methods of determining az by following the progress of a
chemical reaction are discussed in § 6.

Equation (6) is approximate, the error being of the order ~/X.

Assuming that ~ has the same order of magnitude as 5, this implies
that X must be considerably greater than 5 if this method of
measuring the latter is to be used. On the other hand, a large value
of X means a small value of the fractional fluctuations of j, with
consequent difficulty in determining aJ accurately. The value of X
most suitable in given circumstances must de betermined by trial
and experience. If two substantially different values of X give the
same value of 5, it may be concluded that the latter contains no
serious error.

This method is likely to be more convenient than (b), because it
does not require independent measurement of R(r) for a number of
different values of r, and because the computation, automatic or
otherwise, leading from the output of the measuring instruments to
5 will be simpler.

(d) In some cases it may be preferable to determine V, using a
method based on the analysis of samples. Suppose a number of
samples of volume v are taken from the mixture, and the content,
K, of A found in each sample. The variance of K among the sam­
ples is related to V by the expression (derived in Appendix B)

V= ak
2v a~ ,

where

ak = (K- va)2 = K 2 - v2(af (10)

and ~ is defined by (8). ;i2 might be determined by taking a number
of samples much smaller than V; or by one of the methods mentioned
in (c) above. Equation (9) is an approximation; its use is justifiable
only if v> V, and if the the samples are of a reasonably compact
shape (e.g. cubes, spheres, short cylinders).

(e) When it is desired to measure the scale of segregation in a
stream of material flowing continuously from a mixer through a
pipe, method (c) above may be used if the diameter d of the pipe is
much greater than 5. Method (d) may also be used, subject to the
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same condition, if it is possible to measure continuously the content
K of component A in a length l of the pipe. The volume v of liquid in
this "sample" is nd 2l j4, and hence, substituting in equation (9),

V = 2ailnd2la;, (11)

(j) A case which is perhaps more likely to be encountered in
practice is that in which a continuous stream of liquid leaves a mixer
through a pipe whose diameter is very much less than S. The con­
centration will then be virtually uniform at all points at a given
cross-section at a given moment, and the mixture will display
segregation only in a longitudinal direction. Suppose a method is
available for measuring continuously the concentration, a, of com­
ponent A at a given cross-section; let the velocity of flow be It. Then
the quantity

T

J = It] a.dt
o

(12)

(13)

is the content of A in a line-sample of length u/T, the line being
directed along the axis of the flow. The linear scale of segregation
in this direction is thus seen from (6) to be

5 - 21 2 T 2- aJI It a".

If a record of a is obtained as a function of the time t, the variance of
] (as defined by (12)) can be found by integrating over a number of
periods of length T (a convenient method of doing this has been
described elsewhere 2) and a; can easily be computed from the same
record. Hence 5 can be obtained from (13). The method described
will not generally be applicable unless the velocity-profile across the
pipe is nearly flat. In the case, for instance, of fully-developed lami­
nar flow a given cross-section will not be uniform in composition,
but will display ring-shaped zones of varying concentration due to
the passage of successive clumps down the pipe; ostensible values of
5 found by the above method will then have little or no significance.
On the other hand the method can be used if the fluid is in well­
developed turbulent flow (Reynold's number> 10,000), or if it dis­
plays the phenomenon of "Bingham flow" (e.g. extrusion of a plastic
material), or even when it is in laminar flow, provided in the last
case that the measurements are made close to the pipe-entry. It must
be remembered that flow through a pipe, and subsequent discharge
into a vessel, will themselves promote mixing, so that the scale of
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segregation measured at a given point in a pipe has only a local
significance. Its value may nevertheless be a useful indication of the
effectiveness of a mixer.

§ 5. The intensity at segregation. The intensity, I, of segregation is
conveniently defined by the following mathematically identical
expressions

1= ~_ = a'f.
ii.b - ii.'6

~ _ a;
- ii(1 -ii) = 0(1 - '6) .

(14)

Thus defined, I has the value 1 when segregation is complete (i.e.
when the concentration of A or B at every point is either 1 or 0),
and the value 0 when the concentration is uniform. In general I
reflects not the relative amounts of A and B nor the size of the
clumps, but the extent to which the concentration in the clumps
departs from the mean. If B is present in large excess, the value of I
will depend primarily on the extent to which the clumps of A in the
mixture have become diluted by B.

'When two miscible liquids are mixed, the value of I is progressive­
ly reduced. However, as previously mentioned, this reduction is not
caused directly by the mechanical process of mixing, but depends on
molecular interdiffusion of the two components. In the absence of
diffusion the mixture would remain "grainy", as when immiscible
liquids are emulsified. It is shown in Appendix C that the fractional
rate of decay of I is given by the relationship:

_~. dI = -6D [d2RJ

I dt drZ r=O
( IS)

Now -'- [d2R/drZJr=o is a measure of the sharpness with which the
correlogram bends over from its initially flat top. Circumstances
which emphasize this change of slope therefore favour the rapid
production of a homogeneous mixture. These are: (a) A small scale
of segregation. If two mixtures are geometrically similar - that is,
identical in pattern, but different in geometrical scale - the respec­
tive rates of decay of I will be proportional to D/S2. This illustrates
the importance of designing mixers so as to reduce the scale of
segregation as quickly as possible. (b) Steep average concentration
gradients at the boundaries of the clumps. These will generally be
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produced by the same processes which progressively decrease the
scale of segregation - that is, by flattening or elongating the clumps,
or by subdividing them by "slicing" action or by the dispersal of
material in eddies.

If the purpose of mixing A and B is to enable them to react with
one another, I represents an inverse measure of the effectiveness of
the mixing. It is shown in Appendix D that if the local rate of reac­
tion is proportional to the concentrations of both A and B, the total
rate of reaction in the mixture will be greatest when I = o. When
I =!= 0, there is a linear relationship between I and the total reaction
rate, which may be used as described in the next section to deter­
mine I.

§ 6. j'vJeasurement of the intensity of segregation. Any method of
measuring {l2 (such as those already mentioned) will enable I to be
found from (8) and (14). Alternatively a method based on the
measurement of the rate of a chemical reaction might prove more
convenient when it is desired to follow the progress of mixing in a
batch process. Its use would normally be limited to circumstances in
which the liquids A and B could be chosen to suit the investigator.
The reaction chosen must have a rate which is either proportional to
the square of the concentration of one component, or to the products
of the concentrations of the two components. The components A and
B will normally be relatively dilute solutions of the actual reagents,
so that changes in temperature and physical properties as a result of
the reaction will be small. I t is necessary to choose reaction systems
such that the fractional rate of reaction is relatively slow, so that the
mean concentration of the various reactants do not change apprecia­
bly during the period over which I is to be observed.

(a) Reaction between A and B. Solution A contains m moles per
unit volume of reactant M: solution B, n of reactant N. The local
rate of reaction between A and B at a point where the volume­
fraction of A is a, is [kmna( 1 - a)J moles of M per unit volume per
unit time, where k is the reaction-velocity constant. Then, as shown
in Appendix D

1= 1 - o/kmna(l - a)-, , ( 16)

where (! is the mean rate of reaction per unit volume of the mixture.
(b) Second-order reaction of A. Solution A contains m moles per
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unit volume of M, and is destroyed at a local rate of km 2a2 moles of
M per unit volume per unit time. Then

(1 - Ii)
(17)

The choice of suitable reactions for the determination of I offers
scope for considerable ingenuity. (Data on the kinetics of a large
number of reactions in solution are given by Moel w y n-H ughes 4).
It must be possible either to measure the mean concentration of one
of the reactants with great accuracy, or to measure. the concentration
of a product of the reaction (a lower standard of accuracy is permis­
sible in this case) or to measure the reaction-rate directly. Reactions
of which the progress can be followed by optical methods may prove
useful, because of the ease and accuracy of the measurements. The
following types of system are worth consideration.

(a) Polarimetric methods, in combination with mutarotation or
racemisation reactions.

(b) Colorimetric methods, in combination with reactions giving
coloured products.

(c) Photometric methods, in combination with chemiluminescent
reactions. This method has the attraction that it is the reaction rate
itself which is measured and not the integral extent of the reaction.
For this reason it might be particularly suited to cases where I
changed very rapidly.

An optical method of judging the extent of a reaction by sighting
through the mixture (as in (a) or (b) above) will generally give
information about the "content" of reactant or product in a "line­
sample" of the mixture. The mean value of the content of the line­
sample will change progressively as the reaction proceeds. However,
superimposed on this steady change will be fluctuations due to
segregation in the mixture, which may make it difficult to determine
the rate of reaction. This difficulty can be overcome by taking a
line-sample sufficiently large in relation to the scale of segregation
to display only small fractional variations in content. Under some
circumstances (depending on the rate of movement of the mixture,
the rate of reaction and the rates of change of I and 5) it may be
possible to determine both the mean value and the variance of the
content of the line-sample from readings taken over a period of time
too short to allow the extent of the reaction or the degree of mixing
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to change appreciably. This would enable both I and 5 to be
calculated as functions of the time of mixing from a single series of
readings.

§ 7. Conclusions. A knowledge of the scale and intensity of segre­
gation in a mixture will provide a good deal of information about its
texture, in a quantitative form which allows different degrees of
mixing to be compared. The two quantities are virtually independent
and represent aspects of "goodness of mixing" which cannot be
defined by a single quantity.

The determination of the scale and intensity, even by the simplest
methods suggested, involves in effect making a considerable number
of measurements and averaging them. This is inevitable, as the only
useful information which can be given about the degree of mixing is
of a statistical nature. It seems unlikely that any simpler programme
of measurements than those suggested here would yield quantities
which would be of any value in a systematic investigation of mixing
processes. However, simplified procedures could probably be devised
for specific industrial purposes. For instance, the continuous measure­
ment of j2 or K2 alone might be used to monitor the texture of a
stream of constant mean composition, without the additional deter­
mination of az. An increase in j2 or K2 would indicate an increase in
either the scale or intensity of segregation, and hence a general
decrease in the efficiency of the mixing process.

I t is suggested that the statistical treatment of mixtures advocated
in this paper may be useful in developing a general theory of mixing
processes. For instance, if turbulence is used to bring. about mixing
it seems likely that power is most economically applied in producing
turbulence with a scale comparable to the scale of segregation.

Appendix A. Determination of 5 from variance of content of line­
samples. Put c = a - a. The content, j, of a line-sample of length
X is then given by

from which follows

x x
j = J a dx = aX +J c. dx,

o 0
. (18)

x x X-y

(J - J)2 = [fc.dxf == 2 J J c(x) .c(x + r). dx.dr, (19)
o 7=0.<=0
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c(x), c(x + r) being the values of c at points distant x, (x + r) from
one end of the line. So

xx-, _

a} = (J _])2 = 2 f f c(x) .c(x + r) .dx .dr. (20)
,=0,,=0

But c(x) .c(x + r) is independent of x, and equal to ~ R(r) (see (2)).

Hence
x

a} = 2~ f (X -r) R(r) dr
,=0

(21 )

Now R(r) falls to zero at some value r = s, if X ~ ~, (21) becomes
00

0-; ~ 2~ X f R(r) dr = 20-; XS, (22)
o

which leads to (6).
The error is

x ~

20-; f r R(r) dr = 2~ f r R(r) dr < 2~ ~S. (23)
o 0

Appendix B. Determination at V tram variance at content at volume
samples. The content, K, of the sample is given by

K = f f fa dx dy dz, (24)

where the integral is taken over the volume, v, of the sample. Putting
c = a - a:

K = d» + f f f c dx dy dz;

but K = du, hence

K - K = f f f c dx dy dz.

(25)

(26)

For a large number, n, of samples of volume v:

n~=n(K-K)2= f f f f f f2:.c(x,y,z).c (x',y',z').dxdydz.dx'dy'dz',(27)
x, y, z x',y',z'

where c(x, y, z), c(x', y', z') are the values of c at the points (x, y, z),
and (x', y', z') respectively, and both sets of integrals are taken overthe
whole volume. However, the value of the sum 2:. c(x, y, z) .c(x', y', z')
will be independent of x, y, z, x', y', z' and equal to nCZ R(r) for a
given value of r, where r = v'{(x - x'f + (y - y')2+ (z - z'f},
and will be zero for r '> ~. Integrating over x', v'. z' about any point
(x, y, z) gives therefore :

- ~
4nnc2/ y2 R(r) dr. dx dy dz, or 2n VC2. dx dy dz.

,=0
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Equation (27) therefore becomes:

ak ~ 2VCzJJJ dx dy dz = 2VvCz (28)

and since Cz = a;, we have

v ~ akj2va;. (29)

The integral in (28) has been taken over all the points (x, y. z) in
the sample. Since we have previously integrated over a radius $
about each of these points, it is clear that the expression given in
(28) actually "overlaps" the surface of the sample, and should be
corrected by an additional term analogous to that in equation (23).
The fractional error introduced into (29) by ignoring this correction
will be less than $A/V, where A is the area of the surface of the
sample. Assuming that the value of $ is of the same order of magni­
tude as V! and that the sample is, for example, cubical in shape,
the error will be of the order (Vjv)}.The error will be increased if the
shape of the sample is not reasonably compact.

Appendix C. Ejject of Diffusion. Rate of Decay oj I. Let c = a -li.

c(P) is the value of c at some point p in the mixture. C(P + r) is the
mean value of c at all points distant r from p. Then (2), the definition
of R(r), can be put in the form

Cz R(r) = c(P) .c(P + r), (30)

the product c(P). c(P + r) being averaged over all points p in the
mixture. Differentiating (30) with respect to r (at constant t) and
putting r = 0 gives

Cz[CRJ =C(P)[CC(P~J . (31)
cr T=O or ,=0

----,----:-
Now [2 c(P + r)/cr],=o is the average, at any instant, of the values of
ccicr measured in all directions from the point p. Provided there are
no discontinuities in ccj2r, this average will be zero, because the
value of ccrer measured from the point in any direction will be equal
and opposite in sign to that measured in the opposite direction. Now
it is easily shown that in a system in which diffusion occurs, dis­
continuities in the concentration-gradient cannot persist for a finite
length of time (unless the diffusivity D is a discontinuous function of
c). For such systems, therefore

[dR/drJ,=o = 0, (32)

and the correlogram will have a flat top.
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Consider a small spherical element of the mixture, centre p, radius
Or. Equating the rate of inflow of component A by diffusion to the
rate of rise of concentration, we have

~ n(or)3 oc(P) = 4n(orf D [OC(P + r)]. (33)
3 at or '=0'

Using equations ((31) and (32) we have

[
OC(P + r)] = Or [02C(P + r)] (34)

or '=0' or ,=0

Differentiating (30) twice with respect to r, and putting r = 0 we
have

- [ 0
2R] [22

c(P + r) ]c2 -·-2 = c(P) ---- .
or ,=0 or ,=0

Substituting (34) and (35) in (33) we find

oc(P) - [ OR
2

]c(P) -- = 3Dc2 -2· .
ot or ,=0

Whence

1 dC2 [d
2RJ- -=6D -

c2 • dt dr2 ,=0

and from the definition of I (equation (2)):

_ ~ dI = _ 6D [d
2R J

I dt dr2
,=0·

(35)

(36)

(37)

(38)

(39)

Appendix D. Determination o] I [rom reaction-rate.
(a) 2 n d-o r d err e act ion bet wee n A and B. The local

rate of reaction per unit volume is

kmna(l-a)

The total reaction rate in the system is therefore

ev = kmnfffa(l-a) dxdydz

the integral being taken over the whole volume v, and e being the
mean rate of reaction per unit volume. But

1
fffa(l-a) dxdydz = a-{i2, (40)

v
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from which

and using (7)

whence

CHARACTERISTICS OF MIXTURES

ii - Ci2 = e/kmn,

ii - (ii)2 - ~ = e/kmn

(41)

(42)

1= 1 - e/kmnii(1 - (i). (43)

(b) 2 n d-o r d err e act ion 0 fA. The local rate per unit
volume is km2a2

. The total reaction-rate in the system is therefore

ev = km2 ! ! ! a2 dx dy dz (44)
so

Using (7)

~ = a2_ (ii)2 == e/km2_ ((i)2,

1= e/km2ii(1 - ii) - (i/(' - (t).
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