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Abstract A new approach, the conditional nonlinear
optimal perturbation (CNOP) is introduced to study the pre­
dictability of EI Nino-Southern Oscillation (ENSO) using a
theoretical coupled ocean-atmosphere model. The differences
between CNOP and linear singular vector (LSV) are demon­
strated. The results suggest that the nonlinear model and
CNOP are superior in determining error growth for studying
predictability of the ENSO. In particular, the CNOP ap­
proach is used to explore the nature of the 'spring predict­
ability barrier' in ENSO prediction.

Keywords: nonlinear, optimal perturbation, predictability, ENSO
model.

DOl: lO.1360/02wd0389

Determination of the fastest growing perturbation is
of central importance in the predictability of numerical
weather and climate prediction. Usually, it is assumed that
the initial perturbation is sufficiently small such that its
evolution can be governed by the tangent linear model
(TLM) approximately. In TLM approach, the fastest
growing perturbation of TLM corresponds to linear sin­
gular vector (LSV), which was first introduced by
Lorenz[l] to study the predictability of atmospheric mo­
tions. Recently, TLM approach was used to explore the
predictability of the coupled ocean-atmosphere model[2].

To investigate the nonlinearity of the atmospheric
and oceanic motion, MU[3] proposed the concept of nonlin­
ear singular vector (NSV) and nonlinear singular value
(NSVA). The two-dimensional quasi-geostrophic model
has been used by Mu and Wang[4] to study the NSV and
NSVA. The results demonstrate that for some types of
basic states, there exist local nonlinear optimal perturba­
tions, which usually possess larger norm and smaller
growth rate compared to the first NSV In this case, the
local nonlinear optimal perturbations could play a more
important role than the first NSV in the study of the pre­
dictability.

The nonlinear optimal perturbation can be used to
estimate the prediction error[5]. Given the information of
the initial observation, the nonlinear optimal perturbation
should be less than an upper bound of the initial observa­
tional error. But the local nonlinear optimal perturbations

Chinese Science Bulletin Vol. 48 No. 10 May 2003

could exceed it in some cases. This weakness suggests
that we should investigate the nonlinear optimal perturba­
tion with constrained conditions. For this purpose, the
concept of conditional nonlinear optimal perturbation is
introduced in this paper.

1 Conditional nonlinear optimal perturbation

Let M T be the propagator of the nonlinear model
from 0 to r 5

]. Uo is an initial perturbation superposed on
the basic state U(t), whose initial value is Uo.

For a chosen norm II • II, an initial perturbation u;s

is called the conditional nonlinear optimal perturbation
(CNOP) with constraint condition Iluoll :'( 5, if and only
if

J(u;s) = max IIMT(Uo+uo)-MT(Uo)ll. (1)
IluollcS

In the above, the constraint condition is given by a
chosen norm. Obviously, we can also investigate the
situations that the initial perturbations belong to some
kinds of functional set, or satisfy some physical laws.

On the basis of the practical demands, Mu et al.[5]
classified three predictability problems. The second prob­
lem is closely related to CNOP, i.e. if Uo in (1) is taken as
initial observation, (1) gives an upper bound of prediction
error caused by the initial observational errors.

2 Applications of CNOP to the predictability for
ENSO

In this section, we consider the following theoretical
coupled ocean-atmosphere model for ENSO[6], hereafter
WF96 model.

{

dTE H--= alTE -a2hE + -TE(TE -a3hE ),
dt 3

dhE-=b(2hE -TE ),
dt

2 , -,
a3 = ( /I + 51 ) b = . The parameters, /),To ' T

r , 5(1-3&) x

and ~', are determined by the climate mean state, which

vary with time and reflect the annual cycle of the basic
state. For detailed physical meaning the readers are re­
ferred to the paper of Wang and Fang[6]. This model de­
scribes the interanual variation of SST and thermocline
depth anomaly in Nifio-3 region.

In this paper, the WF96 model is integrated by
fourth-order Runge-Kutta scheme with dt = 0.01, which
represents one day. The numerical algorithm adopted is
LBFGS method[7].

( i) Conditional nonlinear optimal perturbation.
Let Uo be the initial value of the basic state U(t), Uo its

initial perturbation. For the chosen norm Ilull = max{ITEI,
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Fig. 1. A.oand AL, the growth rate ofCNOP and LSVA of UB

IhEI}, the CNOP u;s of U(t) can be obtained by solving

(l). To facilitate the following discussion, we define

A - J(u;s) which represents the growth rate of
0- * ,

II uosil
CNOP.

In the following, we choose EI Nino and La Nina
events in WF96 model as two basic states, denoted as if
and if, whose initial values are (-0.1, 0.1) and (0.1, -0.1)
respectively. For 5 EO [0.01, 0.08] and different time pe­
riods [0, 1], the differences between the growth rate of
CNOP and linear singular value (LSVA) are investigated
(Fig. 1), where the linear singular value is given by

A
L

= max II M(Uo)(uo) II and M(Uo) is the tangent linear
Uo II Uo II

model of WF96 model with respect to U(t). It follows that
LSVA does not change with 5, but the growth rate of
CNOP does. Consequently, when the initial perturbations
are large, the differences between the growth rate of
CNOP and LSVA are also very considerable. Besides, the
optimization time also plays a role in determining the dif­
ference between them. For T :'( 10 months with initial

The positive (negative) value of Kcorresponds to the
increase (decrease) of the initial observational error, and
the larger the absolute value of the K, the faster the in­
crease or the decrease of the initial observational error.
The numerical results are shown in Tables 1 and 2. The
values of K related to LSV in Tables 1 and 2 are the

slopes of the curve YL (t) = II uL (t) II at different seasons,
II UOL II

where UOL and UL(t) represent the LSV and its linear
evolution. From Table 1, it is demonstrated that the largest
growth of CNOP for if occurs during the AMJ season,

OND JFM AMJ JAS
2.5658 1.7592 0.3080 -0.9755
2.5616 1.7710 0.3399 -1.0285
2.5575 1.7826 0.3634 -1.0757
2.5533 1.7942 0.3886 -1.1246
2.5491 1.8059 0.4154 -1.1749
2.5698 1.7477 0.2975 -0.9387

The values of Kcorresponding to EI Nino event UE

The values of Kcorresponding to La Nina event UL

OND JFM AMJ JAS
2.5108 4.5505 16.6049 -3.2472
2.5113 4.5677 19.4686 -3.0822
2.5118 4.5839 23.1792 -0.6510
2.5124 4.5989 28.1567 1.6326
2.5129 4.6129 35.1483 4.1823
2.5101 4.5327 14.3367 -3.4097

0.01
0.02
0.03
0.04
0.05
LSV

Table 2

Table 1

0.01
0.02
0.03
0.04
0.05
LSV

time being January, the difference lJ = I AS - AL I :'(
AS

13.57%. In this case, the WF96 model can be approxi­
mated by the TLM. But when T> 10 months, the TLM is
a good approximation only for the sufficiently small initial
perturbations. With 5 increasing from 0.01 to 0.08, the
value of lJ becomes more and more large, and in Novem­
ber and December they are up to 19.04% and 25.51% re­
spectively. All these suggest that the TLM is not a good
approximation to the nonlinear model for the large per­
turbations and the long optimization time periods. Hence,
in the study of the predictability for ENSO, the nonlinear
model, rather than the TLM, should be employed.

( ii) Applications of CNOP to the study of spring
predictability barrier for ENSO. A year is divided into
four seasons starting with October to December (OND),
followed by January to March (JFM) and so forth.

For T = 12 months with initial time being October,
the CNOPs of the basic states if and if are computed
respectively. We investigate the slopes of the curve

Ys(t) = II uNset) II at different seasons, where II UNset) II
5

represents the nonlinear evolution of CNOP and the slope
of the curve is denoted by K, which measures the growth
of CNOP normalized by 5 at different seasons.
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which corresponds to the time of ENSO predictability
barrier. Although the largest error growth during the bo­
real spring is also shown through the LSV approach, the
values of K corresponding to LSV and CNOP have re­
markable differences for the large values of 5. If the TLM
of WF96 model and LSV are used to estimate the error
growth, the prediction error could be underestimated. So
the usage of CNOP may provide a useful tool for the study
of spring predictability barrier (SPB) for ENSO. Results
shown in Tables 1 and 2 demonstrate that the error growth
is enhanced during the spring of an El Nino event and
suppressed for a La Nina event. A consequent question is
what causes the SPB.

On the basis of the observational fact that the zonal
SST gradient in the tropical Pacific is minimum during
boreal spring, Webster and Yang[8] suggested that the SPB
is linked with the annual cycle. Webster[9] further analyzes
the cause of SPB. He suggested that the SPB is due to the
weakly coupling between ocean and atmosphere during
spring of the year. In the WF96 model, the coupling coef­
ficient is invariant, but there also occurs the phenomenon
of SPB. This indicates that the weakly ocean-atmosphere
coupling in spring cannot explain the SPB in the WF96
model. On the other hand, Wang and Fang[6] analyzed the
growth mechanism of the perturbation in their model.
They suggested that the weakest easterly wind stress and
equatorial upwelling during spring in the tropical Pacific,
which is also entitled the strongest coupled ocean-at­
mosphere instability during spring of the year, is one of
the reasons of the SPB.

To make sure this cause of SPB in the WF96 model,
we compute the CNOPs of El Nino events under the con­
ditions of strong and weak coupled ocean-atmosphere
instability, where the initial value of the El Nino event in
the WF96 model is (-0.1, 0.1) , the initial time is January,
and the optimization time period T starts from October to
the next September. The values of K are shown in Tables 3
and 4. It is shown that for an El Nino event, the error
growth during the boreal spring (AMJ) for the strong cou­
pled instability is notably larger than that for weak cou­
pled instability. With 5 increasing from 0.01 to 0.05, the
difference becomes progressively large. This indicates that
the strong coupled ocean-atmosphere instability during
boreal spring is one of the causes of the SPB for ENSO,
and the larger the initial error, the more remarkable its
impacts on the SPB.

3 Conclusion and discussion

In this paper, the concept of conditional nonlinear
optimal perturbation is introduced to study the predict­
ability of ENSO in terms of a theoretical coupled
ocean-atmosphere model. We have shown the difference
between conditional nonlinear optimal perturbation
(CNOP) and linear singular vector (LSV). The results
suggest that the CNOP approach is more applicable than
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Table 3 KofEI Nino event for strong ocean-atmosphere coupled
instability

5 OND JFM AMJ JAS
0.01 2.5101 4.6612 23.9462 -2.1042
0.02 2.5107 4.6783 28.6207 1.8590
0.03 2.5112 4.6945 34.9999 2.0981
0.04 2.5116 4.7096 44.1814 4.2018
0.05 2.5121 4.7235 58.4372 7.5530

Table 4 Kof EI Nino event for weak ocean-atmosphere coupled
instability

5 OND JFM AMJ JAS
0.01 2.5114 4.4407 11.7789 -3.9069
0.02 2.5120 4.4577 13.6336 -3.0381
0.03 2.5126 4.4737 15.9483 -0.8393
0.04 2.5132 4.4889 18.9065 2.2881
0.05 2.5137 4.5030 22.8041 3.8150

LSV in studying the predictability problems. Besides, the
spring predictability barrier (SPB) for ENSO is studied by
CNOP approach and the preliminary results are presented.

Although the model adopted in this paper is simple,
it grasps the nonlinear characteristic of ocean-atmosphere
coupling. The CNOP approach reveals the impact of
nonlinearity on the predictability for ENSO. It is reason­
able to believe that for the more complicated model,
CNOP is of more importance in the study of climate pre­
dictability. Of course, some difficulties will be faced,
which are what will be solved in the future works.
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