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Abstract. We derive a security flow control algorithm for message-based, modular
systems and prove the algorithm correct. The development is noteworthy because it
is completely rigorous: the flow control algorithm is derived as an abstract
interpretation of the denotational semantics of the programming language for the
modular system, and the correctness proof is a proof by logical relations of the
congruence between the denotational semantics and its abstract interpretation.

Effectiveness is also addressed: we give conditions under which an abstract
interpretation can be computed as a traditional iterative data flow analysis, and we
prove that our security flow control algorithm satisfies the conditions. We also
show that symbolic expressions (that is, data flow values that contain unknowns)
can be used in a convergent, iterative analysis. An important consequence of the
latter result is that the security flow control algorithm can analyse individual
modules in a system for well formedness and later can link the analyses to obtain
an analysis of the entire system.

1. Introduction

Flow of information must be regulated in message-based, modular systems that
deal with classified information. For example, let iunclassified. classified, secret,
topsecret} be a set of security classifications, linearly ordered from left to right (e.g.,
classified ~ secret). Readers of messages are given security clearances, e.g., a reader
with a secret clearance may read secret (or classified or linclassified) messages, but
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not topsecret ones. It is essential that the security ofa system of readers, writers, and
messages is validated by some form oifiow control algorithm. The correctness of the
flow control algorithm itself is, of course, crucial.

The pioneering worker in the area of flow control algorithms was Denning
([Den75], [Den76], [DeD77]). She developed a compile-time algorithm for certifying
the secure execution ofa program where the security class of each message, variable
and file remained constant throughout the lifetime of the program [DeD77]. Since
the security class of every program variable and formal parameter must be explicitly
specified, separate versions of functionally equivalent procedures are required to
handle different security classes of actual parameters.

Another noteworthy effort was made by Andrews and Reitman, who developed
a compile-time certification technique based on Hoare's logic [AnR80]. Their
technique allows the security class of a variable to change during execution of the
program, but application to modular systems is difficult, because the verification of
a procedure invocation requires verification of the called procedure.

Proofs of correctness of the above methods were intuitive or informal.
The method we study in this paper was developed by Mizuno ([Miz87],

[MiOS7], [Miz89]). Mizuno's method analyses modular systems, where readers and
writers are modelled by procedures, and messages are parameters. It has these
features:

• The security classes of a procedure's local variables and parameters can remain
constant or can change during execution. Procedures may also use global
variables whose values persist after procedure termination. The security classes
of global variables must be constant.

• Procedures and global variables are grouped into modules. A compile-time
algorithm verifies the security of an individual procedure in a module and
outputs a "summary data structure" that describes the module's behaviour. A
link-time algorithm certifies a system of modules by combining the summary
data structures and validating their consistency.

In this paper, we present a rigorous, formal, correctness proof of Mizuno's
method. It is, to our knowledge, the first such correctness proof for a security flow
control algorithm. We begin with a denotational semantics ([Sch88], [Sto77]) of the
programming language one uses to code the modules, and we show that the
compile-time analysis algorithm is an abstract interpretation ([CoC77], [Nie83]) of
the denotational semantics. A congruence proof by logical relations ([Nie89],
[Plo80]) establishes the correctness of the compile-time algorithm. This allows the
language's semantics to be staged ([10886], [MoW88]) into a compile-time analysis
semantics and a run-time semantics, where security classifications need not be
monitored in the latter.

Analysis of a system of modules is formalised by generalising the abstract
interpretation to operate upon symbolic expressions (polynomials [Gra79]) that
represent references to procedures in external modules. We prove that the compile­
time analysis can compute upon such symbolic expressions, and we show how the
results can be linked into a correct analysis of an entire system.

We also address effectiveness. We state sufficient criteria for implementing an
abstract interpretation as a traditional, iterative, data flow analysis, and we show
that Mizuno's compile-time analysis fits the criteria. We also prove that the iterative
analysis can be used with polynomials. Hence, the formal derivation of Mizuno's
method, as an abstract interpretation, matches the pragmatic implementation of it,
as a pair of iterative, compile-time, link-time algorithms.
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In the sections that follow, we review the information flow policy enforced by
Mizuno's method, we describe the compile-time and link-time algorithms, and we
formally derive the algorithms and prove them correct.

2. Information Flow Policy

It is helpful to think ofsecurity classifications as "data types" and information flow
as "type propagation". Mizuno's method enforces Denning's information flow
policy [Den76]. An information flow from variable X to Y occurs when information
in X is transferred to Y. Information flow indicates that information in Y can be
used to deduce information in X. An assignment, e.g., Y:= W +X causes
information flow from Wand X to Y. If W held a secret value and X held a
topsecret one, then Y receives topsecret information (since topsecret = secret U
topsecret).

Flows are explicit or implicit. An explicit flow from a variable A to X occurs
when a statement assigns information from A to X, as in the assignment statement
above. An implicit flow from A to X occurs when the execution of a statement that
assigns some information to X is conditioned upon a test that references A. For
example:

if A > 0 then X := Y else X := Z

causes an explicit flow from Y to X when A > 0 and from Z to X when A ~ O. The
statement also causes an implicit flow from A to X, regardless of the value of A.
Implicit flow is significant - in the above example, ifY has value 0 and Z has value
1, then after execution of the if-statement, information about the value of A can be
deduced from the value ofX. Thus, X should have a security classification at least
as strong as A's.

The underlying theory of information flow is based on a pointed, finite height,
sup-semilattice structure (SC, ~,.1, U), where:

• SC is a set of security classes.
• ~ is a partial ordering on SC such that there are no infinitely ascending chains

([eoc77], [Nie83]).
• .1 is the least element of S'C.
• U is the join (" least upper bound") operation on S'C.

All information values in a system are tagged with security values from S'C. A
program variable may be either statically or dynamically bound to a security class.
A statically bound variable is assigned a fixed security class, s, at the time of its
definition. All values assigned to it must have a security class s' such that s' ~ s. The
security class of a dynamically bound variable changes with the class of the value
assigned to it.

If X is a variable, then its security class is denoted by X (that is, in italic). The
system's information flow policy may be stated as follows: ifY is a statically bound
variable, then an information flow from X to Y is secure iff X ~ Y holds. If Y is a
dynamically bound variable, Y becomes X and no security violation occurs.

3. Overview of the Algorithms

It is helpful to think of the security control algorithms as data flow analysis
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algorithms for type inference. There are a compile-time algorithm and a link-time
algorithm. The compile-time algorithm certifies the security of each procedure
independently ofother procedures, generating a summary data structure of symbolic
equations that encode the security classes of the procedure's in-out-parameters.
The link-time algorithm completes the certification of a system by combining the
summary data structures and calculating interprocedural information flows. The
strategy is easily adapted to a module-based system, where a summary data
structure is generated for each module.

Let a procedure declaration have the form

procedure PROC (in X:T; out X':T') = D; C end

where the in parameter is "call by value", the out parameter is "call by result", D
is the set of local declarations, and C is the procedure's body. The T and T' state
whether the formal parameters have static or dynamic security classifications.

The compile-time algorithm, which is an iterative data flow analysis [ASU86],
traces the information flow through the control paths of procedure PROC,
verifying that every statically bound variable V receives values whose security
classes are ~ v.

External procedure calls cause problems. For example, let PROC be

procedure PROC (in A:dynamic; out B:dynamic) =
var X:static classified; var Y:dynamic; X:= 0; call P(in X, out V);
B := 3+Y +A; X = Bend

The assignment X := 0 is safe (assuming that numerals have class Ill/classified), but
the assignment B := 3+Y +A causes problems: the class of B is unknown until the
class of in-parameter A and the analysis ofexternal procedure P are known. So, the
compile-time algorithm uses the expression Ill/classified UP. Y U A to denote B,
where P. Y denotes the class of the out-parameter from the call to P. Further, the
symbolic equation P. X = classified is saved in the summary data structure for
PROC; P. X denotes the class of the in-parameter to the call to P. When the data
structures for PROC and P are linked, the value of P. Y can be calculated from P's
summary data structure and P. X = classified. The validation of the assignment X
:= B must be postponed until link-time, so the compile-time algorithm adds the
symbolic (in)equation III/classified UP. Y U A ~ classified to PROC's summary
structure. Finally, the equation B = linclassified UP. Y U A, which defines the
class of the output parameter of PROC, is generated and added to PROC's
summary structure.

In the above example, P .X and Bare output variables, and A and P .Yare input
variables of PROC. In general, input variables of a procedure PROC are

I. Actual in parameters of PROC
2. Formal out parameters returned from procedures that are called by PROC
3. Global variables read by PROC (recall that global variables must be statically

bound)

Possible output variables of PROC are

4. Actual out parameters of PROC
5. Formal in parameters to procedures that are called by PROC
6. Global variables written by PROC

If input variables (I) and (2) are dynamically bound, their security classes
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cannot be determined until link-time. During compilation, the classes of these
variables are represented by symbolic expressions, like the ones seen in the example
above. The compile-time algorithm also generates a symbolic equation for each
output variable (4) and (5). If the class of value assigned to a statically bound
variable cannot be determined at compile-time, a symbolic inequation is generated
(cf. the above example).

The link-time algorithm collects the symbolic equations for all procedures and
calculates, for each variable corresponding to a parameter, the run-time security
class of information flowing to the variable. This is done by solving the set of
symbolic equations with the usual iterative least fixed point calculation ([ASU86,
CoC77]). The results are used to evaluate the symbolic inequations that correspond
to the unresolved classes of static variables. If all inequations hold true, the system
is certified secure and allowed to execute.

3.1. The Compile-Time Algorithm

We overview the compile-time algorithm, emphasising its treatment of implicit
information flow, and show an example. Full details of the compile-time algorithm
are given in [Miz87] and [Mi08?]. Consider

if A > 0 then X := B else X := C

The algorithm deduces that Xmust be B U C U A, since there is implicit flow from
A and explicit flows from Band C to X. For a while-loop, the number of iterations
of the loop's body is unknown at compile-time, so the compile-time algorithm
accounts for the "worst case" information flow. Consider

A:= X; while C> 0 do call P(in A, out B); call Q(in B, out A) od

On the first iteration, the class of in parameter A to P is Xu C, due to explicit flow
from X and implicit flow from C. In subsequent iterations, A receives information
from the out-parameter from Q. Thus, P.A = X U C U Q.A.

There is also implicit interprocedural information flow. In the above example,
there is implicit flow from C into every global variable used in P's code, and into
those global variables used by procedures called by P, and so on. The compile-time
algorithm accounts for this flow by constructing a symbolic equation P. implicit =
C U implicit, where P. implicit defines the implicit interprocedural flow into P, and
implicit denotes the implicit interprocedural flow incoming to the procedure calling
P. \Vhen an execution starts with the "main" procedure, implicit for "main" is 1-,
the least security class.

Figure I presents an example. Procedure MAIN calls F, and F and G call each
other. We show the actions of the compile-time algorithm on F. The security class
of variable C in line (a) is 1- U implicit, i.e., implicit, since there is an explicit flow
from 2 (whose class is 1-), and there is implicit interprocedural flow from the caller
ofF. In line (b), input parameter C has security classification implicit (from line (a)),
and it also receives implicit flow from A as well as implicit interprocedural flow; the
following equation is constructed:

G. C = implicit U A U implicit, that is, G. C = A U implicit

The algorithm also generates an equation for the implicit interprocedural flow into
G:

G. implicit = A U implicit



732

program MAIN
var A, B: dynamic; SVI: static topsecret;
SVI :=4; A:=SVI;
call F(in A, out B);
SVI,= B+20

end MAIN
module M

global var SV2: static secret;
procedure F(in A: dynamic; out B: dynamic);

var C: dynamic;
C:= 2; (a)
if A> 0

then
call G(in C, out B); (b)
SV2,= B; (c)

else B ,= 10 (d)
end F

end module M
module N

procedure G(in X: dynamic; out Y: dynamic);
var SV3; static confidential;'
if X < 100

then call F(in X, out Y); SV3 := Y .
else Y:= 3

end G
end module N

Fig. 1. A modular system
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In line (c), static variable SV2'is affected by an explicit flow from B (whose class
is G. B), and implicit flow from A, and implicit interprocedural flow. The resulting
inequation for SV2 is

G. B U A U implicit ~ secret

Output variable B is assigned values in lines (b) and (d); there is implicit flow
from A as well as implicit interprocedural flow. The following equation is generated:

B = G.B U A U implicit

The summary data structures for F, MAIN, and G are shown in Fig. 2.

3.2. The Link-Time Algorithm

The link-time algorithm makes the correspondence between formal and actual
parameters and solves the equation sets. Its full description is in [Miz89]; here we
summarise. Consider a procedure P. Its summary data structure contains symbolic
equations for its output variables and inequations for its static variables. Say that
P has in-parameter A, and say that external procedures Q and R call P with actual
in-parameters Band C, respectively. To account for worst case information flow,
the algorithm constructs an equation that binds A to all its actual parameters: A =
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Symbolic equations for MAIN:
F.B ~ topsecret (for SVI)
F. implicit = 1.
F. A = topsecret

Symbolic equations for F:
G. B U A U implicit ~ secret (for SV2)
G. implicit = A U implicit
G.C = A U implicit
B = G.B U A U implicit

Symbolic equations for G:
X U F. Y U implicit ~ confidential (for SV3)
F. implicit = X U implicit
F.X = X U implicit
Y = X U F. Y U implicit

Fig. 2. Summary data structures

P. B UP. C, where P. B is defined by an equation in Q's summary structure, and
P. C is defined by an equation in R's summary structure. (Hereon, we subscript the
names to clarify their sources, e.g.: Ap = P. BQ UP. CR') Since Q and R call P, an
equation for the implicit flow into P must also be constructed: implicitp =
P. implicitQ UP. implicitR'

We can best understand the method by linking the equation sets in Fig. 2. Since
MAIN calls F, we define

F.BMAlN = BF

to give the value of the variable B returned by F. The completed set of equations
for MAIN is

F.implicitMAlN = 1.
F.A MA1N = topsecret
F.BMA1N = BF

(The inequation F. B ~ topsecret is saved for later.)
The equation set for F is augmented by equations for input parameter A, the

output parameter, B, from G, and for implicit flow from the callers of F. The
completed equation set is

G. implicitF = A F U implicitF
G.CF = AF U implicit e

BF = G.BF U AF U implicit­
A F= F.A MAlN U F,XG
G.BF =7 YG
implicitF= F.implicitMAlN U Fiimplicitg

The equations for AFand implicitFreference values defined by the equation sets for
MAIN and G, since both call F.

Finally, the completed equation set for G is

F. implicit.j = XG U implicit.,
F.XG= X G U implicit.,
YG = X G U F. YG U implicitG
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F.implicitMAlN = ..L
F.A MAlN = topsecret
F.BMAlN = topsecret

BF = topsecret
G. implicitF = topsecret
G. CF= topsecret
A F = topsecret
G .BF = topsecret
implicity = topsecret

YG = topsecret
F. implicit., = topsecret
F,XG = topsecret
X G = topsecret
F. YG = topsecret
implicitG = topsecret

M. Mizuno and D. Schmidt

Fig. 3. Solutions to fixed point calculations

X G = G,CF
F.YG=BF
implicitG = G. implicitF

Now we solve all equations simultaneously with the usual iterative least fixed point
calculation ([ASU86], [CoCn]). The results are shown in Fig. 3. Based on the
solutions, we substitute into the inequations:

For SVI: F.BMAlN [;;; topsecret == topsecret [;;; topsecret == true
For SV2: A F U G.BF U implicitF[;;;secret:::; topsecret U topsecret U topsecret [;;;

secret ss false

For SV3: XG U F. YG U implicit., [;;; confidential == topsecret U topsecret U
topsecret [;;; confidential ss false

and the system is found to be potentially insecure in its treatment ofSV2 and SV3.

4. Derivation and Proof of Correctness

The derivation of the compile-time and link-time algorithms is nontrivial, so we
present it in stages. We begin with a while-loop language with dynamic variables
and then extend the language with:

I. Static variables
2. Input parameters
3. Procedures and calls to external procedures
4. Linkages of procedures, recursion and global variables

At each stage, we begin with a standard (" fuJI") denotational semantics of the
language. We define an abstract interpretation [CcCZ"] of the standard semantics
and prove it safe with respect to the standard semantics. The abstract interpretation
is a formal description of the flow control algorithm, and we show how it defines the
iterative algorithm described in the previous section. We assume familiarity with
elementary denotational semantics ([Sch88], [Ston]) and denotational semantics­
based abstract interpretation ([BHA86], [Don82], [Nie83], [Nie85], [Nie89]).

4.1. The While-Loop Language

We start with a while-loop language that has only dynamic variables, that is, the
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C: Command -+ Store -+ Poststore
ql := E] = update I EIE]
qC1; C21= qc2] comp qc1]

cnrE then C1 else C21= cond (I[C1] U I[C2DE[E] qc1] qc2]

C[,,"hile E do C] = fix()/. cond IICj E[E] (f comp qCD skip)
E: Expression -+ Store -+ Expressible

ElK] = put K (Note: K represents constants, e.g., numerals.)
Ell] = access I
E[op E1 E2] = do op E[Ejl E[E21

I: Command -+ IP(Identifier)
1[1:= E] = {I}
IIC j;C2] = IIC 1] U I[C21
I[if E then C1 else C21= liC1] U I[C21
Ilwhile E do q = I[q

where:
update: Identifier -+ (Store -+ Expressible) -+ Store -+ Poststore
comp: (Store -+ Poststore) -+ (Store -+ Poststore) -+ Store -+ Poststore
cond: lP(Identifier) -+ (Store-+ Expressible) -+ (Store -+ Poststore) -+ (Store
-+ Poststore) -+ Store -+ Poststore
skip: Store -+ Poststore
put: Value -+ Store -+ Expressible
access: Identifier -+ Store -+ Expressible
do: (Expressible x Expressible -+ Expressible) -+ (Store -+ Expressible) -+ (Store
-+ Expressible) -+ Store-s- Expressible

are defined in the figures that foIlow.
(Note: lP(Identifier) is the set of all subsets of Identifier, discretely ordered.)

Fig. 4. Core semantics
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security classifications ofvariables vary as the program executes. Figure 4 gives the
"core semantics" of the programming language we study. We use a "factorised
semantics" in the style of [JoM86], [Nie83] and [Nie85]. The core semantics states
that a command is a mapping from an input store to an output store, called a
"poststore". The standard interpretation of the operators in the core semantics is
given in Fig. 5. The core semantics composed with the standard interpretation is
called the" standard semantics" or "full semantics", and we write Cj ull to denote
it. Cj ull shows that the values in storage ceIlsare pairs of the form (t, v), where t E Sec
and vE Value. Cj ull defines an interpreter for the language; indeed, values v can be
tagged with security classes s at run-time, but -this is inefficient.

The interpretations in Fig. 5 are more or less obvious; only cond needs
explanation. It formalises the implicit flow of the security classification of the test
expression into the arms of the conditional. For expression denotation band
command denotations c. and c2' (cond Sbc. C2S) evaluates the test (bs), augments
the identifiers in S by the security classification of the test and selects Cl or C2'

We now define two additional interpretations: the abstract (" compile-time")
semantics, seen in Fig. 6, and the execution (" run-time") semantics, given in Fig. 7.
The abstract interpretation composed with the core semantics is denoted Cabs, and
the execution interpretation composed with the core semantics is denoted Cexec'

The Cj ull semantics has been" staged" into a compile-time semantics Cabs and a
run-time semantics C exec ([JoS86], [MoW88]). In particular, Cabs maps an input
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S E Store = (Identifier -i>- Storable) (assume the Identifier set is finite)
p E Poststore = Store i (Note: 1- represents nontermination.)
Storable = Sec x Value
Expressible = Storable
t E Sec = a finite height, pointed, sup-semilattice of security classifications
VE Value = primitive values, e.g., integers, booleans
update if= }.s. [i1-7 (fs)]s
C2 comp c. = }.s.Iet s' = (Ct s) in (c2s')
cond S b c. C2 = ).s.Iet (t, v) = (bs) in

let s' = (J.i.let (t',v') = (SI) in iES-+«t U t'), v') ~ (t',v'))
in v -+ (c. s') R(c2s')

skip = }.s.s
put k = }.s. (1-, k) (Note: 1-E Sec represents the minimal security classification.)
access i = }.s. (s I)
do opfg = ).s.let (t.,v.) = (fs) in let (t2,V2) = (gs) in (t. U t2, op v. V2)
(Note: "let s = " is strict on 1-E Poststore arguments: "let s = 1- in e" equals
L)

Fig. 5. Full interpretation

a E Store = Identifier -i>- Storable
Poststore = Store
Storable = Sec
Expressible = Storable
Sec = as in Fig. 2
update if= sa, [i1-7 (fa)]a
C2 comp c. = Xa .cic. a)
cond Sb csc- =).a.leta' = ().i. iES-+ (ba) U (a1}~(a1})in(cla') U (c2a')
skip = ).a.a
put k = }.a.1-
access i = La. (a I)
do opfg = J.a.(fa) U (ga)

Fig. 6. Abstract interpretation

S E Store = (Identifier -i>- Storable) L

Poststore = Storei

Storable = Value
Expressible = Storable
Value = as in Fig. 2
update if= J.s. [il-7(fs)]s
c2 comp c. = ).s. let s' = (ci s) in (C2S')
cond b CI C2 = ).s. (b s) -i>- (c. s) ~ (C2 s)
skip = }.s.s
putk=).s.k
access i = }.s. (s I)
do opfg = Ls.op (fs)(gs)
(Note: "let s = " is strict on 1- arguments.)

Fig. 7. Execution interpretation
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store ofvariables and their initial security classifications into an output poststore of
variables and their final security classifications. We first prove that the abstract and
execution semantics, working together, safely approximate the full semantics. For
clarity, a domain D in interpretation i will be denoted D; (e.g., Storeabs)'

Proposition 1. Cexee is a "projection" of Cjul/ in the sense that for all C E Command,
for all sEStorejul/, Cjul/[C]s = 1- = CexecKC](secolld s) or else second (Cjul/[Cls) =
Cexee[C](secolld s)), where second: Storejutr-+ Storeexee is defined as second = }.s. }.i.
(sl) iz.

Proof The proof is by induction on the structure of Command, proving Cjudc]
prohtore....Poststore CexecKc] , for the logical relation ([Nie89], [Pl080))proj
between the domains of Cjul/ and Cexee:

vprojStorable v' itTv t 2 projValue v'
v projExpressible V' itT v projStorable V'
V projValue V' itT v = v'
SprojStoreS' itT for alI i E Identifier, (s, 1) projStorable(S' I)
PprojpoststoreP' iff (p = 1- = p') or p projscoreP'
fprojo ....o l' iff for all dEDljul1> d' EDlexee, dprojo d' implies (fd)projo

(f'd') 2 1 2

The key to the proof is showing, for each operator f: D --;. D' named in Fig. 4, that
fjul/projD....DIabs· 0
Proposition I states that the execution semantics calculates the same output store
as the full semantics.

Proposition 2. Cabs is a "conservative projection" of Cjul/ in the sense that for all
Ce Corumand, for all sEStorejul/, CfultKC]s = 1- or else first(Cjul/[C]s) ~ CabsKc]
(first s)), where first: Storejul/--;' Storeabs is defined as first = }.S.}.i. (s ,) t l.

Proof The proof is by induction on the structure of Command, proving CjudC]
COllSStore....Store Cabs[C] for the logical relation COliS between the domains of Cjul/ and

'Cabs:
VCOliSStorable V' iff Vt I COliSSec v'
VCOliSExpressible V' iff VCOliSStorable V'
t COliSSec r iff t ~ l'
SCOliSStore a iff for all i E Identifier, (s 1) COllSStorable (a l))
p COliSPoststore p' iff (p = 1.) or p COliSStore p'
fCOllSO ....O l' iff for all dEDljul1> d' E Dlexec> d COllSO d' implies (fd)

COllS~ Cf'd') 0 1
2

Proposition 2 states that the abstract semantics approximates the full semantics in
its calculation of security classifications for the variables. Hence, a separate, safe,
compile-time analysis of security classifications can be undertaken. For example, if
it is critical that the security classes of some output variables be less than some
security classification t E Sec, then the abstract analysis will give a safe answer.

Shortly, we will study the effective implementation of the abstract semantics.

4.2. Static Variables

Next, we extend the three interpretations to include variables with fixed security
classes (that is, static variables). Analysis of information flow into static variables is
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S E Store = (Identifier -+ Storable)
p e Poststore = StoreI(Note: T denotes "error".)
Storable = Static+Dynamic (Note: the" + " denotes disjoint union.)
Static = Dynamic = Expressible
Expressible = Sec x Value
t e Sec = as in Fig. 5
VE Value = as in Fig. 5
update if= }o5. cases (s 1) of

isStatic(t, v) -+ «(IsH I !; t -+ [iJ-+ inStatic(t, (IsH 2)]s 0T)
UisDynamic(t, v)-+ [if-+ inDynamic(fs)]s end

c2 comp c\ = as in Fig. 5
cond b c\ c2 = }o5 .let (t, v) = (b s) in let s' = newcontext S t s in v -+ (Ct s') 0(c2s')

where newcontext {} t s = s
newcontext {I} =S t s = cases (s 1) of

isStatic(t', v') -+ (t !; t' -+ newcontext S t sOT)
o isDynamic(t', v') -+ newcontext S t [if-+ inDynamic(t U t', v')]s end

skip = as in Fig. 5
put k = as in Fig. 5
access i = }o5. cases (s 1).j. I of isStatic(t, v) -+ (t, v) 0 isDynamic(t, v) -+ (t, v) end
do opfg = as in Fig. 5
(Note: "let s =" is fully strict: it is strict, and "let s = T ill e" equals T.)

Fig. 8. Full semantics with static variables

a crucial job of the security flow control algorithm; the potential flow of a value of
security class t into a static variable of class t', where t ¢ t', must be reported as a
potential security violation.

We again use the core semantics of Fig. 4. Assume there are some global or
default declarations that fix all of a program's variables to be static or dynamic.
This information is placed in the program's initial store via "inStatic" and
"inDYllamic" type tags. The full semantics interpretation is presented in Fig. 8. The
semantics is defined so that a security error in a program causes a denotation of T
(read as "error"), even if the program would ultimately loop. (Since we do not
recover from errors, T proves adequate [Sto77].)

There is no change to the execution semantics, since it describes the run-time
values of variables, which are independent of the security classifications. Figure 9
gives the new abstract semantics. The new version of Cabs maps an input store of
variables and their initial security classes to an output poststore of variables and
their final security classes, ifno violation ofa static variable can occur. If there is a
potential insecure assignment to a static variable, the output is T. (Note: the .1
value is added to Poststore.g, to force it to be a pointed cpo. An easy induction
proofshows that it is unused: for all C E Command, ae Storeabs, Cabs[C]a =/= .1. The
intuitive reason is that the abstract interpretation of a while-loop uses cond, which
joins the input store, which is non-L, to the meanings of the iterations of the loop
body.)

Proposition 3. Cabs is a "conservative projection" of Cjul/ in the sense that for all
Ce Command, for all sEStorejul/, Cjudqs = .1 or else (Cjul/[C]s = T = Cabs[C]
(first s) or else (first(Cjul/[C]s) !; Cabs[C](first s», where first: Storejul/-+Storeabs is
defined as

first = }o5. }.i.cases (s I) of isStatic(t, v) -+ inStatic(t)
OisDyllamic(t, v) -+ inDynamic(t) end.



A Security Flow Control Algorithm

aeStore = (Identifier-s Storable)
Posts tore = Store I
Storable = Static + Dynamic
Static = Dynamic = Expressible
Expressible = Sec
teSec = as in Fig. 5
update if= J.a.cases (a l) of isStatic(t) -'>- ((fa) ~ t~ a 0T)

o isDynamic(t)~ [ir+inDynamic(fa)]a end
Cz comp c, = J.a .Iet a' = (CI a) in (cza')
cond S b c, Cz = La, let a' = newcontext S (b a) a in (c, a') U (cza')

where newcontext {} t a = a
newcontext ({l}:: S) t a = cases (a l) of

isStatic(t') -+ (t ~ t'~ newcontext S taD T)
o isDynamic(t')~ newcontext S t [ir+ inDynamic(t U t')]a end

skip = as in Fig. 6
put k = as in Fig. 6
access i = J.a.cases (a I) of iSStatic(t) -+ t 0isDynamic(t) ~ tend
do opfg = as in Fig. 6
(Note: "let a = " is fully strict.)

Fig. 9. Abstract interpretation with static variables
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Proof. The proof is by induction on the structure of Command, proving a logical
relation cons between the domains of Cjull and Cabs that is similar to the one in
Proposition 2, except for

x consStorable x' iff (x = inStatic(t, v) and x' = inStatic(t»
or (x = inDynamic(t, v) and x' = inDynamic(t') and t conssect')

s consStore a iff for all i e Identifier, (s I) consStorable (a I)
p consPoststore p' iffP = .l or p' = T or p consStore p'

Note that T is an isolated element in both Store[ull and Storeabs' hence it is easy to
verify that cons is an inclusive predicate ([Sch88J, [Sto77]). 0

Proposition 4. Cexec is a "liberal projection" of Cjull in the sense that for all C e
Command, for all s e Storejulb Cjull[Cls = .l = CexecKCl(seconds) or else (CjuulCJs #
T implies second(CjulJ[Cls) = Cexec[C](seconds»), where second: Storejull~ Storeexec
is defined as

second = J.s.J.i .cases (s I) of isStatic(t, v) -+ v 0 isDynamic(t, v)~ vend.

Proof. The proof is by induction on the structure of Command, proving a logical
relation between the domains of Cjulland Cexec. The relation is the same as the one
used in the proof of Proposition 2, with these exceptions:

x projStorable ....' iff (x = inStatic(l, v) and vprojValuex') or (x = inDynamic(l, v)
and vprojValueX')

s prohtores' iff for all i e Identifier, (s I) projStorable (s' I)
pprojpoststoreP' iff p = T or p = .l = p' or pprohtoreP' 0

Proposition 4 implies that the execution semantics cannot be trusted on its own. But
the following corollary is immediate from Propositions 3 and 4:

Corollary 1. Cabs[C](first s) # T implies (CjudCls = .l = CexeJC](seconds) or else
second(CjudC]s) = CexeJC](seconds».
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That is, the abstract semantics can be used as a compile-time check to ensure the
correctness of the execution semantics with respect to the full semantics.

4.3. Distributivity of the Abstract Semantics

An important property of an abstract semantics is distributioity, For sup­
semilattices A and B, a functionf: A ~ B is distributive iff for all a, bE A,f(a U b) =
(fa) U (fb). Distributivity is important in theory, because it ensures that the least
fixed point (that is, iterative [ASU86]) data flow analysis method gives the same
result as the "meet over all paths" data flow analysis method ([KaU77], [Nie83]).
For our work, it is important in practice, because it allows us to transform the
abstract semantics into an effective, iterative data flow analysis algorithm. Indeed,
we will transform the abstract semantics into the iterative data flow algorithm
described in Section 3. We begin with this easy-to-prove proposition:

Proposition 5. All expressions built with the operations in Fig. 6 are distributive in
their Store arguments.

The proof of distributivity for the abstract semantics with static variables hinges
upon a simple property about abstract stores:

Definition 1. For a, bE Storeabs, a and b are variable consistent if for all i EIdentifier,
«az) = inStatic(t) iff (b I) = inStatic(t» and «a I) = inDynalllic(t') iff (b 0 =
inDynalllic(t"».

That is, stores a and b are variable consistent if they have the same static variables
with the same security classifications and they have the same dynamic variables.

Proposition 6. For all expressions f built from operations in Fig. 9, for all ae
Storeabs, a is variable consistent with (fa).

Proposition 7. For all expressionsf:Store~Store built from operations in Fig. 9,
for all a, b E Store, if a and b are variable consistent, then (fa) U (fb) = f(a U b).

Proof. Similar to Proposition 5. One case is

• update if: (update ifa) U (update ifb) = (cases (al) of" ·end) U (cases (bl)
of·· ·end).

Due to Proposition 6, there are but two cases on the pair «a I), (b I) to consider:

l. isDynalllic(t), isDynalllic(t'): as in the proof of Proposition 5.
2. isStatic(t), isStatic(t): we get «fa!;;; to~ a 0T) U «(fb) !;;; to~ bOT), where

to = (a 0 = (b 0. There are four possible outcomes of the predicates (fa) !;;; to,
(fb) !;;; to:
• true, true: then aU b = «(fa) U (fb)!;;; to~a U bO T. Sincefis distributive,

we are finished.
• true, false: then T = «(fa) U (fb)!;;; to~allb 0T).
• other cases: like the one just seen. D

4.4. Effective Calculation of the Abstract Semantics

For an abstract store aoE Storeabs and aprogram C, we wish to calculate Cabs[qao
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effectively. This calculation is supposedly a matter of simple rewriting, but the fix
operator in Cabs[wbile E do C] = fix F, where F = ()J. condE[E] (fcamp- .. ) ( ... )),
presents the possibility of an infinite rewriting sequence.

Recall that, for a functional F:A~A, fixF= Ui;;,oFi 1-A , where Fi =
FoFo·· ·oF, F composed i times. If A has no infinitely ascending chains, there
exists some k ~ 0 such thatfix F = UO':;i.:;kFi 1- = Fk L Further, there exists a least
such k, and it is the first k ~ 0 such that Fk+1 1- = Fk L This fact is the heart of all
iterative data flow analysis algorithms.

But for F: (A ~ A) ~ (A ~ A), calculating (fix F)ao presents some difficulties,
which can be understood from these facts:

1. (fix F)ao = Ui;;.o(Fi1-ao).
2. The set {(F i 1-ao)Ii ~ O} forms a chain, and when A has no infinitely ascending

chains, there exists some k ~ 0 such that Fk1-ao = (fix F)ao.
3. But (Fj 1-ao) = (Fj+l1-ao), for somej ~ 0, does not guarantee that (Fj+l1- Go) =

(fix F)ao·

For example, for CexeJX:= 2; while X> 0 do X:= X -l]so = (fix F)so, the
calculations are

Foso = 1-, F;so = 1-, Fzso = 1-, }jso = [Xt-+O]so = (fix Fts.;

so we have no reliable method for checking convergence.
Fortunately, we call detect convergence of (fix F)ao for those functionals

F:(A~A)~(A~A)with the format

F= }J.}.a.J(ha) U (ga)

provided that A has no infinitely ascending chains and g, h: A~ A are distributive.
The definition of Cabs[while E do q based on Fig. 6 has this structure, where g =
kontext and h = C[C] 0 kontext, where kontext = (}.a'.}.i.iE S~ (E[E]a') U (a' I) ~

(a'/)). (The version in Fig. 9 can be similarly expressed.) Think of h as the "loop
body" and g as the" termination step" of the while-loop. Then it is clear that F
specifies an iterative analysis for which convergence is detectable.

Before we prove the above claims, we require two lemmas. First, for h: A ~ A,
let hO= idA' and N+I = hol/.

Lemma 1. For F:(A ~A)~(A~A), F = }J.}.a.J(haJ U (ga), for allj ~ 0, Fi+ 1 =
UO<;;i':;jgohi.

Corollary 2. fix F = Ui;;,ogohi.

Lemma 2. If h: A ~ A is distributive, then if there exists a k ~ 0 such that
UO':;i.:;k+1 (I/a) = UO':;i.:;k(hia), then for allm ~ k, UO':;i,,;;k(l/a) = UO";;i,,;;m(hia).

Proof Since the antecedent is equivalent to (lzk+I~) ~ UO~i,,;;.(lzia), we assume
the latter and show for allm ~ k, (hili a) ~ UO";;i";; (hi a), which is equivalent to the
succedent. The proof is by induction on j, where :11 = k +j. 0

Theorem 1. IfF = }J. La, (f(h a)) U (g a), where g, h: A ~ A are distributive and A is
a pointed, sup-semilattice with no infinitely ascending chains, then for all aEA, (fix
F)a = g(UO";;i,,;;k(lz' a)) where k is any natural number such that UO':;i,,;;k(hia) =
UO";;i':;k+I(lz' a).

Proof Since A has no infinitely ascending chains, there exists an 111 ~ 0 such that
(JixF)a = UO";;i,,;;mt:1 (Fi .Lc) = (pHI ~a). By Lemma 1,(Fm+l 1-a) = (UI";;i,,;;m$O
h')a = (UO";;i,,;;m(g(h' a)) = g(UO<;;io:;m (hia)), by distributivity of g. Next, we budd
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the chain {a,(a U (h a)), (a U (h a) U (h2 a)),' . o}; there exists some k ~ 0 such that
UO':;i.:;k (Il a) = UO':;i.:;k+1 (Il a), that is, (hhl a) ~ UO':;i.:;k(ll a). If «< 111, then Iby
Lemma 2, UO':;i.::m (hI a) = UO':;i.:;k (h' a). If 111 ~ k, then g(UO':;i':;l11 (hI a)) = F''" l..
a = Fk+ll.. a = (l1o':;i':;kgoh')a = UO':;i.:;k(g(h l a)) = g(UO':;i.:;k (h' a)). 0

Theorem 1 tells us that we effectively calculate (fix F)a as follows:

l. For k = O! 1, 0", calculate (ll+1 a) = h(ll a) and UO':;i~k+I(hia) = (hk+ 1a) u
(UO':;i.:;kh' a) until somej ~ 0 is found such that UO':;i':;j(h l a) = UO':;i':;j+1 (h' a).
Call this value ao.

2. Calculate (g ao).
This is the iterative data flow analysis algorithm found in [ASU86] and used in

Section 3: h represents the" loop body", and g represents the" termination step".
In [NiN92], it is shown that the value ofj is linear with respect to the length of the
program analysed.

4.5. Parameters

So far, we have defined, proved safe, and implemented abstract interpretations for
completed programs. We now study programs parametrized on unknowns. This
prepares us for the introduction of procedures and separately compiled modules.

We begin with the abstract semantics based on Fig. 6, that is, with dynamic
variables only. Say that the input abstract store used by a program maps some
identifier I to an unknown value, a. The unknown a is a "placeholder", as in
elementary algebra. Since the substitution and simplification laws of the semantics
are algebraic, we can proceed as described in the earlier sections to calculate the
output security information for the program, which will be a poststore that maps
identifiers to symbolic expressions (polynomials [Gra79]) containing a. But we must
ensure that we can still effectively detect convergence as described by Theorem l.
Our plan is to show that the polynomial Cabs[CjaO' where aoEStoreabs contains an
unknown a, can always be simplified into the canonicalform: [il-+eileldentifier where
e, has the form Vi or the form Vi U a, where ViE Sec. Hereafter, we abbreviate the
canonical form to [il-+V;[ U a]]ieldentifier' (The italicised brackets denote optional
information.) An example poststore polynomial is [A 1-+ classified U a][B 1-+ top­
secret] [CI-+ l.. U a].

Proposition 8. If the polynomial ae Store has canonical form, that is, [il-+v;[ U
a]]ieldentifier> then for all Ce Command, the polynomial CabsIqa can be rewritten
into canonical form.

Proof We first note, for all E E Expression, that Eabs[E]a can be rewritten into the
form v;[ U a], when a has canonical form. The proof is by induction on the
structure of E. The main result is proved by induction on the structure of
Command. The interesting case is

• whileE do C: From Theorem I, we have, for some k ~ 0, Cabs[while E do C]a =
kontext(UO':;i.:;k ei), where eo = a and ei+1 = C[q(kontext ei), where kontext is
defined in Section 4.4. By the induction hypothesis on C and the result for
Eab,[E]a, we have that all ei have form [il-+ v;[ U a]]ieldentifiero Hence so does
UO':;i.:;kei·

Can we detect convergence, i.e., can we effectively determine k? If we
cannot, there must be a sequence of nonconverging Store-typed polynomials,
implying there is a sequence of nonconverging polynomials xO,xI,' .. ,Xi" o.
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representing values in Sec (since the domain Identifier is finite). Each Xj has
form Vj{ U a}, for vjESec. Due to Theorem I, Xj+1 = .Ug"j"j+l~e/x) =
«UO,.j,.je/) U ej+l)x = (UO,.j,./ejx)) U (ej+1 x). Hence, If a IS III x.; It must
also appear in X m, for all m ~ j. That is, the sequence of polynomials forms a
"chain" in an appropriate partial ordering. But such a chain must converge,
since Sec has the finite chain property. 0

Proposition 8 complements and supersedes the results of the previous section. Not
only do we know that convergence - even in the presence ofan unknown, a - must
arise, we also know that an algebraic-style rewriting into canonical form detects it.

We now prove a similar result for the abstract semantics with static variables,
i.e., for Fig. 9. The static variables introduce" inequations" on the poststore of the
form e !;; t, where t ESec and e is a symbolic expression. Let Vbe the static variables
in the program. We will show that poststore polynomials have the canonical form

{vx( U «j s: tx}xEv-+([x/--;>-inStatic(tx)]xEv
[i/--;>-inDynamic(v;{ U a])];Eldentifier-V) DT

where V' £: Vand Vj' Vx' txESec. Call the above form a guardedform. Likewise, call

[Xf-+ inStatic(tX)]XEV [h+ inDynamic(v;{ U a])];Eldentifier-V

an unguardedform. Here is an example of a poststore polynomial in guarded form
for a program with static variables X of class topsecret, Y of class secret, and a
dynamic variable Z:

{secret U a!;; topsecret, unclassified s; secret} -+ ([X /--;>- inStatic(topsecret)]
[Y f-+ inStatic(secret)] [Z f-+ inDynamic(secret))) DT

The guarded form tells us, if the two inequations hold true, the output poststore will
have a topsecret value for X and secret values for Y and Z. The algorithm in Section
3 constructs inequations like the two shown here.

Lemma 3. If expressions PI and P2 have guarded form, that is, Pj = Cj -+ aj DT, i E
1,2, then PI UP2 = CI U C2-+ a l U a2D T.

Now we show that the analysis of a command with an input store in unguarded
form must produce an output poststore in guarded form:

Theorem 2. If polynomial ae Store.g, has unguarded form, then Cabs[C]a can be
rewritten into guarded form, for all C ECommand.

Proof Appendix 1. 0

Theorem 2 generalises to any finite number of unknown values.
In Section 3.1, we saw that the result of analysing a procedure was written as a

summary data structure (cf. Fig. 2). A poststore polynomial in guarded form
encodes such a data structure. For poststore polynomial:

{vx !;; tX}XEV-+ [Xf-+ inStatic(tx)]xEvri~ inDynamic(vj)]jEldentifier_vD T

the corresponding summary data structure is
VI ~ t l (for Xj)

for i1, " ' , imEldentifier- V
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4.6. Procedures

M. Mizuno and D. Schmidt

A program that uses a store with k unknown values can be thought of as a
procedure parametrised on k parameters. In this section, we formalise this idea and
derive the analysis of a parametrised procedure that invokes other external
procedures.

The syntax of procedures is

P ::= proc F(in D(; out D2) = D*; C
D ::= I: static T II: dynamic
T::=Sec
C::= ... Icall F(in E, out I)

That is, a procedure has an input parameter, an output parameter and a list of local
declarations. (We limit the parameters to two for simplicity. We also assume that
the input and output formal parameters have distinct names.) For the moment, we
will not allow a procedure to reference globally declared variables. Hence, the
procedure is merely a function of its input parameter; the output from a procedure
is the value bound to its output parameter. Procedures are declared globally and
can be referenced by other procedures.

Figure 10gives the core semantics of procedures, and Fig. 11 gives the standard,
abstract and execution interpretations. The semantics of procedure declaration
goes as follows: a procedure is a mapping from its input parameter, an expressible

P: Procedure -+ Expressible -+ Proc-result
P[proc F(in Dt;out D2) = D*;C] = J,(1.EExpressible.

((retllrn V[D 2D0 qe])
comp ((update V[D(l (const (1.))0 D[D*] 0 D[D2] 0 D[D t])) empty

(Note: "0" is ordinary function composition.)
D: Declaration -+ Store -+ Store
D[I: static T] = allocate-static I T[T]
D[I: dynamic] = allocate-dynamic I 1.. (Note: 1.. E Sec is the minimum security

classification.)
C[call F(in E, out I)] = callfE[E] I

where f: Expressible -+ Proc-result is the denotation of F
I[call F(in E, out I)] = {I}
T:Type-+Sec
T[T] = T
V: Declaration -+ Identifier
V[I :static T] = I
V[I dynamic] = I
where

empty: Store
const ;Expressible -+ Store -+ Expressible
allocate-static: Identifier -+ Sec -+ Store -+ Store
allocate-dynamic: Identifier -+ Sec -+ Store -+ Store
call: (Expressible -+ Proc-resulit -+ (Store -+ Expressible) -+ Identifier-s- Store

-+ Poststore
return: Identifier -+ Poststore -+ Proc-result

are defined in the interpretations.
Fig. 10. Core semantics of procedures
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Full interpretation:
Proc-result = ExpressibleI
empty = [] (that is, a mapping over an empty set of identifiers)
const v = J.a.v
allocate-static i v = J.a. [if-* inStatic(v, ?)]a
allocate-dynamic iv = J.a. [it-+ inDynamic(v, ?)]a

where? is some initial value
callJgi = La.update i (fog) a

Note: (fog)a = 1.. implies update i (fog) a = .L
(fog)a = T implies update i (fog) a = T

return i = J.p .Iet a = p in access i a

Execution interpretation:
Proc-result = Expressible i

all operations coded as above, except for
allocate-static iv = J.al.. [if-*?]a
allocate-dynamic i v = J.a. [i f-* ?]a

Abstract interpretation:
Proc-result = ExpressibleI

all operations coded as above, except for
allocate-static i v = J.a. [if-* inStatic(v)]a
allocate-dynamic iu = La. [it-+inDynamic(v)]a
(Note: "let a = " is fully strict for 1.. and T arguments.)

Fig. 11. Interpretation of procedures
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value, to its result. When called, the procedure starts with a fresh (empty) store,
which immediately gets cells for the input parameter Db output parameter D2, and
local declarations D*. The update operation binds actual parameter a to D,; then
body C executes. On termination, the value in cell D 2 is returned as the result.

The semantics of procedure call matches the above: the call operation uses the
store to calculate the value ofactual parameter E and invokes the denotation of the
procedure with the actual parameter. The result returned by the called procedure
is bound to the output variable I.

One fundamental difficulty arises: we cannot effectively check the convergence
of a while-loop in the presence of a call to an unknown external procedure. For
example, for Cabs[~'hile true do call F(in X, out X)]ao, say that variable X is bound
to Vo in aoand say that the denotation of external procedure F is represented by the
unknown,f Then, the sequence ofpolynomials that denote X's value in the loop are

vo
Vo U (fvo)
Vo U (fvo) U (f(vo U (fvo))) = Vo U (fvo) U (f(fvo)), sinceJis distributive
Vo U (fvo) U (f(fvo)) U (f(f(fvo)))

and the presence of polynomials does not stabilise.
Of course, we can use some artificially high upper bound of iteration (say, the

number of identifiers in the procedure times the height of the semilattice Sec) and
quit generating expressions at that point, since the underlying semantic values must
converge by then, but this is impractical. We solve the problem with an alternative
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abstract semantics for procedure call that approximates the semantics in Figs 10
and II.

First, let each call of a procedure F be uniquely indexed. We write F, for a call.
For each occurrence of an Fj, we allocate a (dynamic) "dummy variable" /;. ill in
the store and make the semantics of procedure call:

C[eall F,{in E, out I)] = (call J (access k ill) I) comp (update kill E[E])

That is, the value of the actual parameter E is copied into the dummy variable/;. ill,
whose value is immediately given to the called procedure!

Call the semantics with the dummy variables C+, and call a program C with
annotated procedure calls C+. It is easy to prove:

Proposition 9. For all Ce Command, ae Store, qC]a = T = C+[C+ja+ or else
qC]a = (C+[C+]a+ hdentifier), where a" is a with cells for the dummy identifiers.

(Recall thatJlv' represents functionJ: D -+ E restricted to domain D' £ D.) Hereon,
let C;bs represent the abstract interpretation of C with annotated procedure calls
and dummy variables.

We now define an abstract interpretation that uses a family of unknowns (not
dummy variables !),/;.Jl, one for each procedure call Fj in a program. Let C~bs be the
abstract semantics C;bs but with the following semantics of annotated procedure
call:

C~bs[eall F,{in E, out In = (update I (canst kJl» comp (update kill (E[E] U
(access /;. ill»)

The intuition is, rather than reason about external procedure F j, we use the
unknown jj.rz to stand for its output. The semantics of procedure call now states:
variable /;. ill remembers the value of actual parameter E plus the values of all the
actual parameters from previous calls to F; (At link-time, this information will be
used to calculate an output from Fj.) Next, the unknownjj.u is bound to the output
variable I. (At link-time.jj.u will be instantiated to a value representing the outputs
from all the calls to F j.)This strategy matches the one used in Section 3; a call F,{in
A, out B) causes the algorithm to generate variables F j. A and Fj. B, which hold the
security classifications of the input and output parameters to the call of F j,
respectively. Of course, Fj.A is just j], ill, and Fj.B is just ji.«,

The unknownjj.u is introduced so that we can manipulate expressions with just
first order unknowns: sequences of the form vo, Vo U j(vo), ... , noted earlier, never
arise, and we can effectively detect convergence. Say that ae Store is an expression
with no unknowns, so it denotes a unique value in Store. Then, C;bslC]a denotes a
unique value in Poststore. In contrast, C~bs[qais a poststore polynomial, containing
occurrences ofthe/;.Jl unknowns. We will define a mapping recover, which maps a
store polynomial to a unique store value, and we will prove the following theorem:

Theorem 3. For all Ce Command, ae Store, C;bs[C]a ~ recover(C~bs[C]a).

The job of recover is to replace the /;.Jl unknowns by their" true" values. The
definition is

recover a' = [f«calc a') t 1)//;.Jl];eJa'.

where

calc a' = jix().(rj)jeJ' iaccessf'[in [(frj)/kJlJieJa')jeJ)

(Note: ftExpressible-v Proc-result is the denotation of Fj.) This deserves ex-
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planation. Our intuitions tell us that recover should replace each/;.p unknown by
f(access/;. ill a'), since f denotes F;. and /;. ill holds the argument for f. But (access
/;. illa'» is itselfa polynomial and may well contain occurrences ofvery/;.Jl that we
are trying to replace! The situation must be resolved by a fixed point calculation, so
calca' computes the values of the /;. ins.

Theorem 3 follows from the proofof the following claim: for all CeCommand,

C;bJC! recstore-+Poststore C~bs[CJ

where logical relation rec is defined to be

trecsect' iff t ~ 1'.
a reCStore a' iff a ~ (recover a')
p recPoststorep' iff p recStorep'
freco -+0/' iff for all ae D], a' e D1, a reco a' implies (fa)reco (f'a')

I I 2

The proof of Theorem 3 is given in full in Appendix 2.
Since the/;.Jl unknowns are no different from the lXunknowns used to represent

input parameters, we can perform an effective, convergent analysis of a para­
metrised procedure that calls external procedures and can obtain the usual output
poststore polynomial. The values ofthe/;.Jl unknowns are resolved when the link­
time algorithm is applied.

4.7 Linking Analysed Procedures

We now consider how to combine the analyses of the independently analysed
procedures into an analysis of a complete system.

When we analyse a procedure independently, the analyses produces a poly­
nomial ofform (}.lXE Expressible. return i a'), where a' has the guarded form: (CO'-+
s;0T). (See Theorem 2 and its postscript: CO' encodes the inequations for static
variables, and s; encodes the value equations.) Both CO' and s; may contain
occurrences of unknowns /;.JlS and lx.These unknowns are instantiated when the
procedure is linked to the procedures that it calls and calls it, respectively.

Here is an example. Say that we link an analysed procedure G to an external
procedure F. Let F: Expressible -+ Proc-result represent F's denotation, let a' = (CO'
-+ s;0T), and let G's polynomial have form: (J.lx. return Z a'). We link G to F by
calculating ().lx.return Z recover a'), where occurrences of f in the definition of
recover are replaced by F. The result is a polynomial having as its only unknown,
lx.

Consider the form of recovera' = [F(calc a' {. l)//;. plEIa'. First, the information
in (calca') can be expressed as a set of equations:

{r, = (access/;. ill a')hEI U {/;.p = F(Tj)};EI

The equations are solved in the usual way; the solution must converge, even in
the presence of the unknown, lX, by Theorem 1. This gives us

{r, = lljhI U {/;.p = ViljEI

for some values lljand Vj' So, recover a' = [v;//;.p]jEla'. Since a' has guarded form,
so does (recover a') = ([v;//;.plE1CO'-+ [v;//;.P]jE/S; 0T). Thus, the linkage of G to
the called procedure F is

}.lX.retuTll Z ([V;//;.P]iE1CO'-+ «[Vj//;;P]iE/S;) Z) 0T)
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which makes clear that the constraints [vi//;./llel Ca must be validated whenever G
is called.

But what of the constraints for the called procedure F? The above calculation
of the values for the r/s and/;.p's glossed over their presence. We know that Fhas
the form

F = (}.a'. return Y (C;' -+s;' 0T».

Stated more precisely, the equation for the r/s and/;.p's have the form

{r, = (Co:-+ (s'J;. in) 0T)hel U {};.jl = (}.a'. return Y (C;' -+s;' 0T»'r;};el

that is, for the};.p's: {};.jl = (C~,-+(S;iY) 0T)hel' Although a convergent solution
for the equation set exists, manipulation of the constraints sets is tedious. There is
a simpler approach; the above equation set has the same solutions as

let eqns = jix({r; = (s~};. in)hel U {};.jl = (s; Y)};el)
in {CJ U {C~);el-+eqns 0 T I

The reason is, if some C(1. or C~ is false at some stage k of the least fixed point
calculation, then since the constraints have form v;[ U a] !;; t, then the least fixed
point solution will make the constraints false, too. The converse holds due to the
finite chain property for Sec. (Note that all operations - including substitution and
tupling - are strict on T.)

The linking method described in Section 3 uses this latter method: the equations
are solved first; the constraints are checked second. One difference is that the
algorithm in Section 3joints together all calls to a procedure F, giving a safe but less
precise analysis than the one described here.

4.8. Recursive Procedures

A procedure that invokes itself can be analysed just like any other: the recursion is
resolved at link-time, when the analysed procedure is linked to itself. A family of
procedures that mutually invoke one another are handled similarly, where we
require that the family of procedures be linked as a group.

Here is an example; say that procedure F invokes itself. Let a~ represent the
analysed body of F, having the form (C(1.-+s~O T). If we use the equational
representation of F's linked definition, we have

f = }.a.j.p,
where: f. jl = access I a~

{r; = access/;. ill aJ;el
{};.p = j(r;)hel

Notice thatfis both the name of the denotation of F and the name of the recursive
(external) procedure.

The recursive reference to f can be resolved with the usual least fixed point
calculation: Ui~OF;(}.a . .L), where F = (}f. }.a.j.p), and convergence is guaranteed
by Theorem 3, but this is impractical. In Appendix 3, we derive a safe, but less
precise, first-order analysis - the analysis in Section 3.
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P: Procedure~ Expressible~ Store~ Proc-result
p[proe F(in O\;out 02) = O*;C] = Iae Expressible.Ls e Store.

«return' V[Ol] (size-of s) 0 qeD
comp «update ViOl] (collstrt.»oD[O*] oD[D2] oD[D(])s

where (size-of s) E Store-size denotes the number of cells in store s
C[eall F(in E, out I)] = call' fE[E] I
wheref:Expressible~Store~Proc-result is the denotation ofF

I[call FOn E, out I)] = {I} U (global-oariables-used-by F)
where:
call': (Expressible~ Store~ Proc-resulty --+(Store~ Expressible) -+ Identifier
~ Store~ Store

return' : Identifier~ Store-size~ (store ~ Poststore) -+ Proc-result

Full interpretation:
Proc-result = (Expressible x Storei],
call' f g i = }.s .Iet (v, s') = fig s)s in update i (canst v) s'
return' i m = }.p.Iet s = p in (access is, pop-to 111 s)

where pop-to: Store-size~ Store --+Store
(pop-to m s) outputs store s truncated to 111 cells

Execution interpretation:
Proc-result = (Expressible x Store).L
operations as above

Abstract interpretation:
Proc-result = (Expressible x Store)I
operations as above

Fig. 12. Global variables and procedure calls

4.9. Global Variables
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So far, we have assumed that all variables used by procedures are local. Hence,
procedures arc "pure functions" from their input parameters to their output
parameters; implicit interprocedural flow, described in Section 3, had no effect.

.This changes when we add global variables to the language. Global variables
exist between invocations of procedures; they are crucial to module- and object­
based systems; and they model input-output files. We limit the complications
caused by global variables by requiring that they be declared with static security
classes. This permits independent analysis of procedures that share global variables
and allows the analysis to extend to concurrent systems.

We assume that global variables are predeclared in the store. The semantics of
procedure call changes in that a called procedure receives as its input an actual
parameter and the store (containing the global variables), and the procedure
produces as its output the value of its output parameter and the updated store
(containing the global variables). The new core semantics and its interpretations are
shown in Fig. 12. When a procedure is called, it augments the store it is given with
cells for its local declarations. The cells for local declarations are" popped" from
the store on procedure exit. (Inequations for static variables -local or global- are
not "popped ".) The congruences of the abstract and execution semantics to the full
semantics are straightforward to prove.
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The key clause in Fig. 12 is the one for I[callF(in E, out Ij]: all the global
variables used by the called procedure F (and the procedures that F calls) must be
known to compute the correct interprocedural implicit flows. But this definition is
impractical for separate analysis of individual procedures. An obvious imple­
mentational solution is: when analysing a procedure P, if P calls Q, generate an
equation to remember the implicit flow value that affects the global variables used
by Q. The equation has form: Q.implicit = .... When procedure Q is linked to P,
the value Q. implicit isjoined to the inequations for each of the global variables used
by Q. Since all global variables must have static security classes, it is straightforward
to show that the implementation calculates the same inequations as does the
abstract interpretation. The algorithm in Section 3 uses the name implicit to denote
the places in Q's inequations where the value of Q . implicit should be inserted, and
the link-time algorithm sets implicit = Q. implicit.

5. Conclusion

The previous development is complete for a sequential programming language, but
it does not consider concurrency and system failures. Informal reasoning [Miz87]
suggests that the compile-time and link-time algorithms can also verify concurrent
systems, but proofs have not been completed. System failures are troublesome, and
further work is needed to adapt the algorithms.
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Appendix 1. Proof of Theorem 2

First, for all Ee Expression, ifahas unguarded Conn, then E[E]ahas form vd U «I,
the proof is an easy induction. Now we consider the cases for C:

• 1:= E: update i E[E]a = cases (a z) of isStatic(t) 4 (E[E]a ~ t 4 aD T)
isDynamic(t) ~ [i>-+ inDynamic(E[E]a)] a end.

The polynomial must simplify to either of the following:

l. (E[E]a ~ t~ aDT) = (v ( U aJ ~ t 4 sOT), which is a guarded form.
2. [il-+inDynamic(v{ U aj)]s, which is a guarded form (C = 0, that is, true).

• C1;CZ: (c[C2I compC[C1] a) = let a' = qC.]a in qCz]a'. By the inductive
hypothesis, qC.]a has guarded form: (C~ a' 0T). Since" let" is " T -strict ", the
denotation is (C~ qCz]a' 0T). By the inductive hypothesis, qCz]a' has guarded
form as well, so we have (C 4(C' ~a" nT) 0T) = (C U C' ~a" 0T), where C U
C' represents the merging ofthe two constraints sets into one, that is, the merging
of el ~ to with ez ~ to is: el U ez ~ to.

• if E then C1 else C2 : Follows from the definition of cond, Lemma 3 and the
inductive hypothesis.

• while E do C: From Theorem I, we have C[while Edo C]« = Va .newcontext IIC]
(E[E]a)a)(llo~i~kei)' where eo = a, and ei+1 = (),a.let a' = newcontext IIC]
(E[E]a) a in qqa')ej. All ej rewrite to guarded form (cf. the previous two cases),
hence so does llo~j~kej, by Lemma 3.
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As in Proposition 8, we must verify that convergence is detectable. We must find
a k, for reasons similar to those in the proof of Proposition 8: if there is not
convergence, then there is a sequence of nonconverging expressions C, or Sj in the
sequence of guarded poststore expressions. Hence, there exists a nonconverging
sequence Xi of Sec expressions. By Theorem I, the sequence Xi is a "chain" in the
sense explained in the proof of Proposition 8. The result follows. 0

Appendix 2. Proof of Theorem 3

The relation p recPoststoreP' boils down to p ~ (recover p'), which we use hereon.
Without loss ofgenerality, when assuming a recs/orea', also assume that a and a' are
variable consistent (cf. Definition I). In the following, we use [.. 'el" ·]e2 as an
abbreviation for [[(calcel) -J, i/Ji.jl]iEle2' The proof is an induction on C, proving
C;bs[C]recpos/s/ore C~bJC[:

• 1;= E: C;bs[I;= E]« = update I E[E]a, and recover (C~bJI;= E]a') = (recover a")
= [.. ·a"·· . ]a", where a" = update I E[E] a'.

Now, (calc a") = jix(J.(rj)iE[' (accessJi. ill ([fri)/Ji.IlJiEl(update I E[E] a'»)iEl) =
jix(J..(ri)iEl.(access Ji.ill ([(fr;)fJi.Il]iEla'»iEl), since 1=1Ji.ill for any iEI,
= (calc a').

So, we have recover(C~bs[1:= E]a') = [ ...a': .. ]a" = (update I E[E]
[... a' ... ]a') = (update I E[E] (recover a'».

Since a recSrorea', we have a ~ recover a', and the monotonicity ofE[E] gives the
result.

• C l ; C2 : the result is immediate from the definition of camp.

• call Fk(in E, out I): C;bs[call Fk(in E, out I)]a = callf(access fk. in I) a. = update I
(fo(accessfk.ill»a) = update I (fo E[E]) al> because noJi.in appear in E, where aJ

= update Jk. in E[E] a. And, recover(C~bs[can Fk(in E, out I)]a') = [ .. 'ai' .. Jat,
where ai = update I (constfk.jl) iupdate fi .in (E[E] U (accessfk.ill») a'.

Clearly, for allj =I k, (calc alHj = (calc 0') V; and (calcalHk = (calc (update
fk.in (E[E] U (accessfk.in»a'Hk, since I =lfk.in, for all ie I. This equals (E[E]
[ ... a'> .. ]a' U ([ ...a': .. ]a'fk' in), by unfolding the definition of calc and indexing
by k. So, (calc al -J,k) = E[E](recover a') U iaccess f'[.in (recover a'».

From the above, we have that: recover(C~bs[callFk(in E, out I)]a') = [... al' .. ]al
= (update I (const (f(E[E](recover a') U (access Jk. in (recover a'»») (update fk. ill

(E[E] U (access fk' in»a"), where a" = [... at' .. ]a', that is

a" = [...a'· .. JiEl-lk} [f(E[E](recover 0') U (access fk. in (recover o'»)/fk.jl]a'

Clearly, (recover a') ~ a". Hence, a ~ a", by arecslOrea'. Hence, al ~ (update
fk.in (E[E] U (access fk.in» a". (Call this value am.) Since (f(access fk.in al»
= (f(E[E)a» ~ (f(E[ED(recover a') U (access fk.in (recover a'»», we have that
(update I (f0 iaccessfi .in»al) ~ (update I (const (f(E[E](recover a') U (accessfk. in
(recover 0'»»), which gives the result.

• if E then C, else C2 : C;bs[if E then C, else C2]a = let ao = (newcontext (I[C I) U
I[C2] (E[E]a) a) in qCMo U QC2]ao. C~bs is defined similarly. We can assume
a recSlOrea'. The result follows from a proof that newcontext I[Cl] U I[C2D(E[EJa)'
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a recpoststore newcontext I[C I] U I[C2] (E[E]a') a', and the proof is by induction on
IKCI] U I[C2] . There are two cases:

1. { }: immediate.
2. {I}::S: There are two subcases:

(a) (a, I) is inStatic(to): Then, (a' I) is inStatic(to), by variable consistency. Let
a. = (E[E]a' ~ to~nelVcontext S (E[E]a') a' H); this means that recover(cases
(a' I) of ... ) = recover(al) = E[E] [...al' ..Jd ~ to~ [...al' .. ](Ilell'context S
(E[E]a') 0T.

With a fixed point induction, we can show calca' ~ calca., since the proof
boils down to showing, for an arbitraryii.Jl, that a' ~ a I- Thus, a ~ [... a'> .. la'
~ [... a• . . .]a'. This information plays a key role in this analysis of cases:
(i) E[E]a ~ tois false: then E[E] [.. 'al' .. la' ~ tois also false, and we have T ~

T.
(ii) E[E]a ~ to is true: if E[E] [... a• . . . ]a' ~ to is false, then inewcontext S
(E[E]a)a) ~ T. If E[E] [ a• . . .la' ~ to is true, then we must verify that
(newcontext S (E[E]a) a) ~ [ al ... ] inewcontext S (E[E]a') a'). By hypothesis
on S, we have newcontext S (E[E]a) a ~ recooerinewcontext S (E[E]a') a')
= [.. ·a'·· '](nelVcontext S (E[E]a')a'). Since calc a' ~ calc as, we have that
the latter is ~ [... al .•• ] (newcontext S (E[E]a') a').
(b) (a I) is inDynamic(to): Then, (a' I} is uilrynamici: .), by variable consistency. If
we show [if..... inDynalllic(E[E]a U to)]a recStore[i ....... inDynamic(E[E]a' U tI)]a',
then by the inductive hypothesis on S, we have the result.

Let a. = [i....... inDynalllic(E[E]a' U t.)]a'. Then, recover(a.) = [i .......
inDYllalllic(E[E][' .. at' .. ]a' U [ •.• at' .. ]t\)][· .. al •.. ]a'. It is straightforward
to prove calc atz calca•. So, we need only show (al)=to~[···a.···]tt

=[···a\···](a'l). We have that (al)~(recovera')i=(["'a""]a')i~

([.. ·a.·· .]a')i, since calca' ~ calca t-

• while E do C: C;bs[while E do C] = Ui;;.Ogi, C~bs[whileE do q = Ui;;.ogi. Using
a development like that in the previous case, we can show, for all i ~ 0, that
gireCStore_Storegj. Since the relation rec is inclusive, the result follows. 0

Appendix 3. Derivation of Recursive Procedure Analysis

The intuition in the derivation that follows is that the recursive calls and returns are
converted into .. go-tos". First, we compress all recursive calls into one call by
renaming all occurrences of the ii. Il unknowns to f' .p: Let

fl = }.a.f.Jl
wheref.Jl = access I [I' .Jl/Ji.Jl]iela~
{r, = accessii. in [I' ·Jl/ii·ll]iela~heI
I' .Jl = fl:UieITj)

ClearIy,J~J1. Next, we weakenJl by replacing all occurrences ofa by a U (UieITj)
andfl:UieITi) by fl:a U (UieITi»' We obtain

fi = }.a .f.Il
wheref.Jl = access I [I' .Jl/ii.Jl]iela~U(U~/r,)
{Tj = access/;. ill [I' .Jl/f'i·Jl]iela~U(U~/T,)hel

I' .Jl = fl:UielTi)
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We haveJi r;;;.f2' Next, we weaken the callj{Uidr;), giving

f3 = I.rx.f./1
wheref·/1 = access I if' ·/1//;./1];ela~U(U~f1",)
{r, = accessf.. ill (f' ·fL/kJI]iela~U (U 1")};el
/' .JI = f3(rx U(Uiel'i» ~I ,

We havefr;;;.f2 r;;;.J3. Once we show thatJ3(rx) = fJCrx U (Uiel'i»' we note that/'.fL
=jj(rx) = J.». and we obtain the first-order version ofjj:

f3 = Xa.]: /1
wheref·Jl = access I if' .fL/kfL];ela~U(U"f1"i)
{r, = accessf..ln (f'./1//;./11ela~u(U~/1"J};el
/,·fL = f'.u

This is the form ofanalysis of recursive procedures used in Section 3. We now show
why f3(rx) = jj(rx U (Uiel'i»' First,jj(rx U (Uiel'i» = f'/1 where

f.u = access I (f' .fLI/;·fL];ela~U{U",")U(U" ,:)r } 1€/' lE./ ,

{~i = accesskill (f' .fLlk/1]iel?a U(U~/'J U(U~/,;)};el
f .u = J3(a U(Uiel'i) U Uiel'i)

Regardless of the value of lliel,i, we have rx U (lliel';) r;;;. rx U (Ui~l'i) U (Uielti).
Since the r/s are

{r, = access/;. ill (f3(a U (Uiel'i»/k/1]iela~ U(U~/1"J}iel

it must be, for all iEI, that 'i r;;;. ,i. Hence, Uiel'i r;;;. Uiel,i, implying that « u
(lliel'i) U Uidri = a U Uiel'i· Hence,h(a U (Uiel'i» =J.». where

f'.u = access I (f' .fL/k/1]iela~U(Uiel,i)
{'I = access/;. ill (f' .fL//;·fL]iela~U (UiejTi)};el
/'./1 = J3(a U Uiel,i)

which is justJ3(a).
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