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Abstract 

This paper presents a study using an auscultation jacket with embedded electronic stethoscopes, and a software classification 
system capable of differentiating between normal and certain auscultatory abnormalities.  The aim of the study is to demonstrate 
the potential of such a system for semi-automated diagnosis for underserved locations, for instance in rural areas or in developing 
countries where patients far outnumber the available medical personnel.  Using an “auscultation jacket”, synchronous data was 
recorded at multiple chest locations on 31 healthy volunteers and 21 patients with heart pathologies.  Electrocardiograms (ECGs) 
were also recorded simultaneously with phonocardiographic data.  Features related to heart pathologies were extracted from the 
signals and used as input to a feed-forward artificial neural network.  The system is able to classify between normal and certain 
abnormal heart sounds with a sensitivity of 84% and a specificity of 86%.  Though the number of training and testing samples 
presented are limited, the system performed well in differentiating between normal and abnormal heart sounds in the given 
database of available recordings.  The results of this study demonstrate the potential of such a system to be used as a fast and 
cost-effective screening tool for heart pathologies.  
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Introduction  
 
According to the World Health Organization estimates of 
2003, cardiovascular disease (CVD) accounts for 
approximately 16.7 million deaths globally, which amounts 
to over 29% of all deaths globally1. The Medical Research 
Council of South Africa lists cardiovascular disease as 
second only to AIDS as the cause of death in South Africa, 
accounting for 16.6% of all deaths2.  In a report produced 
by Columbia University on the impact of cardiovascular 
disease in developing countries, the mortality rate in South 
Africa due to cardiovascular disease is listed as 199 per 
100 000 people with a total mortality rate of 481 per 
100 000 people3.  Although no accurate figures for valve 
diseases are available for South Africa, the prevalence is 
believed to be higher than in the developed world4.  

The impact of the burden of cardiovascular disease is 
thus obvious. Less obvious, is the limited ability of regular 
healthcare   personnel   to   detect   cardiovascular   disease,  
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especially in the developing world and in rural African 
communities. In most cases, clinicians will have to rely on 
the mechanical stethoscope for an initial diagnosis, due to 
the lack of specialized technologies and skills, and available 
time for one clinician to examine so many patients. 
However, cardiac auscultation is a difficult clinical skill to 
master, and human hearing has limitations with respect to 
cardiac auscultation5. Most medical practitioners do not feel 
confident that they will be able to identify abnormal heart 
sounds, and this places the patient and the medical 
practitioners at risk5,6.  The reliance on new cardiac imaging 
technologies such as echocardiography, computed 
tomography and magnetic resonance myocardial imaging 
may have placed this skill under further threat6.  
Additionally, sophisticated imaging modalities are not 
always accessible to patients, particularly in the developing 
world, and the need to analyze the diagnostic information 
contained in heart sounds remain a primary tool for initial 
diagnosis.  

Normal heart sounds are the sounds generated when 
heart  valves  close. Abnormal  heart  sounds  are  generated 
as the blood flows though an abnormally small valve, or 
blood  flowing  through  a  valve that is not closing 
properly. Depending on the location of the abnormal heart 
sound, as well as  the  pitch, the variations in amplitude, 
and the duration of the sound, an experienced practitioner 
can determine which valves are affected. Many heart 
sounds that may sound abnormal to the human ear, are 
often  physiologically  normal,  and  hence  will  not require  
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Figure 1. Normal heart cycle with S1 and S2 indicated. 
 
 

 
 

Figure 2. Abnormal heart cycle (mitral regurgitation) with S1, S2 
and S3 indicated. 

 
 

 
 

Figure 3. Systole and diastole of normal heart sound. 
 
 
specialist investigation or intervention. Hence good 
auscultation and interpretation of heart sounds can 
potentially limit unnecessary specialist referrals.                   

Currently, electronic stethoscopes only record in a 
single position at a time, and cannot record all the heart 
sounds at the different positions on the chest wall 
simultaneously. These sounds are also typically not 
synchronized with an electrocardiogram (ECG) although 
algorithms have been proposed that segment 
phonocardiograms without the use of an ECG7.  In this 
study, an “auscultation jacket” and a heart sound 
classification system are presented, which are aimed 
specifically to improve healthcare delivery in rural and 
medically underserved communities. The auscultation 
jacket records heart sounds at multiple locations on the 
chest simultaneously, and also synchronizes these 
recordings with an ECG.  After data processing, the system 
can aid in classifying the heart sounds as “normal” or 
“abnormal”.  

The overall aim of this work was to demonstrate the 
potential of the proposed system to facilitate screening of 
patients for heart pathologies, especially in the developing 
world. It is envisaged that the system can eventually be 
used by a lesser skilled healthcare worker to record data 
that can be sent to a doctor via a telemedicine connection 
for review. 
 
 

Theoretical background 
 
Heart sounds  

In the heart, a complete cycle for pumping blood 
consists of two stages, namely systole and diastole. Systole 
is the contraction of heart chambers, driving blood out of 
the chambers. Diastole is the period of time when the heart 
fills with blood after systole (contraction). Ventricular 
diastole is the period during which the ventricles are 
relaxing, while atrial diastole is the period during which the 
atria are relaxing. All four chambers of the heart undergo 
systole and diastole in a timed fashion so that blood is 
propelled forward through the cardiovascular system. 

During a complete cycle, four general heart sounds, 
known as S1, S2, S3 and S4 are formed.  S1 and S2 are the 
heart sounds that one normally associates with the beating 
heart (“lubb-dupp”). According to Rangayyan8, S1 is 
produced by four different components that range from the 
closure of the mitral and tricuspid valves to the deceleration 
of the pumped blood and turbulence between the blood and 
the aorta.  S2 is produced by the closure of the aortic and 
pulmonary valves. The third heart sound (S3) can also 
sometimes be heard and is due to the sudden termination of 
the ventricular rapid-filling phase. The fourth heart sound 
(S4) occurs at the same time as (and is due to) atrial systole. 
S4 is usually a low-pitched sound and best heard at the apex 
of the heart.  The period from the onset of S1 to the onset of 
S2 is associated with systole, and the period from the onset 
of S2 until the start of the next cycle (S1) is associated with 
diastole. One normal heart sound cycle is shown in Figure 
1, with S1 and S2 indicated, and one abnormal heart cycle of 
a patient that suffers from mitral regurgitation, is shown in 
Figure 2. The relationship between the two main heart 
sounds (S1 and S2) and systole and diastole, is indicated in 
Figure 3.   
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Table 1. Patient diagnoses. 
 

Patient Diagnosis 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

AS; MS; AR; MR; SBE on AV 
MS; MR; MMVD 
MR 
VSD ; PR 
SBE on AV; AI 
SBE on AV; AR 
AR 
AS; AR; MS 
VSD 
MR; Valve Lesions 
AR; AS 
MR; PR; AR; MR; SBE on MV      
AR; MR; SBE on AV 
AR; MS; MR 
AS; AR; MR; MAVD 
MR; SBE on MV 
VSD 
MS; MR; MAVD 
MR 
AR 
MAVD; MMVD 

Abbreviations 

AS 
AR 
MS 
MR 
PR 

VSD 
AI 

MMVD 
SBE 

MAVD 
AV 
PV 

MV 
HS 

Aortic Stenosis 
Aortic Regurgitation 
Mitral Stenosis 
Mitral Regurgitation 
Pulmonary Regurgitation 
Ventricular Septal Defect 
Aortic Insufficiency 
Myxomatous Mitral Valve Disease 
Subacute Bacterial Endocarditis 
Mitral and Aortic Valve Disease 
Aortic Valve 
Pulmunic Valve 
Mitral Valve 
Heart Sound 

 
 
Classification of heart sounds 

In this work, several signal processing techniques are 
combined  with an Artificial Neural Network (ANN) for the 
autonomous classification of the sounds into two 
categories, namely “normal” and “abnormal”. Previous 
authors have also addressed the analysis and classification 
of heart sounds9-13. Signal processing techniques 
implemented in the analysis of heart sounds include the 
Fast Fourier Transform (FFT), Short-Time Fourier 
Transform (STFT), Wigner Distribution (WD), Choi-
Williams Distribution (CWD) and the Wavelet Transform 
(WT).                                                                                      

Obaidat5 concluded that the WT performs best in 
identifying the components of S1 and S2 when compared to 
the STFT and WD. Bentley et al.14 evaluated the STFT, 
WD, CWD and the WT as techniques to extract information 
from phonocardiograms. According to Bentley et al.14, the 
CWD has superior resolution compared to the other 
techniques, but the WT feature extraction technique 
performed the best in classifying native and bioprosthetic 
heart sounds.   

Ölmez and Dokur15 implemented the Daubechies 
wavelet of order two (db2) in analyzing their signals.  The 
second level detail coefficients were broken up into 32 
subwindows of 128 samples each and the power of each 
subwindow calculated.  The resulting power curve was then 
implemented as input to their grow-and-learn (GAL) 
network classification scheme, obtaining a correct 
classification rate of 99.4%. Gupta et al.13 used 
homomorphic filtering to identify S1 and S2, and then used 
the same approach as Ölmez and Dokur to construct and 
train their neural network. Cathers10 used the amplitude 
envelope of the recorded heart sounds as input to a feed-
forward neural network, obtaining a classification rate of 
100%.   

DeGroff et al.11 developed an ANN to differentiate 
between innocent and pathological murmurs in children. A 
feed-forward network trained with the back-propagation 
algorithm was implemented. The input space comprised the 
magnitude of the Fourier coefficients in the 0-150 Hz 
range. A sensitivity of 100% and a specificity of 100% 
were obtained. Andrisevic et al.9 implemented an ANN 
consisting of two hidden layers and one output layer to 
differentiate between normal and abnormal heart sounds. 
The network was trained with the back-propagation 
algorithm and a sensitivity of 64.7% and a specificity of 
70.5% was obtained. In this paper, the approach differs 
from previous work in that heart sounds are recorded at 
several locations on the chest simultaneously and 
synchronized with an ECG. For this study, signal 
processing methods found in the literature were employed 
with some modifications.  
 
 

Methodology 
 

The heart sounds and ECGs of 31 healthy volunteers 
and 21 patients who suffer from valve-related or 
auscultatory abnormalities, were recorded. The 
experimental protocol for the study was approved by the 
committee for human research at Stellenbosch University, 
South Africa, in accordance  with international practices 
and all participants gave informed consent. All the 
participants were individually assessed by a cardiologist at 
Tygerberg Academic Hospital in Cape Town, South Africa. 
The cardiologist used a 12-lead ECG and an 
echocardiogram to obtain a diagnosis for all the participants 
(including the healthy participants). The diagnoses of the 
patients with heart abnormalities are given in Table 1. All 
the participants were recorded in the supine position, 
breathing normally.  The duration of the recordings was 10 
seconds.  
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Figure 4. Anterior and lateral parts of the jacket that 
demonstrates all the ECG leads and multiple stethoscopes. 

 

 
 

Figure 5. Posterior chest wall part of the jacket to record lung 
sounds. 

 

 
 

Figure 6. Positions for sound and ECG recordings. 
 

 
 

Figure 7. ECG lead built into the diaphragm of an electronic 
stethoscope. 

Hardware 
To facilitate multiple simultaneous recordings, 

electronic stethoscopes and ECG electrodes for a 12-lead 
ECG were built into an auscultation jacket, as was 
previously reported by Koekemoer and Scheffer14. The 
jacket consists of neoprene sheets and adjustable straps, 
with stethoscopes and ECG leads embedded at specific 
locations. The jacket was designed as a prototype to fit 
adult men with an anthropometric size in the 50th percentile 
of the South African male population. 

The jacket has 21 electronic stethoscopes built into the 
anterior, lateral (Figure 4) and posterior (Figure 5) parts. 
The posterior stethoscopes were used to also record the 
lung sounds and hosted the two limb electrodes of the left 
and right arm. A “neck collar” is included that has two 
electronic stethoscopes to record Carotid bruit sounds, 
though the lung sound recordings were not used for the 
purpose of this study.  

The jacket was designed in such a manner that all 
sensors would be positioned at constant locations on the 
chest and neck of a patient. The heart sounds of the 
different heart valves and murmurs, if present, can 
maximally be heard over specific positions on the 
precordium of a patient, and hence these locations were 
chosen for the stethoscopes. Six precordial leads of a 12-
lead ECG overlaps with the auscultation points for the 
tricuspid and mitral valves as indicated in Figure 6. For 
these cases, the ECG electrode was built into the diaphragm 
of the electronic stethoscope (Figure 7).  

The stethoscopes are positioned at the normal 
auscultatory positions, i.e. the second left and right 
intercostal space, fourth left and right intercostal space, 
fifth left intercostal space and sixth left intercostal space.  
The ECG electrodes were positioned at the normal 
positions for V1-V6, the left arm and right arm electrodes 
were placed on the left and right shoulders respectively, 
while the left and right leg electrodes were placed on the 
left and right hips. All the hardware was customized 
specifically for the auscultation jacket and fabricated in-
house. The sensors communicate via USB with a host 
computer, and a customized powered USB hub was 
constructed to enable all the sensors to communicate in 
sync with the host computer. The recordings were done 
with a sample rate of 2 kHz on all channels. The complete 
auscultation jacket is shown in Figure 8, and further 
developments of this hardware is also described by 
Koekemoer and Scheffer14. 

After recording the data using the jacket, these steps 
were followed: denoising, segmentation (i.e. identify 
systole and diastole in each heart sound cycle), feature 
extraction (i.e. extract signal features indicative of an 
abnormal heart sound) and ANN training and testing. These 
steps are described to more detail in the sections that 
follow. 
 
Denoising 

Due to the presence of unwanted noise and 
interference, the recorded signals had to undergo a 
denoising  procedure. The  ECG  signals were filtered with 
a  low-pass   fourth  order  Butterworth  filter  (fc =  40 Hz),  
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Figure 8. Jacket fitted over a mannequin, demonstrating an 
anterior, lateral and posterior view. 

 

 
 

Figure 9. Abnormal phonocardiogram of patient suffering from 
mitral regurgitation. 

 

 
 

Figure 10. Denoised phonocardiogram (db7 level 5 wavelet 
denoising) of patient suffering from mitral regurgitation. 
 
ensuring that potential interference from the main electrical 
supply was filtered out.   

Denoising was performed by wavelet soft threshold 
denoising, similar to previous authors12,16.  Only orthogonal 
wavelets were considered for denoising purposes as this 

allows perfect reconstruction of the denoised signal15.  
Messer et al.15 studied the effects of different wavelets on 
denoising recorded heart sounds and found that certain 
wavelets from the Haar, Coiflet, Daubechies and Symlet 
families provided the best results. Also according to Messer 
et al.15 the more a wavelet resembles the signal, the better it 
denoises the signal.  The Daubechies wavelet was selected 
due to the unsymmetrical nature of this specific wavelet 
(heart sounds are also unsymmetrical in nature) and the 
close resemblance to recorded heart signals.  The Haar and 
Coiflet family of wavelets were deemed too symmetrical to 
be used for denoising purposes and the Symlet family of 
wavelet proved to be too computationally intensive for 
denoising purposes as shown by Messer et al.15  According 
to Messer et al.15 a decomposition level of 5 produced 
reasonable results while decomposing the signal further 
often produced marginal benefits and increases 
computation time.  The authors of this study also found that 
increasing the decomposition level above 5 did not produce 
significantly better results.  The Daubechies 7 wavelet at a 
decomposition level of 5 was experimentally determined to 
provide the best results.  Although Messer et al.15 suggested 
that Daubechies wavelets of order 11, 14 and 20 provided 
better results the authors of this study found that wavelets 
of an higher order did not produce better denoising results 
and in some instances provided worse results. Also, a single 
wavelet for denoising purposes were desired to automate 
the process as far as possible and the above mentioned 
Daubechies wavelet proved to provide the best results. 
Figure 9 shows an original recorded heart sound signal, and 
Figure 10 shows the signal after the denoising procedure.   

Two wavelet thresholds were calculated and the larger 
of the two was used.  The first threshold was calculated by 
using Stein’s Unbiased Estimate of Risk (SURE)11. This 
threshold was multiplied by 0.3 in order to reduce the 
threshold since a larger threshold resulted in S1 or S2 being 
discarded. The second threshold value was calculated by 
first calculating the standard deviation of the first-level 
detail of the DWT. The assumption is that the majority of 
the noise in the signal is captured in this level17. The 
standard deviation is then multiplied by four to yield the 
second threshold. 
 
Segmentation 

The next step in the process was to identify the heart 
sound cycles in the recordings and split them into systole 
and diastole. Segmentation algorithms exist that do not 
utilize the ECG signal19.  The authors of this study had the 
benefit of access to the ECG signal and therefore decided to 
implement it in segmenting the phonocardiogram1.  

Three cycles of each recorded heart sound were 
extracted by identifying the QRS-peaks in the ECG. The 
QRS-peak can be taken as the start of a cycle and hence the 
onset of S1 

8. To accentuate the QRS-peak and to attenuate 
the P-wave and T-wave in the ECG, a QRS-peak 
identification   algorithm   described   by   Rangayyan8  was  
 
1The aim of this study was not to develop a segmentation 
algorithm or determine which is algorithm is superior to others 
and therefore no conclusion on this can be made in this study. 
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Figure 11. Original ECG signal, ECG signal after first-derivative 
operator and ECG signal after application of MA filter. 

 

 
 

Figure 12. Heart sound cycle showing start and end of S1. 
 
implemented. This procedure is based on a first-order 
difference operator and a moving-average (MA) filter. The 
signal after the applying the first-order difference operator 
is (with x(n) being the ECG signal): 

 
 
                  (1) 
 

 
after applying the MA filter: 

 
 
                                                 (2) 
 
 

where n = 1, 2, 3,…, L, and L is the length of the ECG 
signal. The original ECG signal was sampled at 2000 Hz 
but was digitally resampled to 100 Hz in order to speed up 
data processing. To prevent excessive smoothing, the 
window widths  were  set to  N = 1 and  M = 5. The 
original ECG signal, the signal after the first-derivative 
operator and after the MA filter application are shown in 

Figure 11, from top to bottom respectively.  The bottom 
10% of the MA-filtered signal was set to zero to remove 
small artifacts.   

To overcome the variability in heart rates, a specific 
cycle’s length was compared with the cycle before and after 
it. If a cycle’s length was between pre-defined intervals, the 
cycle was extracted.  This criterion can be defined as: 

 
                                                     (3) 

 
where Interval is the ratio between the length of 
consecutive cycles. If a cycle adhered to the pre-defined 
criterion, it was extracted from the start of one QRS-peak to 
the start of the following QRS-peak. 

Unfortunately, there is no specific event in the ECG 
that relates to the end of S1, but the start of the T-wave 
corresponds to ventricular repolarization, which in turn 
results in the production of S2. Thus the end of S1 has to 
occur prior to the start of the T-wave. The ST-segment in 
the ECG is defined as the time between the end of the QRS-
wave and the start of the T-wave. It was experimentally 
determined that the end of S1 can be calculated with: 

 
                                       (4) 

 
where 

 
                          (5) 

 
and TR-R  is the R-R interval duration of the ECG wave, i.e. 
the heart rate17.  Figure 12 shows a phonocardiogram (one 
heart cycle) with the start and end of S1 indicated as 
determined by this technique. 

The onset of S2 was taken as the end of the T-wave in 
the ECG, since this is when the ventricles start to relax and 
the pressure in the ventricles drop, causing the aortic and 
pulmonary valves to shut8.  In calculating the end of the T-
wave, the start of the QRS-complex was identified and the 
corrected QT interval, QTc, was added.  QTc is equal to the 
QT interval divided by the square root of the R-R interval, 
according to Bazett's formula19: 
 

 
                                                                (6) 
 

Figure 13 shows the extracted portion of the recorded 
signal with the start of S2 indicated. As can be seen in 
Figure 13, S2 as well as a diastolic murmur are present in 
the extracted portion of the signal (it must be cautioned not 
to falsely identify heart murmurs as S2). 

Finally, the end of the second heart sound cannot be 
attributed to any specific event in the ECG, so to determine 
the end of S2 an energy envelope was calculated of the 
extracted signal to determine where the majority of the 
signal energy is situated, since this would most likely 
correspond with S2. The Shannon energy was used as it 
intensifies the medium-intensity signals and attenuates the 
effect of low-intensity signals7. The Shannon energy 
envelope of the signal is shown in Figure 14. The bottom 
25%  of  the  envelope  values  was  discarded  to  eliminate  
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Figure 13. Abnormal heart cycle showing start of S2. 
 

 
 

Figure 14. Shannon energy envelope showing groupings of 
second heart sound. 

 
small noise that might interfere in the extraction process. 
The formula used to calculate the Shannon energy envelope 
was7: 
 

                                                                 (7) 
 
where E is the energy envelope and x is the signal under 
analysis. 

Peaks in the Shannon energy envelope were identified 
and grouped together.  Two peaks were assumed to belong 
to the same group if the following criterion was adhered to: 
 

                                                      (8) 
 
where P(i) is an identified peak and P(i+1) is the next peak. 

The energy of the different groups was then calculated 
and the group with the highest energy was extracted as S2.  
This assumption proved to be sufficient in extracting the 
correct group as S2. With the segmentation complete and 
the sounds identified, the systolic and diastolic parts of the 
sounds can found accurately (Figure 3). 

Feature extraction 
From each of the stethoscope channels (recording 

locations depicted in Figure 6), 70 signal features were 
extracted. These features were selected based on: 
 

� discussions with cardiologists experienced in cardiac 
auscultation; 

� previous experience in feature extraction with heart 
sounds;  

� literature surveys; and 
� trial and error experimentation with a variety of 

possible signal features that can relate to 
pathological heart sounds. 

 

This yielded 4 x 70 = 280 features per recording 
instance. Features were extracted from the time and 
frequency domains. Time domain features included the 
ratio of the power between S1 and S2 in a specific cycle, 
since S1 should be louder than S2 at the apex of the heart 
and S2 louder than S1 at the base. To obtain the power ratio 
that was used as a feature, the respective power values of 
the extracted heart sounds were simply divided to yield the 
desired ratio.   

To determine whether the intensity of S1 varies from 
beat to beat, the power of S1 as well as the P-R interval was 
compared from cycle to cycle. The calculated powers of the 
extracted S1’s were divided by one another to yield signal 
features. The P-R interval was calculated from the formulas 
proposed by Burke and Nasor18: 

 
                           (9) 
 

S1 is normally longer in duration than S2 and any 
deviation from this could indicate pathology20. Therefore, 
the durations of S1 and S2 were extracted as features. 

The timing between the different components of S2 is 
of great importance.  During normal operation of the heart, 
the time gap between A2 and P2 increases during 
inspiration. This is known as splitting of the second heart 
sound. To detect the split of S2, the CWT of the extracted 
second heart sounds were calculated. The graph that is 
yielded by the CWT is shown in Figure 15, with A2 and P2 
indicated. 

 

 
 

Figure 15. CWT of S2 with A2 and P2 indicated as the two highest 
peaks. 
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Figure 16. Heart cycle with aortic stenosis, showing cresendo / 
decresendo nature of murmur. 

 

 
 

Figure 17. Three sections of systole. 
 

 
 

Figure 18:.Three sections of diastole. 
 

It was decided to identify the two components of the 
CWT as was done by Debbal et al.21 but to add a degree of 
automaticity. The db7 wavelet was used in CWT 
decomposition with scales from 5 to 100. It was assumed 
that the two highest peaks corresponded to A2 and P2, 

similar to Debbal et al.21. To obtain the time difference 
between the two components, the highest peak was 
identified first. It was then stepped through the entire data 
set to identify the second highest peak. The maximum 
points were identified and subsequently set to zero until two 
maxima differed by 10 ms or more. This maximum was 
then identified as the second peak. The absolute value of 
the time difference between the two components was then 
taken as the time difference between A2 and P2.   

The shape of the systolic and diastolic murmurs is 
indicative of the type of murmur that is present in the 
heartbeat of a patient, for instance as depicted in Figure 16 
for aortic stenosis. To calculate the shape of the murmur, 
systole and diastole were split into three sections each 
(Figure 17 and Figure 18), and the Root Mean Square 
(RMS) value of each section was calculated.  Depending on 
whether the values increased, decreased or stayed more or 
less the same from section to section, the shape of the 
murmur can either be described as crescendo, decrescendo, 
crescendo-decrescendo or plateau. The maximum 
frequency of each of the extracted sections of systole and 
diastole were also considered as a feature.  The maximum 
frequency corresponds to the frequency in the FFT that has 
the maximum amplitude.   

The presence of extra heart sounds such as the ejection 
sound, midsystolic click and opening snap was also 
included as signal features. To check whether any of these 
extra sounds were present, it was argued that within the 
interval in which the sounds would occur, the power of the 
sections would be higher if these sounds were present than 
if they were absent.  The systolic and diastolic regions of 
each cardiac cycle were identified and broken up into 
different sections, as shown in Figure 19, to search for these 
extra sounds.  ES refers to the ejection sound, MC to the 
midsystolic click and OS to the opening snap. 

For frequency domain features, an FFT frequency ratio 
was calculated for S1 and S2. The magnitudes of the Fourier 
coefficients in the frequency band from 0 Hz to 100 Hz 
were summed, as well as the magnitudes of the Fourier 
coefficients in the frequency band from 100 Hz to 800 Hz 
and divided by one another to yield a frequency ratio.   
 
Feature reduction and ANN  

The procedures described above yielded a large number 
of signal features, and had to be reduced for the ANN 
development. The input feature space of ANNs is often 
reduced to simplify the ANN structure, reduce training time 
and improve the classification capabilities.  The Statistical 
Overlap Factor (SOF) was used to identify the features that 
exhibited the greatest degree of separation between the 
recordings of normal and abnormal heart sounds.  The SOF 
is defined as22: 
 

 
                                                    (10) 
 

 
where 1x  and 2x  are the means of distributions x1 and x2, 
and �1 and �2 are the respective standard deviations. The 
higher  the SOF, the better the degree of separation between  
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Figure 19. Normal heart cycle showing search areas for extra 
heart sounds. 
 
the two distributions. It was determined through trial and 
error simulations with large and small input spaces, that the 
following six features identified by the SOF yielded the 
best classification results with the ANN:  
 

amplitude gradient of first half of diastole
amplitude gradient of second half of diastole

�AR  

 
amplitude gradient of first half of systole

amplitude gradient of second half of systole
�AS  

 
RMS(systole)
RMS(diastole)

MR �  

 
CREST FACTOR(entire heart sound cycle)�CF  

 
RMS(last third of systole)
RMS(last third of diastole)

�MR  

 
RMS(entire systole)

RMS(last third of diastole)
�MS  

 
Best results were achieved when these six features were 

used for all four stethoscope locations, hence yielding an 
input space of 24 features. An ANN was hence constructed 
that consisted of 24 inputs, 30 hidden neurons and one 
output neuron. The network was constructed to give an 
output of 0 for a healthy heart and a 1 for a pathological 
heart.   

All nodes used the logarithmic tangent as the activation 
function, except for the output node, which implemented a 
linear activation function. The network was trained with the 
backpropagation algorithm and used an adaptive learning 
rate. The cost function used was the mean-square-error 
function with regularization, with the regularization 
parameter set to 0.5. 

Because the number of recordings were limited, cross-
validation was used to validate and test the ANN. For each 
training instance, the recordings from one person is 

excluded, and then used as a test sample after training. The 
training instances were repeated 500 times with a new, 
random network initialization for each recorded person, and 
the average network output was used to calculate the 
network’s overall performance.  

The overall result was a sensitivity of 84%, a 
specificity of 86% and a total network accuracy of 85%. 
 
 
Discussion 
 

The stethoscope recordings were quite noisy and it was 
found that in some instances the denoising procedure did 
not produce good results.  If the wavelet threshold was set 
too high, some necessary information was discarded, such 
as S1, S2 or murmur information. Low- and high-pass filters 
could not be used to correct this, since the noise frequency 
spectrum coincided with the frequency spectrum of the 
heart sounds. The analysis of the data was completely 
automated, (i.e. it did not require the adjustment of analysis 
parameters for individual recordings). Hence all the data 
had to be denoised in the same manner. The wavelet 
denoising method uses a threshold for the denoising 
procedure, and it was determined experimentally that 
0.3�SURE provided the best results for most of the 
recorded heart sounds. 

The reason for the poor recordings could be that in 
some instances the stethoscopes did not make sufficient 
contact with the patient’s body and this resulted in motion 
artifacts being recorded as the patient breathes. The 
auscultation jacket was constructed based on 
anthropometric data and proved to fit most of the patients 
that had normal heart sounds, but in some instances did not 
fit well on patients that suffered from heart disease. The 
reason for that being that heart disease patients are 
sometimes of a smaller build and could suffer from chest 
deformities such as pectus excavatum. The aim of this 
study was in part to demonstrate the potential of the 
auscultation jacket, and it is obvious that the device will 
have to be constructed in various different sizes in order for 
the concept to be completely feasible. 

Another reason for recording excessive noise might be 
that the stethoscopes were not placed on the exact 
auscultation positions.  This could also be contributed to the 
design of the jacket.  The heart sound might then still be 
present but is deeply buried in background noise so that too 
much denoising simply removes the recorded heart sound.  
Research and development is currently underway to 
improve the design of the jacket, and manufacture it in 
various sizes. The long-term vision is that the jacket could 
become a tool for screening patients for heart pathologies in 
rural healthcare, through telemedicine. 

The procedure that extracted the time duration between 
the two components of S2 is not ideal. More constraints 
need to be identified to make the identification easier. The 
breathing cycle also needs to be incorporated in the 
constraints since the gap between A2 and P2 is very 
dependent on the breathing cycle. 

The ECG that was recorded simultaneously with the 
heart sound data produced artifacts in some instances. It is 
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speculated by the authors that these artifacts may have been 
produced by the customized ECG system that built into the 
auscultation jacket. The ECG used in this study was built 
in-house simply to produce the QRS-complex so that the 
start of S1 could be identified, and hence it is not a 
diagnostic tool such as a commercial ECG. In instances 
where artifacts were present in the recorded ECG, the ECG 
extraction algorithm was unsuccessful. As a result, reliable 
information could not be extracted from these recordings. 
This led to the problem that the recordings from several 
participants had to be discarded, with the consequence was 
that the results presented in this paper are based on a 
relatively small data set. However, the proposed methods 
yielded good results and the authors are confident that the 
results can only improve by adding more data for training, 
and also addressing the hardware problems.  

The outcome of this research was very dependent on 
the volunteers that participated.  As explained above, many 
recordings were of such a poor quality that they could not 
be used.  It is proposed that a large set of patients (100 or 
more), that cover a broad spectrum of auscultatory 
abnormalities, be identified and their heart sounds recorded 
with improved hardware.  Subsequently, the algorithms and 
features presented in this study may need further refinement 
along with this new data set, which would hopefully 
include a larger variety of heart pathologies.  
 
 
Conclusion 
 

An ANN-based system has been developed that is 
capable of differentiating between normal and certain 
auscultatory abnormalities. The system uses features 
extracted from heart sounds recorded at multiple locations 
on the thorax as input to the classification system. The 
classifier showed a sensitivity of 84% and a specificity of 
86%.  Data was recorded with a low cost and easy to use 
auscultation jacket, and even though the sets presented in 
this paper are limited, it shows great potential for such a 
device along with diagnostic software. In its current form, 
the system is not ready for clinical deployment, but further 
research and refinement will be directed towards deploying 
such a system in a rural healthcare scenario where there are 
limited resources and many patients, which can benefit a lot 
from such technology. 
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