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Abstract

A moment method known as the fourth moment method can perform reliability analysis without optimization using
the first four statistical moments. Numerical integration is used to calculate the statistical moments, where a moment­
based quadrature rule can be used for integration nodes and weights. However, the moment-based quadrature rule has
to solve a system of linear equations that can be numerically unstable. Considering this point, an improved moment­
based quadrature rule is proposed and is applied to reliability-based design optimization. Finally, the moment-based
RBDO is applied to numerical examples with a variety of random variables and target reliability indexes. From the
numerical results, the performance of the improved moment-based quadrature rule can be confirmed and several
guidelines are given for the moment-basedRBDO.
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1. Introduction

Reliability analysis has been used to consider
uncertainties existing in the real world. Typical
methods for reliability analysis are Monte Carlo
simulation (MCS) (Madsen et aI., 1986), the first
order reliability method (FORM) (Hasofer and Lind,
1974), the second order reliability method (SORM)
(Breitung, 1984; Kiureghian et al., 1987), and a mo­
ment method (Zhao and Ono, 200 I; Seo and Kwak,
2002). Of these methods, the moment method has an
advantage in that it does not require optimization for
reliability analysis. Instead of performing optimiza­
tion, the moment method requires the first four sta­
tistical moments of a performance function, where the
statistical moments are calculated by numerical in­
tegration.
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For the numerical integration, integration nodes
and weights should be known. Although integration
nodes and weights for a standard normal distribution
are generally known, those for other distributions
should be calculated. To do this, Zhao and ana
(2000) proposed using an inverse Rosenblatt trans­
formation for non-normal distributions, where inte­
gration nodes were only changed. As a method for
considering both integration nodes and weights,
Rahman and Xu (2004) proposed a moment-based
quadrature rule (MBQR), in which a system of linear
equations should be solved in order to obtain in­
tegration nodes. However, a drawback of the mo­
ment-based quadrature rule is that the system oflinear
equations may be singular, which can reduce the
accuracy of the integration nodes and weights (Youn
et aI., 2006). Considering this point, an improved
moment-based quadrature rule (IMBQR) that im­
proves numerical stability is proposed.

As an application of the IMBQR, the IMBQR is
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applied to RBDO. This is done because previous
research on RBDO has focused on methods based on
FORM, such as the reliability index approach (RIA)
(Yu et al., 1998) and the performance measure ap­
proach (PMA) (Tu and Choi, 1999; Youn et al., 2003).
Furthermore, there has been almost no research done
on applying the moment method to RBDO.

To do this, problems related to combining the
moment method with RBDO are initially understood
and then solutions to these are given. Based on the
solutions, a moment-based RBDO is constructed.
Using numerical examples with a variety of random
variables and target reliability indexes, the perfor­
mance of the IMBQR is confirmed and comments
regarding the moment-based RBDO are given.

2. A moment method

2.1 Calculation ofintegration nodes and weights

A moment method for reliability analysis requires
the first four statistical moments of a performance
function and a Pearson system. To calculate the
statistical moments, numerical integration is used. A
typical formulation of the statistical moments for the
Pearson system is as follows:

Ji, ~ Iw" ···Iw,,,g[r'(X,,, ... ,x,.J]
'1",1 1,,"'1

(1)

where W; is the integration weights, Xi is the i th
component of an integration node, m is the number
of integration nodes, and t:' is the inverse
Rosenblatt transformation to deal with non-normal
distributions.

In the case of a standard normal distribution,
integration nodes and weights can be easily deter­
mined (Abramowitz and Stegun, 1972). However,
when a non-normal distribution is handled, using the
inverse Rosenblatt transformation may cause errors in
the statistical moments because the integration nodes
are only changed and the integration weights are
identical to those of a standard normal distribution
(Zhao and Ono, 2000).

This problem can be solved by using a moment­
based quadrature rule (MBQR) (Rahman and Xu,
2004), where integration nodes and weights are
obtained by solving a linear system equation that
requires the statistical information of the input
parameters. The linear relationship is made between
low- and high-order moments of the input random
variables, as shown in Eq. (2).

flj,n-I -flj,n-2 fl j,n-3 (_1)"-1 flj,o rj .1

flj,n -flj,n-I fl j,n-2 (_1)n-1 flj,1 rj .2

fl j. n+1 -flj,n flj.n-I (_1)n-1 fl
j,2 r»

flj.2n-2 -flj,2n-3 fl j,2n-4 (_1)"-1 flj,n-I r.;

flj,n (2)

flj,n+1

fl j.n+2

fl j,2n-l

Here, J'j,n represents the nth raw moment con­
sidering the r input random variable. However, the
system of linear equations may be singular when the
number of integration nodes increases or the random
variable has a large mean or a small coefficient of
variance.

This may be a significant problem when the
MBQR is applied to RBDO because the system of
linear equations should be solved every time a design
point is changed during the process of optimization.
Furthermore, if the system of linear equations is
singular even once during the process ofoptimization,
optimization may fail to find an optimum. Therefore,
it is important to construct the system of linear
equations to be well-conditioned.

2.2 An improved moment-based quadrature rule

To apply the MBQR to RBDO, it is desirable that
the case in which singularity occurs should be
reduced by as much as possible. In general, the
singularity of the system of linear equations can be
determined by the condition number; the larger the
condition number is, the larger the error of the system
of linear equations is.

To reduce the condition number by as much as
possible, an improved moment-based quadrature rule
(IMBQR) is proposed, in which a constant that can
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control the condition number is introduced. To
construct the IMBQR with n integration nodes
x j •i , i = 1" .. ,n in the direction of the x j coordinate,
if a constant C is introduced and Yj is substituted
for xj - C , it is possible to define a function

Finally, the integration nodes x),;,i = I,... .n can
be obtained by adding Yj,i to c.

The integration weights for each integration nodes
can easily be determined by

ji = L(y)' f\" (x)@,=[(x-c),f\.(x)@.(7)
).1 j. I )) J • I J J

After solving rj ,; from Eq. (6), Yj.pi=I, ... ,11

can easily be obtained as the i th root of

(9)

(10)
x+a_I_df(x) =

f(x) dx

where x indicates x - fl and the coefficients a,

CO, cl ' and Cz are determined by the first four
statistical moments. The Pearson system is then
classified as seven types according to the roots of

Co + clx + czx
2

= 0 .
The important factor related to the Pearson system

is that the accuracy of the probability greatly depends
on the values of skewness and kurtosis as well as on
the accuracy of the calculated statistical moments.
That is, although the calculated statistical moments
are exact, if skewness and kurtosis are greatly

where gj,iO = 1 and gj,ik = rj,k - Yj,igj,i(k-I)'
Compared to the MBQR, Eq. (6) with the sin­

gularity problem depends on the constant c , and the
condition number of the system of linear equations
also depends on the constant c. Given this, the last
problem is then to determine the constant c that can
reduce the condition number by as much as possible.
To obtain the constant c, optimization is performed,
in which an objective function is the condition
number of a n by 11 matrix, as shown in Eq. (6).
In addition, the statistical moments determined by Eq.
(7) can easily be calculated, because they are
calculated from the statistical raw moments which are
already known.

In the Pearson system (Johnson et aI., 1995), the
probability density function f(x) is the solution of
the differential equation

2.3 Pearson system

(4)

(3)

(5)

=nn(y-y)fv (x)
J ).1.'1.) )

i=1
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J.1. j •J1+ 1 -flj.n flj.n-I (_1)"-1 Pj,2

itj ,2n - z -;.Ij.2n-3 ;.I).2n-4 (-I)"-ljij.n_1
(6),

r.. i;
rj ,2 n.:
rj.) ;.Ij,n+2

r, ;.Ij.2n-1r.n

P(X) = rnxj -C-(Xj,i -c)]fr, (x)
i=1

If

[P(X)(y)i@j = 0; i = 0, I,... ,n -1,

k=I,2" .. ,1l

Equation (4) yields a system oflinear equations

where C is introduced to reduce the condition
number and fx) (x) denotes the probability density
function of a random variable X j •

Equation (3) satisfies

where the coefficient matrix consists of known
moments of input random variable X

j
, given by
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deviated from those of a standard normal distribution,
the accuracy of the probability calculated by the
Pearson system can be reduced (Zhao and Ono, 2004).

difference in sub-optimization.

4. A moment-based RBDO

3. Reliability based design optimization

Optimization has widely used to make more cost­
effective production taking advantage of limited

resources. Typical formulation of deterministic opti­
mization is as follows:

where x is a n-dimensional design vector, 5 IS

lower bound, and X; is upper bound.
In contrast to deterministic optimization, REDO

can deal with the uncertainties of design variables and

system parameters. Considering g;CX) $; 0 as a
safety region, REDO can be defined as

Minmize f(x)

Subjecttogj(x)$;O }=l, ... ,m ,

5 $;xi $;X; i=l, ... ,n

(11)

4.1 Introduction

What makes a moment-based REDO unique is that

the moment method, instead of FORM, is used for the
probabilistic constraint assessment, as depicted in Fig.

1. In the optimization process, the design variable

vector, d = fleX) , is continuously changed and, ifthe

optimizer requires the values of the probabilistic
constraints, the flow of the optimization enters the

part with dotted lines. In _this part, the integration

nodes and weights of each random variable are first
found, and then the first four statistical moments of

each constraint are calculated. Finally, using the
calculated statistical moments and the Pearson system,

the probability for each constraint is calculated, and a

corresponding reliability index is then calculated by

(14)

Minmize fed)

Subject to Pr[g/X) ;?OJ$; <1>(-13,) j = l, ... ,m ,(12)

dL$;d$;d u

where f(X) is the joint probability density function
of X, g(X);? 0 represents the domain in which a
failure occurs, and Pf is the probability of failure.

To solve the multidimensional integral, approximated
methods have been developed and one of them,
FORM, has widely used for reliability analysis,
especially for REDO. As typical methods of REDO
based on the FORM, there are RIA and PMA. The
two methods have a similar structure but there is a

where d = fl(X) is a n-dimensional design vector,
X is a random variable vector, and the probabilistic
constraint is described by the performance function

g/X) and its prescribed reliability target index !J" .
Therefore, in RBDO, every time the optimizer needs

the value of the probabilistic constraint, reliability
analysis has to be done.

For reliability analysis, a fundamental problem is

the computation of the multidimensional integral
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where <1>-1 is the inverse cumulative distribution

function of standard normal distribution. Then, the

moment-based RBDO has the same structure as RIA
and a difference is that a moment method, instead of

FORM, is used for reliability analysis.

Fig. 1. A flowchart of a moment-based RBDO_

(13)Pf = Pr[g(X);? OJ= f f(X)dX ,
Jg(X»o
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Fig. 2. Condition numbers for the variation of the mean.

Fig. 3. Condition numbers for the variation of the coefficient
of variance.
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Figure 2 shows the condition numbers for three
non-normal distributions, in which the coefficient of
variation is selected to be 0.0 I when the mean is
changed. From Fig. 2, the condition numbers of
the IMBQR are much smaller than those of the
MBQR. In addition, the condition number of the
MBQR increases as the mean increases. Therefore,
the MBQR cannot be used when the mean is very
large.

Figure 3 shows the condition numbers for three
non-normal distributions, in which the mean is
selected to be 10 when the coefficient of variation is
changed. From Fig. 3, similar results are obtained, but
one difference is that the condition number of the
MBQR increases as the coefficient of variance
decreases. Therefore, the MBQR cannot be used
when the coefficient ofvariance is very small.

In summary, since the IMBQR fmds the minimum
condition number through optimization, the condition
number of the IMBQR is always smaller than that of
the MBQR. Based on this advantage, the system of
linear equations of the IMBQR is numerically more

One problem with a moment-based RBDO is that it
can be impossible to calculate the sensitivity of a
probabilistic constraint when the probability is
numerically equal to 0 or 1. If the probability for a
probabilistic constraint is numerically equal to 0, this
indicates that a current design point is in the feasible
region for the probabilistic constraint, and no
problems arise. On the other hand, if the probability is
numerically equal to 1, the current design point exists
in the infeasible region for the probabilistic constraint.
Generally, if the current design point exists in the
infeasible region, most optimization algorithms ini­
tially attempt to bring the design point to the feasible
region. During this process, sensitivity of the violated
constraint is essentially needed. However, if the
probability density function that is obtained from the
Pearson system is bounded and the value of a random
variable corresponding to the probability density
function is larger than the upper bound, it is not
possible to obtain sensitivity. For example, when the
Type I distribution is used, the probability density
function is bounded on each side, as in [a,b]. In this
case, the probability for the value that is larger than
the upper bound, b , is always I and even if a small
variation is given, the probability remains unchanged,
and the sensitivity eventually becomes O. As a result,
the optimizer cannot find a proper feasible region.
Therefore, an initial design point must not violate any
probabilistic constraints to a great extent.

To solve the problem, the optimum of deterministic
optimization has to be assigned to the initial design
point of the moment-based RBDO (Youn and Choi,
2004). This is done because deterministic optimiza­
tion requires a comparatively small computation com­
pared with RBDO and the optimum of deterministic
optimization has approximately a 0.5 probability for
an active probabilistic constraint.

4.2 Considerations in developing a moment-based
RBDO

5. Numerical examples

5.1 Comparison ofMBQR and IMBQR

This example is introduced to confirm the perfor­
mance of the IMBQR. For a comparison of MBQR
and IMBQR, the condition number is compared for
lognormal, Gumbel, and uniform distribution. The
mean and the coefficient of variation are changed, and
three nodes and weights are calculated.
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stable than that of the MBQR thus the IMBQR can
calculate integration nodes and weights more
accurately, even if the mean is very large or the
coefficient ofvariance is very small.

5.2 Mathematical example

This numerical example (Youn and Choi, 2004) has
2 random variables and the formulation is as follows:

M' .. f (d d)-b±~nurruze = I + 2 2a

Subject to pr[g, =1- X;~2 ~ 0] ~ 4>(-PI)

P [
-I (x,+x2 - 5)2

r g2 = - 30

(XI- ~~~ 12)2 > 0] ~ 4>(-P2) (15)

pr[g3 =1 ,80 >0]~4>(-P3)
(x l- + 8x2 + 5)

O~dj~IO fori=I,2

x j - N (d j ,O.3) fori=I,2

An initial design point is the optimum of deter­
ministic optimization (3.1107,2.0609).

RBDO results are summarized in Tables 1-3, where
four different distributions are used for three different

Table l. Results of different approaches in the case of 1­
sigmaRBDO.

Distribution Approach Objective d, d2 «; fJ~cs

PMA 5.689 3.183 2.506 0.989 1.111

Normal REDO 5.684 3.204 2.481 1.001 1.006

(Rosenblatt)

REDO 5.684 3.204 2.481 1.001 1.006

(IMBQR)

PMA 5.698 3.191 2.507 1.024 1.117

Lognormal REDO 5.683 3.193 2.490 1.018 1.028

(Rosenblatt)

REDO 5.680 3.203 2.477 1.003 1.004

(IMBQR)

PMA 5.689 3.202 2.486 1.105 1.116

Gumbel REDO 5.681 3.197 2.484 1.081 1.119

(Rosenblatt)

REDO 5.652 3.199 2.453 1.009 1.014

(lMBQR)

PMA 5.821 3.210 2.611 1.194 1.260

Uniform REDO 5.641 3.193 2.448 0.842 0.850

(Rosenblatt)

REDO 5.728 3.211 2.518 1.024 1.000

(IMBQR)

target reliability indexes and three-node integration is
used for a moment method. In Tables 1-3, 'RBDO
(Rosenblatt)' indicates a moment-based RBDO, in
which integration nodes are determined by the inverse
Rosenblatt transformation, and 'RBDO (IMBQR)'
denotes a moment-based method, in which integration

Table 2. Results of different approaches in the case of 2­
sigmaRBDO.

Distribution Approach Objective d, d2 fJ~cs «:
PMA 6.202 3.297 2.905 1.993 2.074

Normal REDO 6.194 3.312 2.882 1.992 1.989

(Rosenblatt)

REDO 6.194 3.312 2.882 1.992 1.991

(IMBQR)

PMA 6.156 3.290 2.867 2.030 2.082

Lognormal REDO 6.113 3.289 2.824 1.944 1.944

(Rosenblatt)

REDO 6.132 3.294 2.838 1.990 1.986

(IMBQR)

PMA 6.022 3.243 2.779 2.104 2.109

Gumbel REDO 5.875 3.200 2.675 1.597 1.781

(Rosenblatt)

REDO 5.964 3.237 2.728 1.923 1.915

(IMBQR)

PMA 6.196 3.302 2.894 2.275 2.308

Uniform REDO 6.107 3.289 2.818 1.959 1.884

(Rosenblatt)

REDO 6.112 3.281 2.832 1.959 1.971

(IMBQR)

Table 3. Results of different approaches in the case of 3­
sigmaRBDO.

Distribution Approach Objective d, d2 «: f3~cs
PMA 6.731 3.441 3.290 2.993 3.063

Normal REDO 6.703 3.446 3.257 2.956 2.954

(Rosenblatt)

REDO 6.703 3.446 3.257 2.955 2.954

(IMBQR)

PMA 6.597 3.404 3.192 3.022 3.084

Lognormal REDO 6.449 3.376 3.073 2.707 2.680

(Rosenblatt)

REDO 6.551 3.398 3.153 2.934 2.947

(lMBQR)

PMA 6.298 3.285 3.013 3.095 3.127

Gumbel REDO 6.212 2.865 3.348 1.554 Infmite

(Rosenblatt)

REDO 6.188 3.261 2.927 2.662 2.725

(IMBQR)

PMA 6.307 3.335 2.972 3.006 3.102

Uniform REDO 6.575 3.408 3.167 Infinite Infmite

(Rosenblatt)

REDO 6.262 3.324 2.938 2.649 2.633

(IMBQR)
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Unitonn
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ITWEI PMA
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I!lIiiiB RBDO(IMBQR)

Lognormal Gumbel

Distribution

Lognormal Gumbel

Distribution

Nannal

Nonnal
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151- - - - - - - - - - - --

~
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~ 10+---------

Distribution Approach Mean Standard Skewness Kurtosis

Normal Rosenblatt 0.0064 0.2437 0.4797 3.3227

IMBQR 0.0064 0.2437 0.4796 3.3227

MCS 0.0063 0.2437 0.4792 3.3592

Lognormal Rosenblatt 0.0064 0.2459 0.7275 3.7057

IMBQR 0.0064 0.2459 0.7473 3.9671

MCS 0.0065 0.2460 0.7505 4.0212

Gumbel Rosenblatt 0.0065 0.2504 1.1646 4.4864

IMBQR 0.0064 0.2525 1.4727 7.2715

MCS 0.0064 0.2525 1.4706 7.3933

Uniform Rosenblatt 0.0049 0.2230 0.4401 3.2719

IMBQR 0.0064 0.2435 0.3889 2.4987

MCS 0.0064 0.2435 0.3893 2.5027

Fig. 4. Errors in the first probabilistic constraint in the case of
l-sigma RBDO.

ITWEI PMA
~ RBDO(Rosenblatt)
I!IImI RBDO(IMBQR}

In this example, the results of the MBQR were
omitted because the results of the MBQR are identical
to those of the IMBQR. The reason why the results
are the same is that the means are relatively small and
the coefficient of variances are approximately 0.1. In
this case, the condition number can be expected to be
smaller than 1010

, as shown in Figs. 2 and 3, and the
real maximum condition numbers for each distri­
bution are displayed in Table 5. Although a numerical

Fig. 5. Errors in the first probabilistic constraint in the case of
2-sigma RBDO.

Table 4. Comparison of four statistical moments for the first
probabilistic constraint at the initial design point.

(16)

nodes and weights are calculated by the IMBQR. In
addition, the sixth and seventh columns are the
reliability index calculated by MCS at the optimum
design. From Tables 1-3, it is shown that the
optimums are similar when the random variables are
normal distribution or the target reliability index is 1
or 2. However, when the target reliability index is 3
and random variables are Gumbel or uniform
distributions, there is a difference between RBDO
(Rosenblatt) and the other methods in the optimum.

To check the accuracy of evaluating the pro­
babilistic constraints, Monte Carlo simulation (MCS)
with a sample size of ten million is used for active
probabilistic constraints at the optimum design and
the error is defined as follows:

where fJ~cs is the reliability of the i th performance
function by MCS for the target reliability fJ,. The
results are displayed in Figs. 4-6 for the first

probabilistic constraint. In Figs. 4-6, the errors are
very small for all the methods when the random
variables are normal distributions. For non-normal
distributions, the errors of RBDO (IMBQR) are
comparatively smaller than the other methods when
the t<l.\"get reliability index is equal to I or 2. However,
the errors of the moment-based method are larger
than those of PMA when the target reliability index is
equal to 3, especially when RBDO (Rosenblatt) is
used. For this, there are two reasons. The first reason
is that errors occur in the computation of the statistical
moments, as shown in Table 4, where the statistical
moments are calculated in the initial design point for
the first probabilistic constraint. From Table 4, it is
observed that the moment method that uses the
inverse Rosenblatt transformation has large errors in
skewness and kurtosis of non-normal distributions,
while the method that uses the IMBQR has only small
errors in kurtosis. This makes the errors with the
method that uses the inverse Rosenblatt trans­
formation much larger. The second reason is that the
Pearson system can be inaccurate in some cases. It is
generally known that the more skewness and kurtosis
are deviated from those of a standard normal dis­
tribution, the larger the errors in probability are even
if the statistical moments are exactly calculated. This
is because the Pearson system uses only four sta­
tistical moments.
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Table 5. Maximum condition numbers of the mathematical
example in the process of optimization.

Normal Lognormal Gumbel Uniform

MBQR 3,347,840 2,973,640 50,150,300 7,331,090

IMBQR 62 62 46 157

20t-----r-:==o==,=====,-

Table 6. Data for the welded beam problem.

z, 2.6688 X 10' [N] z, 9.377 X 10 [MPa]

z, 3.556X 10' [mm] Z7 2.0685 X 10' [MPa]

Z, 2.0685 X 10' [MPa] c, 6.74135 X 1O"[$/mm3
]

z, 8.274X 10'(MPa] c, 2.93585 X 10-6 [$/mm3
]

z, 6.35 [mm]

a;j r2.8674xlO-' 2.8674x 10-' 1.1470 x I 0-4 1.1470xlO-41

Fig. 6. Errors in the first probabilistic constraint in the case of
3-sigma RBDO.

Structure F
Xl

1Weld~ -L,

Beam
-
I. JS_.

Fig. 7. A welded beam structure.

UnifonnLognonnal Gumbel

Distribution

Nonnal

5;-------

problem does not occur in the MBQR, it can be seen
that the condition numbers of the IMBQR are much
smaller than those of the MBQR. Thus, using the
IMBQR is more proper, especially when integration
nodes and weights are calculated many times such as
optimization.

In the number of function calls, the moment-based
RBDO requires 9 computations for reliability analysis
when three-node integration is used. In this case, the
moment method is more efficient than PMA, which
uses optimization for reliability analysis. However, it
can be seen that the number of function calls
increases very fast as the number of random variables
increases.

5.3 A welded beam

The second numerical example (Lee and Lee, 2005)
is a welded beam structure as shown in Fig. 7. It has 4
random variables and 5 probabilistic constraints. The
objective function is the welding cost and constraints
are imposed on geometry, the maximum possible
stress, and the tip deflection. The design variables are
displayed in Fig. 7, and each design variable follows a
statistically independent normal distribution. The
system parameters and the variances of the random
variables are given in Table 6. The description of the
optimization problem is as follows:

find x = (Xl'XZ'X3,x, )

minimize f(x,z) =c,x,'x, + CZx3x, (zz + xz)

subject to Pr[s, (x) 20]:0; <1>( -,8;) , i =I,.· ',5

where

g, (x)=r(x,z)lz. -I, g, (x)=0'(x,z)lz7-1

g3(x)=x,/x,-I, g,(x)=J(x,z)lz,-I,

s,(x) =I-E;. (x,z )1z,

,8,=,8, = ... =,8, =3.0

3.175:O;x,:O;50.8, O:O;x,:O;254, O:O;x3:O;254,
0:0; x, :0; 50.8

r(x,z) ={{(t(x,z)' +2t( X,z )tt(x,z)(x,/2R (x)) (17)

r+tt(x,zr

t( x,z) = z,j-!ix,x,

tt(x,z) =M(x,z)R( x)1J( x)

M (x,z) = z{z, +%) ,
)

~x; +(x, +xS
R (x = -'--'---'----

2

J( x)=-!ix,x, {x; /12 +(x, + xS /4}
0'( x,z) = 6z,z,/xix,

J(x,z) = 4z,z;/Z3X;X,

( ) - 4.013X,X;~ [ Xl fElJPxz- 1---
C ' 6z; 4z

2
z,
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Table 7. Summary of the optimization results for the welded
beam problem.

Objective Designvariables lNumberofFE

Deterministic 2.38 (6212,157.5,210.6,6207)

Optimization

PMA 2.59 (5.750,219.8,210.7,6260) 79,281

RBDO(Rosenblatt) 2.59 (5.730,200.6,210.6,6239) 32,805

RBDO(IMBQR) 2.59 (5.730,200.6,210.6,6.239) 32,805

RBDO(MBQR) Fail

The optimization results are summarized in Table 7,
where target reliability indexes are 3 and the result of
PMA comes from Lee and Lee (2005). From Table 7,
the results ofPMA and the moment-based REDO are
nearly identical, but the moment-based method is
more efficient than PMA, where the moment-based
method requires 81 computations for reliability ana­
lysis. In the results, it is interesting to note that
'RBDO (MBQR)' cannot find the optimum because
the condition number is so large that integration
nodes and weights cannot be exactly calculated. In
this example, the maximum condition number of the
MBQR is 1.8x 102 1 while that of the IMBQR is
3.8xI07

• The reason why the condition number is
very large is that the means of several random
variables are comparatively large and the coefficient
of variance is very small because of a very small
variance, as shown in Table 6. Therefore, the MBQR
cannot be applied to an example with large means or
small coefficient of variances.

5.4 Discussions

The application of a moment method to REDO was
investigated. In this process, since some probability
density functions that were obtained from the Pearson
system had bounds, a case in which sensitivity ana­
lysis of probabilistic constraints was impossible oc­
curred when the value of a random variable existed
outside the bounds, especially when the value was
larger than the upper bound. In this case, the design
point existed in the infeasible region, thus it was
impossible to find the optimum. Therefore, the initial
design point of a moment-based REDO must not
excessively violate the probabilistic constraints. As a
solution for this case, the optimum of deterministic
optimization was used as an initial design point.

In the process of the moment-based REDO,
integration nodes and weights for the moment method

should be calculated. Furthermore, because they are
recalculated for each probabilistic constraint every
time the design point is changed, it is important to
calculate them accurately and reliably. When the
inverse Rosenblatt transformation was used, the com­
putation was very simple because integration nodes
were only changed, but the accuracy of the statistical
moments could be reduced, especially when non­
normal distributions were dealt with. On the other
hand, when the MBQR was used, the computation
was comparatively complex because of solving a
system of linear equations. Here, however, the
accuracy of the MBQR was superior to that of the
inverse Rosenblatt transformation.

Nonetheless, since the system of linear equations of
the MBQR may be singular when the mean of a
random variable was very large or the coefficient of
variance of a random variable was very small, using
the MBQR is restricted in application of REDO. To
overcome this drawback, the IMBQR was proposed,
and it was confmned through numerical examples
that the condition number of the IMBQR was much
smaller than that of the MBQR. Furthermore, for a
welded beam example, the IMBQR could obtain the
optimum while the MBQR failed to find the optimum.

The accuracy of the moment-based RBDO depends
on the accuracy of the calculated statistical moments
and the values of skewness and kurtosis. The results
showed that the moment-based RBDO using the
IMBQR was relatively accurate when the target
reliability index was I or 2, while PMA was accurate
when the target reliability index was 3. This is
because the Pearson system uses only four statistical
moments. For this reason, the accuracy of a pro­
bability density function, which is obtained from the
Pearson system, can be low, especially when the
probability is determined in the tail of the probability
density function. Therefore, the Pearson system
should be used with caution when the target reliability
index is larger than 2. On the other hand, the errors in
PMA decrease as the target reliability index is getting
larger because the joint probability density function to
be integrated is exponentially decayed toward the tail.

Finally, a disadvantage with the moment-based
RBDO is that the number of function calls increases
very fast as the number of random variables increases.
It is estimated that the problem will be solved by
using metamodels such as Response surface method,
Kriging, and Radial basis function.
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6. Concluding remarks

Unlike previous research regarding RBDO, a

moment-based RBDO was investigated. It has an

advantage in that it does not require optimization for

reliability analysis. In this process, an improved

moment-based quadrature rule, which improved

numerical stability, was proposed. Applying the

moment-based RBDO to examples with different

target reliability indexes and distributions, it could be

confirmed that the moment-based RBDO using the

IMBQR was considerably accurate when the target

reliability index was 1 or 2 irrespective of the type of

distributions. In addition, the problem that the number

of function calls increases very fast as the number of

the random variables increases is expected to be

overcome through the use of metamoldels, in the

future.
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