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Summary

Fully parametric models, in particular the exponential and the Weibull, are widely used in
reliability analysis where both the shape of the baseline hazard and the effect of a set of
explanatory variables are of interest.

In order to compare the fitting of alternative parametric models we propose a graphical
procedure based on log-odds and normal deviate residuals as diagnostic statistics. These
residuals have been originally suggested for the purpose of outlier screening but their
properties make them suitable for verifying assumptions on the distribution of the base
line hazard as well.

1. Introduction

While medical literature in survival analysis is dominated by the Cox's model,
i.e., a semiparametric approach to survival data, fully parametric models are widely
used in reliability analysis. Here interest lies often in the shape of the hazard
function, sometimes in the presence of non homogeneous observations.

Different families of distributions are available to model life-time data and dis
criminating among them is a central issue. Residual analysis can play an important
role in this respect. We propose a graphical procedure based on the distributional
properties oflog-odds and normal deviate residuals (Nardi and Schemper, 1999).

We start by recalling their definitions and we investigate their sampling distri
butions under a correctly specified model in Section 2. In order to assess the good
ness of fit of the assumed parametric model, residuals' empirical distributions can
be compared with their corresponding reference distributions. In practice, even

* Addressfor correspondence: Dipartimento of Systems Theory, University of Teramo,
Viale Crucioli, 122 - 1-64100, Teramo. E-mail: nardi@dtso.spol.unite.it

139



A. NARDI

assuming that a clear departure is observed, it may be difficult to interpret such a
departure and it remains unclear in what way the model should be modified.

Therefore, in Section 3, we investigate residuals' expected behavior under a
misspecified baseline hazard, but no censoring. The exponential and the Weibull
regression models are considered, corresponding to the assumptions of a con
stant and monotone baseline hazard. The asymptotic distributions of the pro
posed residuals are derived, based on the convergence of maximum likelihood
estimators (mles) under the alternative hypothesis. An application is described in
Section 4. Section 5 deals with the effect of increasing censoring and methods for
taking it into account while a final discussion is given in Section 6.

2. The residuals under a properly specified model

Let T,denote the failure time and C;the censoring time of the i-th unit. Suppose that
there are n observations and that the data for subject i are of the form (y;, 8;, x.),
where Y; =min(Ti,Ci), Oi is an indicator function which equals 1 when the observed
time is uncensored and x; = (Xii"'" Xim), i = 1,""., n, are observed values of m
covariates. We assume that log T, is related to the covariates via the linear model

m

logY; =eo + :Lejxij +logTa;
j;l

(1)

where eo is the unknown general mean, ej , ••• , em are unknown regression param
eters and To; are i.i.d. random variables with common density fit; /C) which is
independent of eand completely specified up to an unknown scale or shape pa
rameter x. Notice that the effect of independent variables is multiplicative on
the event time; for this reason this class of models is often referred to as acceler
ated failure time models. Let ~(t; /C) be the hazard function of To;" It follows that
both the hazard and the survival function of T, can be written in terms of the
baseline hazard ~(t) as

and

Since our attention focuses on modelling the baseline hazard function, through
out the paper we assume that the linear predictor 8'x; is correctly specified.
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Log-odds and normal-deviate residuals, that we denote respectively as L, and
Ni, are defined as follows (Nardi and Schemper, 1999)

[
S((;i,e,x) ]

L = log A

I 1- S(t;;K,f),X;)

Ni =ep-I[S(t;;i,e,x)]

where Set;; k, 8; x.) is the estimated survival function of the fitted model for
individual i evaluated at his-her observed failure time and where iPis the stand
ard normal cdf.

At first we assume no censoring. The censored case will be dealt with in Section 5.
Notice that both the residuals are °if the observed failure time coincides with

the estimated median failure time, which is regarded as reference time. Increas
ing departures from the predicted median time are reflected by increasing abso
lute values. Large negative and positive residuals identify too long and too short
survival times. Assuming the survival function as known, L; and N, follow the
standard logistic and the standard normal distribution, respectively. This results
follows by noting that Vi = S(Ti), i = 1,... , n represent a set of n independent
random variables, each having a [0, 1] uniform distribution. Being defined in
terms of probability integral transform, the suggested residuals can be regarded
as generalized residuals in the sense of Cox-Snell (Cox and Snell, 1968). Com
pared to the classical Cox-Snell residuals e, =-log(S(t;; k, 8; x;)) they offer two
main advantages. They can be intuitively interpreted as a distance between the
predicted median time and the observed failure time. Furthermore the symmetry
of their reference distributions, which resembles the property of residuals in the
General Linear Model, is of help in any graphical procedure. In fact, this avoids
the exaggerated visual effect in the upper tail of the distribution of Cox and Snell
residuals, that results from applying the logarithmic transformation to the surviv
al function.

2.1. Exact and asymptotic results

When the unknown survival function is replaced by its mle, the property that the
U's are independent, each being uniformly distributed, is not valid any longer.

As first step, assume to observe a vector T' =(T1,. .. , Tn) of n i.i.d. failure times,
where each T; follows an exponential distribution with common parameter 8. The

. Ann .
mle of 81S 8 =- where S =". T. The pdf f.L",,,,(tl'"'' tn ) of the correspondingS "-',=1 I
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vector of residuals can be easily derived by noting that yin) =--!.. Tfollows a Dirich-

let (In) distribution, where 1~ =0, ..., 1). Therefore S

where

_ { . ( exp(-n) ). 'f exptr.) _ }C- (tl' ... ,tn).ti E log ,+co 'lfz,..:::.,.log --n
1- exp(-n) ;=1 1+ expir, )
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Fig. 1 - Pdf of log-odds residuals: -, Reference density; ... , n =3; - . -, n =5; - -, n =10.

Figure 1 shows the marginal density of L:n
) for different choices of n . Clearly

this marginal density converges to the reference logistic density as n tends to
infinity, the approximation being already satisfactory for n =10.

If failure times are not identically distributed, i.e., a set of explanatory varia
bles is introduced, exact results are not achievable since an explicit expression
for mles is not available. However, on the basis of mles' consistency, we can
prove that, assuming a correctly specified model, L;and N;converge in probabili
ty to their reference distributions, being asymptotically independent.
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In order to assess possible violations of model assumptions, a Q-Q plot could
be constructed, based on these results. In practice, even assuming that the plotted
points clearly depart from linearity, indicating that the model is inappropriate,
they cannot indicate in what way.

3. The residuals under a misspecified baseline hazard

In order to improve the understanding of the graphical inspection, we now inves
tigate the expected behavior of the proposed residuals under a misspecified mod
el for the baseline hazard function.

3.1. Known parameters

Throughout this sub-section the parameters are assumed to be known. Two par
ticular cases are considered, defined by the shape of the baseline hazard Ao(t; K"):

1. an exponential regression model, HE' where To follows the standard exponen
tial distribution.

2. a Weibull regression model, Hw, where To is distributed according to the stand
ard Weibull distribution.

We investigate the consequences on residuals' sampling distribution if an expo
nential model is fitted while the true model is Hw• Note that exponential regres
sion is widely used in reliability, where a constant hazard is regarded a reasona
ble choice as far as there is no indication of a clear departure.

Since the discussion involves pairs of different hypotheses, different symbols
are required for the set of parameters (eo, K", e l = (e1, ••• , em))' This set will be
denoted by ({31' /3z, b') for u; and (01, d') for HE'

Let a constant baseline hazard HE(Ol , d') be falsely assumed, the true model
being Hw<{31' /3z, b'). The random variables Vi =S(Ti), i = 1,... , n are no more
uniformly distributed. However the pdfs of log-odds and normal-deviate residu
als can be still derived (Appendix A). We obtain

{3 [ I ](132-1) [( 1 1)13']ir,(t) =__2_, log_e_ exp - log~
l+e 1+~ e

iN (t) =~2 [-logt/>(t)](13r I)exp[-(-logt/>(t))13,] exp[-~].
, 2;rcI>(t) 2
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As expected the two densities depend on the shape parameter /31' Since the re
gression parameters are assumed to be known, they cancel out which may not be
the case when they are estimated. We will come back to this issue in the next sub
section. When /31 = I, the exponential model is correctly assumed and the two
densities coincide with the reference standard Logistic and Normal distribution,
respectively.
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Fig. 2 - Baseline densities: -, exponential; ... , Weibull (/3z =2); -' -, Weibull (/3z =0.5).

Figures 2 and 3 show the baseline Weibull densities and the corresponding
log-odds densities for /31 equal to 0.5,1 and 2, i.e., for an increasing, a constant
and a decreasing baseline hazard, respectively. Clearly a misspecified baseline
hazard mainly affects the expected variability of log-odds residuals, with a neg
ligible effect on the location of the distribution. This implies that methods based
on the expected mean value of residuals will fail to detect it.

With respect to the reference density (solid line in Figure 3), log-odds residu
als appear to be much more concentrated in the case of an increasing hazard,
while a higher variability results from a decreasing baseline hazard. This behav
ior can be better understood looking at the densities in Figure 2. The Weibull
density for A=1.5 (and more generally for A> 1, i.e., in the case of an increas-
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Fig. 3 - Pdf of log-odds residuals: -, assuming a correctly specified model; ... ,
misspecifying an exponential model, a Weibull (/3z =2) being the true model; -' -,

rnisspecifying an exponential model, a Weibull (/32 =0.5) being the true model.

ing hazard) is more concentrated than the assumed exponential distribution in the
neighborhood of 1. In other words, there is an excess of events in the central area
that the exponential model cannot describe and that results in an excess of resid
uals. Conversely, in the case of a decreasing hazard ([32 =0.5), the Weibull distri
bution assigns greater probability mass to extreme values. Now the excess of
residuals is in the tails of the distribution.

Similar arguments hold for normal-deviate residuals. It is worthwhile to re
mark that, with respect to the aim of this paper, log-odds and normal-deviate
residuals play an identical, exchangeable role. For the sake of clarity, throughout
the remainder of the paper the discussion will be carried on referring only to log
odds residuals.

3.2. Unknown parameters: some asymptotic results

In the previous Sub-Section we have assumed parameters to be known. We now
investigate the effect of replacing their values with the corresponding mles, still
focusing on residuals' distribution under the alternative hypothesis. Without loss
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of generality we assume that I; Xii = O(j = 1,... , m). In order to apply the as

ymptotic theory of mles, it is also assumed that lim IH~ n -1 I;'x iX/ is a bounded
positive-definite matrix.

It is worthwhile to remark that, for the models considered in this paper, the
estimators of the regression coefficients 8[,... , 8m are asymptotically consistent,
independently of distributional assumptions. However, when using a false mod
el, their asymptotic efficiency (evaluated by the ratio of the determinants of the
covariance matrices) can be substantially reduced (Pereira, 1978).

Assume that the Weibull regression model holds but the exponential model is
falsely assumed. Let ({31, A, h') be the true parameters, which refer to the Weibull
regression model, and (8:"), d(nJI) the mles corresponding to the fitted exponential
regression. Then, the following probability limits

can be derived by minimizing the Kullback-Leibler distance between the null
and the alternative models (Appendix B).

Starting from these probability limits, the results outlined in Appendix B show
that log-odds residuals converge to the random variables L~-E, the density of which
follows

where

/3 [ '](/3,-1) [(( 1 ,))/3-,]fCi-E (t) = ~~Ce: log 1:,
e

exp - log :,
e

C (4)

As expected, the asymptotic distribution depends on the shape parameter of the
true baseline Weibull density. Notice that (4) coincides with the corresponding
density (2), but for the presence of c. Its effect can be evaluated by comparing, in
Figure 4, the asymptotic distribution of log-odds residuals with the correspond
ing density for known parameters, assuming A =2.
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In the case of unknown parameters, the misspecification of the baseline haz
ard is still reflected by an anomalous concentration of residuals. An additional
shift of the asymptotic density towards the left side can be explained by the pres
ence of the additional term c in the probability limit of 8i"). The histogram in the
background is based on 5000 simulated trials, assuming a sample size of 20.
Values of a single covariate Xl were assumed binomially distributed with Probix,
=1) =Prob(x, =2) =0.5. The corresponding survival times were generated from
a Weibull distribution, setting /32 =2 /31 =1.39 and hi =-0.29. An exponential
model was fitted to the generated data and log-odds and normal deviate residuals
of the last subject of each trial were recorded. The approximation to the asymp
totic density appears satisfactory even for such a limited sample size.
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Fig. 4 - Distribution of log-odds residualsassumingthe exponential regression model
while theWeibull modelholds: -, asymptotic pdf; ... , pdf assuming known parame

ters; - . -, reference logisticpdf.

4. An application

The following example illustrates the use of the results above. It is a study of the
lifetimes of Klevar 49/Epoxy spherical vessels that are subjected to a constant
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sustained pressure until vessel failure have been made. The NASA space shuttle
uses Klevar 49/Epoxy spherical pressure vessels in a sustained pressure mode
throughout the usage life of the vessels and several commercial application are
also subjected to this service condition. The study was done to generate baseline
data and to predict vessel life under different levels of pressure. Four data sets are
considered here, at stress levels decreasing from 90% to 60%. An exponential
model was fitted to each data set and log-odds residuals from the fitted models
are shown in Figure 5.

Both at 90% and 80% stress level the residuals' empirical distributions are
very close to the logistic reference density, providing evidence in favor of the
null hypothesis of constant hazard. Conversely, at low stress levels, the residuals'
distributions clearly departs from the reference density, suggesting the presence
of a monotone increasing hazard; the lower the stress level, the stronger the evi
dence.
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Fig. 5 - Log-odds residuals for the Klevar 49IEpoxy study: (a) 90% stress level; (b)
80% stress level; (c) 70% stress level; (d) 60% stress level.
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In order to improve the graphical understanding, in Figure 6 the kernel esti
mates of the residuals' empirical distributions have been over-imposed for differ
ent stress levels. Compare Figure 5 with Figure 3 where the residuals' pdfs corre
sponding to misspecified exponential models are shown. The empirical distribu
tion at 60% stress level clearly resembles the expected distribution in case of
monotone increasing hazard: it is much more concentrated than the reference
logistic density, showing a slight shift towards the left side. This finding is con
sistent with the results obtained by Barlow, Toland and Freeman (1984) in a Baye
sian framework.

Notice that the shape parameter of the Weibull distribution could be indirectly
estimated by maximizing the likelihood function of observed residuals.

5. Censoring

Survival data are typically censored and it is important to determine how the
residuals' distribution is affected by the presence of censoring. We assume a cor-
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Fig. 6 - Empirical pdfs of log-odds residuals fat the Klevar 49/Epoxy study: -,
reference logistic pdf; ... , 90% stress level; - . -, 80% stress level; - -,70% stress

level; - ... -,60% stress level.
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rectly specified model and an independent non-informative censoring mecha
nism. Note at first that, since the survival function is decreasing in time, right
censored data result in left censored residuals.

Figure 7 shows the empirical distribution of log-odds residuals from 5000 sim
ulated trials for n =100. Ineach trial values of a single covariate Xl were assumed
binomially distributed with Probix, = 1) = Probtx, = 2) = 0.5. The corresponding
survival times were generated from a A-exponential distribution, setting A = 1
and A= 2 for Xl = 1 and Xl = 2, respectively. An exponential model was fitted to
the generated data and log-odds and normal deviate residuals of the last subject
of each trial were recorded to guarantee independence of observations. The gen
erated samples were censored using the procedure by Gehan and Thomas (1969)
to model a clinical trial. Subjects were assumed to enter the study in a constant
rate in an interval (0, r) and then to fail according to the described survival time
distributions. The value of r, the time of analysis, was determined as in Green et
al. (1979) to achieve an expected 70% of censored survival times.

Note the substantial departure of the empirical distribution of log-odds re
siduals from the reference standard logistic density: the left tail of the distribu
tion, which corresponds to long survival times, is truncated and residuals are
concentrated in the interval (0, 2). Actually, the empirical density can be re-

Fig. 7 - Empirical distribution of log-odds residuals assuming 70% of censoring: -,
reference logistic density; - . -, kernel density estimate.
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garded as a mixture of two distributions: while uncensored residuals can still
be assumed to follow a logistic density, this is not the case for the censored
ones. Note that even uncensored residuals cannot be regarded as representative
of a logistic population since censoring is not acting uniformly on the positive
real line.

Assume now that the baseline hazard has been wrongly specified: the bias due
to censoring and the bias due to the misspecified baseline family overlap and it
may be difficult to distinguish one from the other. The extent to which we can
still recognize the effect of a wrong baseline family depends on both the percent
age of censoring and the families of distributions considered.

The first proposal to accommodate residuals to censoring dates back to 1977
(Crowley and Hu, 1977). The main idea behind it is that the distribution of the
unknown true residual, given T, > c; is related to the uniform distribution of
S (T j ) in [0, S (c;)]. Thus a censored residuals can be replaced by its conditional
mean or median value. By denoting with 1/' the observed censored residual, we
have (Nardi and Schemper, 1999)

I'

Ie Ie 1+ e" I'E[Lj ILj ::; j]= j --I,-log(l+e').
e'

Figure 8 shows the empirical distribution of log-odds residuals, being censored
residuals replaced by their conditional mean values. Due to the averaging proc
ess, the adjusted residuals tend to be less extreme then the corresponding unob
servable L; It results in an anomalous concentration of the empirical distribution
which still substantially departs from the reference density.

In order to avoid the reduced variability in adjusted residuals, we propose to
randomly sample from the residuals' conditional distributions and to proceed in
the spirit of Rubin's multiple imputation (Rubin, 1987). Assume that individual i
is censored at c; Then, instead of replacing the censored residual with its condi
tional expectation, we randomly generate r normal deviate residuals from the
distribution of (L j ITj > c;), r being the number of imputations. Note that this pro
cedure can be applied to any diagnostic tool, provided that the sampling distribu
tion is known. Each of the imputed residuals for individual i is weighted llr.
Figure 9 shows the empirical distribution of log-odds residuals for r =3, assum
ing 70% of censoring. The left tail of the distribution is now reconstructed avoid
ing the concentration effect and the approximation to the logistic density is satis
factory, despite the high percentage of censoring. It is worth to remark that the
imputation is done under the null hypothesis of a correctly specified model. This
may lead to a conservative behaviour in assessing departures from model as
sumptions when the percentage of censoring is high.

151



A. NARDI

g
C<

'"N
0

R;
<>

I...,,,

<>

S
e

1.",,,:<

<>
0

<> .-<""
0

·5 C 5

Fig. 8 - Empirical distribution of log-odds residuals assuming 70% of censoring
(censored residuals have been replaced with their expected values): -, reference

logistic density; - . -, kernel density estimate.

·5 o 5

Fig. 9 - Empirical distribution of log-odds residuals assuming 70% of censoring
(censored residuals have been replaced with imputed values): -, reference logistic

density; -' -, kernel density estimate.
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6. Discussion

We have proposed a graphical procedure to discriminate among alternative para
metric models on the basis of residuals' properties. The idea of comparing the
empirical distribution of residuals with their reference distribution, assuming a
properly specified model, is not new. In 1997 Crowley and Hu (Crowley and Hu,
1977) and Kay (Kay, 1977) suggested to compare the empirical distribution of
Cox and Snell residuals to the expected unit-exponential density. The proposal
have had little success and some serious issues have arisen.

The comparison between residuals' empirical and reference distribution was
intended as a global goodness of fit test for the Cox's model. Now, because Ao is
completely unspecified, this global test gives~no information about the real fit of
the model. If no covariates are in the model, AD can be made to fit the data exact
ly; the order statistics of the residuals are then exactly the order statistics of the
(possibly censored) unit exponential distribution, even if important covariates
have been omitted. For details see Lagakos (1981) and Baltazar and Pefia (1995).

The skewness of the reference exponential distribution makes a visual assess
ment of possible departures from the reference distribution difficult to be deter
mined so that plots of residuals are not easy to interpret. Furthermore, even when
a clear departure from the reference distribution is observed, there is no indica
tion in what way the fitted model should be improved.

In our proposal Cox and Snell residuals have been replaced with log-odds and
normal deviate residuals, both of them having a symmetric, unimodal reference
distribution. Our goal is to verify the appropriateness of a fully parametric mod
els with respect to the assumptions on the shape of the baseline hazards. In other
words, our attention focuses on the shape parameter /C,the regression parameters
playing the role of nuisance parameters. We have addressed the question how to
proceed if the graphical inspection indicates that the model does not fit, by inves
tigating the distribution of residuals under the alternative hypothesis.

Our study has been limited to the comparison between the exponential (the
null hypothesis) and the Weibull model (the alternative hypothesis) since they are
widely used in reliability analysis. However the idea can be applied to any couple
of alternative parametric models.

It is worth to remark that the residuals' density under the alternative hypothe
sis depends only on the shape parameter, i.e., nuisance parameters have be elim
inated by moving on the scale of residuals. Since residuals' distributions are known
both under the null and the alternative hypothesis, a formal test could be derived.
When the competing models are nested, as in our case, the classic likelihood
ratio test guarantees already high efficiency. Conversely in the case of separate
families of hypothesis a test based on residuals properties could be a valid alter
native to the modified likelihood ratio test proposed by Cox in the late 1961
(Cox, 1962).
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Appendix

Appendix A: Proofs of residuals' densities assuming known parameters

Constant versus monotone hazard

Suppose the Weibull regression model

m

log 1; = 131 +L bjxij + log To;
I

ft (t) =132 tfJ,-1 exp[_tfJ,]

holds. Then

where

If we incorrectly assume an exponential density as baseline distribution we have

Since parameters are assumed to be known and the linear predictor correctly
specified 01=131, b, =d.; j =l,... , m. Then, being SeT) a monotone transforma
tion, the density of S, can be obtained by applying the change of variable formula

f (t) =132 (-log t)fJ,-l exp[ -(logt)fJ,]
s, t

The densities (2) and (3) of Section 3 can be derived by applying the logit and the
probit transformation to S, and taking into account that both the transformations
are monotone.
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Appendix B: Proofs of residuals' asymptotic distributions

Throughout this appendix we assume that limn-->~ n-I L~XiX~ is a bounded posi

tive-definite matrix. Under this assumption, the models considered here fulfill
the regularity conditions required in the asymptotic theory of mles.

Constant versus monotone hazard

Suppose theWeibull regression model (see Appendix A) holds, while an expo
nential baseline density is incorrectly assumed. The corresponding pdfs are

ft (t) =/32 (B i t)/3,.-1 exp[ -(Bi t)'32 ]Bi

= fTW(B t)B
lOi I 1

where

and

(6)

where

Let 8?) and d(nl denote the mles of the corresponding unknown parameters. As
n -7 00, 8?l and d(n) converge to those values that minimize the Kullback-Leibler
divergence between the true and the falsely assumed model. This is equivalent to
maximize the expected value of the log-likelihood function for the exponential
model, the expectation being under the true Weibull model (see also Pereira,
1978). We have
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= ~r[IOg D;(n) + log!; (Din) t)] B;!t (B; t)dt.£...J 0 0, 0,
;=1

(7)

By computing the partial derivatives with respect to ot) and d(n), we get the fol
lowing system of equations

leading to the probability limits

d" --7p b

Starting from these results the following probability limits hold

(8)

(9)

D;') ~-+[8;') +~dj') xij)]->, -{(il' + logr(ilit) +tb) Xl))]
=DW

-
E,

(1; ,D;(n») --7 p

s;(n) =exp[-(1; ,D;(n)) --7 p

(T DW-E)
" I

exp[-(1; ,D;W-E)] =S;
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The results above are justified by the continuity of the applied mappings and by
the convergence of double random variables given the convergence of the mar
ginal components. Notice that T,follows here the true Weibull model, while S/") is
defined according to the falsely assumed exponential model. By transforming T,
according to S, we get the limiting distribution of sin) that follows

Is(r) = /32 c (-clogti',-l exp[-(-clogt)~]
, t

where

Finally, applying the Iogittransformation to st),we have

S(Il) S
L(n) =log--'- -7 log--'- =LW

-
E

, 1- sin) p 1- S,

where

/3 cf3, [ 1+ e' ](f3'-I) [[( 1+e') )f3'1
IL,w-£(t) = 1~ e' log T exp - log -e-'- c
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