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COMPARING PARAMETRIC MODELS FOR
RELIABILITY DATA VIA RESIDUAL ANALYSIS

Alessandra Nardi*
Department of Systems Theory, University of Teramo

Summary

Fully parametric models, in particular the exponential and the Weibull, are widely used in
reliability analysis where both the shape of the baseline hazard and the effect of a set of
explanatory variables are of interest.

In order to compare the fitting of alternative parametric models we propose a graphical
procedure based on log-odds and normal deviate residuals as diagnostic statistics. These
residuals have been originally suggested for the purpose of outlier screening but their
properties make them suitable for verifying assumptions on the distribution of the base-
line hazard as well.

1. Introduction

While medical literature in survival analysis is dominated by the Cox’s model,
i.e.,a semiparametric approach to survival data, fully parametric models are widely
used in reliability analysis. Here interest lies often in the shape of the hazard
function, sometimes in the presence of non homogeneous observations.
Different families of distributions are available to model life-time data and dis-
criminating among them is a central issue. Residual analysis can play an important
role in this respect. We propose a graphical procedure based on the distributional
properties of log-odds and normal deviate residuals (Nardi and Schemper, 1999).
We start by recalling their definitions and we investigate their sampling distri-
butions under a correctly specified model in Section 2. In order to assess the good-
ness of fit of the assumed parametric model, residuals’ empirical distributions can
be compared with their corresponding reference distributions. In practice, even
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assuming that a clear departure is observed, it may be difficult to interpret such a
departure and it remains unclear in what way the model should be modified.

Therefore, in Section 3, we investigate residuals’ expected behavior under a
misspecified baseline hazard, but no censoring. The exponential and the Weibull
regression models are considered, corresponding to the assumptions of a con-
stant and monotone baseline hazard. The asymptotic distributions of the pro-
posed residuals are derived, based on the convergence of maximum likelihood
estimators (mles) under the alternative hypothesis. An application is described in
Section 4. Section 5 deals with the effect of increasing censoring and methods for
taking it into account while a final discussion is given in Section 6.

2. The residuals under a properly specified model

Let 7, denote the failure time and C, the censoring time of the i-th unit. Suppose that
there are n observations and that the data for subject i are of the form (y;, &, x)),
where Y; = min(T,,C1), 6; is an indicator function which equals 1 when the observed
time is uncensored and X; = (x,,,..., X;,), { = 1,..., n, are observed values of m
covariates. We assume that log T; is related to the covariates via the linear model

logT, =90+29jx,.j +logT,, (1)

=

where 0, is the unknown general mean, 6,,..., 8, are unknown regression param-
eters and Ty, are i.i.d. random variables with common density f{; x) which is
independent of 6 and completely specified up to an unknown scale or shape pa-
rameter k. Notice that the effect of independent variables is multiplicative on
the event time; for this reason this class of models is often referred to as acceler-
ated failure time models. Let Ai(t; K) be the hazard function of Ty,. It follows that
both the hazard and the survival function of 7, can be written in terms of the
baseline hazard A,(¢) as

}V(t; K, 6, Xi) = AO([ e‘el",; K)e-G'xi
and

~8'x;

S(t;x,0.x,) = exp[-f: Ay (u;x) du].

Since our attention focuses on modelling the baseline hazard function, through-
out the paper we assume that the linear predictor 8'x; is correctly specified.
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Log-odds and normal-deviate residuals, that we denote respectively as L; and
Ni, are defined as follows (Nardi and Schemper, 1999)

L =logl:—'————‘—s(t' K f ) ]

1-S(6;%.,0.,)
N, =@7[s(:¢.6,x,)

where S(z; &, é; x,) is the estimated survival function of the fitted model for
individual  evaluated at his-her observed failure time and where @ is the stand-
ard normal cdf.

At first we assume no censoring. The censored case will be dealt with in Section 5.

Notice that both the residuals are 0 if the observed failure time coincides with
the estimated median failure time, which is regarded as reference time. Increas-
ing departures from the predicted median time are reflected by increasing abso-
lute values. Large negative and positive residuals identify too long and too short
survival times. Assuming the survival function as known, L; and N, follow the
standard logistic and the standard normal distribution, respectively. This results
follows by noting that U; = S(T)), i = 1,..., n represent a set of n independent
random variables, each having a [0, 1] uniform distribution. Being defined in
terms of probability integral transform, the suggested residuals can be regarded
as generalized residuals in the sense of Cox-Snell (Cox and Snell, 1968). Com-
pared to the classical Cox-Snell residuals e; = —log(S(¢; K, 6; x,)) they offer two
main advantages. They can be intuitively interpreted as a distance between the
predicted median time and the observed failure time. Furthermore the symmetry
of their reference distributions, which resembles the property of residuals in the
General Linear Model, is of help in any graphical procedure. In fact, this avoids
the exaggerated visual effect in the upper tail of the distribution of Cox and Snell
residuals, that results from applying the logarithmic transformation to the surviv-
al function.

2.1. Exact and asymptotic results

When the unknown survival function is replaced by its mle, the property that the

U’s are independent, each being uniformly distributed, is not valid any longer.
As first step, assume to observe a vector T'=(T,..., T,) of ni.i.d. failure times,

where each T’ follows an exponential distribution with common parameter 6. The

mle of Sis & =§ where S = Z;Ti . The pdf f;.(t...., t,) of the corresponding
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vector of residuals can be easily derived by noting that Y = 1 T follows a Dirich-
let (1,) distribution, where 1), = (1,..., 1). Therefore

(n=1)! ¢~ 1
con (e 8,) = 1ot 08,
fntist) =" [{[Hexp(ti) (treity)

where

exp(—n) e exp(t,)
C=<(t,...,t ):t. €|l log—"—2— +oo Vi, ¥ log——ic . =
{(l ") 'e[ogl—exp(—n) ) l;::‘ Og1+exp(ri) "
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Fig. 1 — Pdf of log-odds residuals: —, Reference density; ...,n=3;—--— n=35;-—,n=10.

Figure 1 shows the marginal density of L” for different choices of n . Clearly
this marginal density converges to the reference logistic density as » tends to
infinity, the approximation being already satisfactory for n = 10.

If failure times are not identically distributed, i.e., a set of explanatory varia-
bles is introduced, exact results are not achievable since an explicit expression
for mles is not available. However, on the basis of mles’ consistency, we can
prove that, assuming a correctly specified model, L; and N, converge in probabili-
ty to their reference distributions, being asymptotically independent.
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In order to assess possible violations of model assumptions, a Q-Q plot could
be constructed, based on these results. In practice, even assuming that the plotted
points clearly depart from linearity, indicating that the model is inappropriate,
they cannot indicate in what way.

3. The residuals under a misspecified baseline hazard

In order to improve the understanding of the graphical inspection, we now inves-
tigate the expected behavior of the proposed residuals under a misspecified mod-
el for the baseline hazard function.

3.1. Known parameters

Throughout this sub-section the parameters are assumed to be known. Two par-
ticular cases are considered, defined by the shape of the baseline hazard Ay(z; x):

1. an exponential regression model, H;;, where T, follows the standard exponen-
tial distribution.

2.a Weibull regression model, Hy,, where T, is distributed according to the stand-
ard Weibull distribution.

We investigate the consequences on residuals’ sampling distribution if an expo-
nential model is fitted while the true model is Hy,. Note that exponential regres-
sion is widely used in reliability, where a constant hazard is regarded a reasona-
ble choice as far as there is no indication of a clear departure.

Since the discussion involves pairs of different hypotheses, different symbols
are required for the set of parameters (6,, k, 8' = (6,,..., 8,)). This set will be
denoted by (B,, ., b") for Hy, and (8,, d') for H.

Let a constant baseline hazard H.(§,, d) be falsely assumed, the true model
being Hy{(B,, B;, b). The random variables U, = S(T), i = 1...., n are no more
uniformly distributed. However the pdfs of log-odds and normal-deviate residu-
als can be still derived (Appendix A). We obtain

' (B,—1) \B:
L= 2 Zr[log—e—} eXP[—(IOgHe] J 2)

I+e I+e, e

__ B B g [ ( 2 v 3
fN,-(t)——m(t)[ log ¢(1)] exp[—(~log¢(r)) ]exp{ 7| 3)
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As expected the two densities depend on the shape parameter f3,. Since the re-
gression parameters are assumed to be known, they cancel out which may not be
the case when they are estimated. We will come back to this issue in the next sub-
section. When f3;, = 1, the exponential model is correctly assumed and the two
densities coincide with the reference standard Logistic and Normal distribution,
respectively.
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Fig. 2 - Baseline densities: — , exponential; ..., Weibull (8, = 2); - - —, Weibull (3, =0.5).

Figures 2 and 3 show the baseline Weibull densities and the corresponding
log-odds densities for B, equal to 0.5, 1 and 2, i.e., for an increasing, a constant
and a decreasing baseline hazard, respectively. Clearly a misspecified baseline
hazard mainly affects the expected variability of log-odds residuals, with a neg-
ligible effect on the location of the distribution. This implies that methods based
on the expected mean value of residuals will fail to detect it.

With respect to the reference density (solid line in Figure 3), log-odds residu-
als appear to be much more concentrated in the case of an increasing hazard,
while a higher variability results from a decreasing baseline hazard. This behav-
ior can be better understood looking at the densities in Figure 2. The Weibull
density for 8, = 1.5 (and more generally for 8,> 1, i.e., in the case of an increas-
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Fig. 3 — Pdf of log-odds residuals: —, assuming a correctly specified model; ...,
misspecifying an exponential model, a Weibull (3, = 2) being the true model; — - —,
misspecifying an exponential model, a Weibuil (5, = 0.5) being the true model.

ing hazard) is more concentrated than the assumed exponential distribution in the
neighborhood of 1. In other words, there is an excess of events in the central area
that the exponential model cannot describe and that results in an excess of resid-
uals. Conversely, in the case of a decreasing hazard (B, = 0.5), the Weibull distri-
bution assigns greater probability mass to extreme values. Now the excess of
residuals is in the tails of the distribution.

Similar arguments hold for normal-deviate residuals. It is worthwhile to re-
mark that, with respect to the aim of this paper, log-odds and normal-deviate
residuals play an identical, exchangeable role. For the sake of clarity, throughout
the remainder of the paper the discussion will be carried on referring only to log-
odds residuals.

3.2. Unknown parameters: some asymptotic results
In the previous Sub-Section we have assumed parameters to be known. We now

investigate the effect of replacing their values with the corresponding mles, still
focusing on residuals’ distribution under the alternative hypothesis. Without loss
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of generality we assume that Z:’xi/‘ =0(j =1,...,m). In order to apply the as-

ymptotic theory of mles, it is also assumed that lim,_,_n~' z: XX/ is a bounded
positive-definite matrix.

It is worthwhile to remark that, for the models considered in this paper, the
estimators of the regression coefficients 8,,..., 8, are asymptotically consistent,
independently of distributional assumptions. However, when using a false mod-
el, their asymptotic efficiency (evaluated by the ratio of the determinants of the
covariance matrices) can be substantially reduced (Pereira, 1978).

Assume that the Weibull regression model holds but the exponential model is
falsely assumed. Let (B, 3,, b) be the true parameters, which refer to the Weibull
regression model, and (8", d") the mles corresponding to the fitted exponential
regression. Then, the following probability limits

-

8" =, B +logl“(—ﬂz—j_—l—)
B
d"—>,b

can be derived by minimizing the Kullback-Leibler distance between the null

and the alternative models (Appendix B).
Starting from these probability limits, the results outlined in Appendix B show
that log-odds residuals converge to the random variables L, the density of which

follows
; (B-D R B
_Bc” l1+e I+e
fL,W—E (f) = T;;t— IOgT exXpt — lOg o C (4)

where

c=F(ﬁ2ﬂ—jl).

As expected, the asymptotic distribution depends on the shape parameter of the
true baseline Weibull density. Notice that (4) coincides with the corresponding
density (2), but for the presence of c. Its effect can be evaluated by comparing, in
Figure 4, the asymptotic distribution of log-odds residuals with the correspond-
ing density for known parameters, assuming f3, = 2.
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In the case of unknown parameters, the misspecification of the baseline haz-
ard is still reflected by an anomalous concentration of residuals. An additional
shift of the asymptotic density towards the left side can be explained by the pres-
ence of the additional term ¢ in the probability limit of 5. The histogram in the
background is based on 5000 simulated trials, assuming a sample size of 20.
Values of a single covariate x;, were assumed binomially distributed with Prob(x,
= 1) =Prob(x, = 2) = 0.5. The corresponding survival times were generated from
a Weibull distribution, setting 8, =2 3, = 1.39 and b, = -0.29. An exponential
model was fitted to the generated data and log-odds and normal deviate residuals
of the last subject of each trial were recorded. The approximation to the asymp-
totic density appears satisfactory even for such a limited sample size.
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Fig. 4 - Distribution of log-odds residuals assuming the exponential regression model
while theWeibull model holds: —, asymptotic pdf; ..., pdf assuming known parame-
ters; — - —, reference logistic pdf.

4. An application

The following example illustrates the use of the results above. It is a study of the
lifetimes of Klevar 49/Epoxy spherical vessels that are subjected to a constant
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sustained pressure until vessel failure have been made. The NASA space shuttle
uses Klevar 49/Epoxy spherical pressure vessels in a sustained pressure mode
throughout the usage life of the vessels and several commercial application are
also subjected to this service condition. The study was done to generate baseline
data and to predict vessel life under different levels of pressure. Four data sets are
considered here, at stress levels decreasing from 90% to 60%. An exponential
model was fitted to each data set and log-odds residuals from the fitted models
are shown in Figure 5.

Both at 90% and 80% stress level the residuals’ empirical distributions are
very close to the logistic reference density, providing evidence in favor of the
null hypothesis of constant hazard. Conversely, at low stress levels, the residuals’
distributions clearly departs from the reference density, suggesting the presence
of a monotone increasing hazard; the lower the stress level, the stronger the evi-
dence.

48
3.8

06

[$X:]

Fig. 5 — Log-odds residuals for the Klevar 49/Epoxy study: (a) 90% stress level; (b)
80% stress level; (c) 70% stress level; (d) 60% stress level.
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In order to improve the graphical understanding, in Figure 6 the kernel esti-
mates of the residuals’ empirical distributions have been over-imposed for differ-
ent stress levels. Compare Figure 5 with Figure 3 where the residuals’ pdfs corre-
sponding to misspecified exponential models are shown. The empirical distribu-
tion at 60% stress level clearly resembles the expected distribution in case of
monotone increasing hazard: it is much more concentrated than the reference
logistic density, showing a slight shift towards the left side. This finding is con-
sistent with the results obtained by Barlow, Toland and Freeman (1984) in a Baye-
sian framework.

Notice that the shape parameter of the Weibull distribution could be indirectly
estimated by maximizing the likelihood function of observed residuals.

5. Censoring

Survival data are typically censored and it is important to determine how the
residuals’ distribution is affected by the presence of censoring. We assume a cor-

a6

Pdfs

Fig. 6 — Empirical pdfs of log-odds residuals fot the Klevar 49/Epoxy study: —,
reference logistic pdf; ..., 90% stress level; — - —, 80% stress level; — —, 70% stress
level; — -+ -, 60% stress level.
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rectly specified model and an independent non-informative censoring mecha-
nism. Note at first that, since the survival function is decreasing in time, right
censored data result in left censored residuals.

Figure 7 shows the empirical distribution of log-odds residuals from 5000 sim-
ulated trials for n = 100. In each trial values of a single covariate x, were assumed
binomially distributed with Prob(x, = 1) = Prob(x, =2) =0.5. The corresponding
survival times were generated from a A-exponential distribution, setting A = 1
and A =2 for x, = 1 and x, = 2, respectively. An exponential model was fitted to
the generated data and log-odds and normal deviate residuals of the last subject
of each trial were recorded to guarantee independence of observations. The gen-
erated samples were censored using the procedure by Gehan and Thomas (1969)
to model a clinical trial. Subjects were assumed to enter the study in a constant
rate in an interval (0, 7) and then to fail according to the described survival time
distributions. The value of 7, the time of analysis, was determined as in Green et
al. (1979) to achieve an expected 70% of censored survival times.

Note the substantial departure of the empirical distribution of log-odds re-
siduals from the reference standard logistic density: the left tail of the distribu-
tion, which corresponds to long survival times, is truncated and residuals are
concentrated in the interval (0, 2). Actually, the empirical density can be re-

Fig. 7 — Empirical distribution of log-odds residuals assuming 70% of censoring: —,
reference logistic density; — - —, kernel density estimate.
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garded as a mixture of two distributions: while uncensored residuals can still
be assumed to follow a logistic density, this is not the case for the censored
ones. Note that even uncensored residuals cannot be regarded as representative
of a logistic population since censoring is not acting uniformly on the positive
real line.

Assume now that the baseline hazard has been wrongly specified: the bias due
to censoring and the bias due to the misspecified baseline family overlap and it
may be difficult to distinguish one from the other. The extent to which we can
still recognize the effect of a wrong baseline family depends on both the percent-
age of censoring and the families of distributions considered.

The first proposal to accommodate residuals to censoring dates back to 1977
(Crowley and Hu, 1977). The main idea behind it is that the distribution of the
unknown true residual, given T; > ¢, is related to the uniform distribution of
S (T) in [0, S (c))]. Thus a censored residuals can be replaced by its conditional
mean or median value. By denoting with /; the observed censored residual, we
have (Nardi and Schemper, 1999)

I
1+e"
i

E[LIL <I]=1 - log(1+e"'r)_

e

Figure 8 shows the empirical distribution of log-odds residuals, being censored
residuals replaced by their conditional mean values. Due to the averaging proc-
ess, the adjusted residuals tend to be less extreme then the corresponding unob-
servable L. It results in an anomalous concentration of the empirical distribution
which still substantially departs from the reference density.

In order to avoid the reduced variability in adjusted residuals, we propose to
randomly sample from the residuals’ conditional distributions and to proceed in
the spirit of Rubin’s multiple imputation (Rubin, 1987). Assume that individual {
is censored at c;. Then, instead of replacing the censored residual with its condi-
tional expectation, we randomly generate r normal deviate residuals from the
distribution of (L;IT; > ¢;), r being the number of imputations. Note that this pro-
cedure can be applied to any diagnostic tool, provided that the sampling distribu-
tion is known. Each of the imputed residuals for individual i is weighted 1/r.
Figure 9 shows the empirical distribution of log-odds residuals for r = 3, assum-
ing 70% of censoring. The left tail of the distribution is now reconstructed avoid-
ing the concentration effect and the approximation to the logistic density is satis-
factory, despite the high percentage of censoring. It is worth to remark that the
imputation is done under the null hypothesis of a correctly specified model. This
may lead to a conservative behaviour in assessing departures from model as-
sumptions when the percentage of censoring is high.
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Fig. 8 — Empirical distribution of log-odds residuals assuming 70% of censoring

(censored residuals have been replaced with their expected values): —, reference
logistic density; — - —, kernel density estimate.
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Fig. 9 — Empirical distribution of log-odds residuals assuming 70% of censoring
(censored residuals have been replaced with imputed values): —, reference logistic
density; — - —, kernel density estimate.
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6. Discussion

We have proposed a graphical procedure to discriminate among alternative para-
metric models on the basis of residuals’ properties. The idea of comparing the
empirical distribution of residuals with their reference distribution, assuming a
properly specified model, is not new. In 1997 Crowley and Hu (Crowley and Hu,
1977) and Kay (Kay, 1977) suggested to compare the empirical distribution of
Cox and Snell residuals to the expected unit-exponential density. The proposal
have had little success and some serious issues have arisen.

The comparison between residuals’ empirical and reference distribution was
intended as a global goodness of fit test for the Cox’s model. Now, because Ay is
completely unspecified, this global test gives no information about the real fit of
the model. If no covariates are in the model, A, can be made to fit the data exact-
ly; the order statistics of the residuals are then exactly the order statistics of the
(possibly censored) unit exponential distribution, even if important covariates
have been omitted. For details see Lagakos (1981) and Baltazar and Pefia (1995).

The skewness of the reference exponential distribution makes a visual assess-
ment of possible departures from the reference distribution difficult to be deter-
mined so that plots of residuals are not easy to interpret. Furthermore, even when
a clear departure from the reference distribution is observed, there is no indica-
tion in what way the fitted model should be improved.

In our proposal Cox and Snell residuals have been replaced with log-odds and
normal deviate residuals, both of them having a symmetric, unimodal reference
distribution. Our goal is to verify the appropriateness of a fully parametric mod-
els with respect to the assumptions on the shape of the baseline hazards. In other
words, our attention focuses on the shape parameter k, the regression parameters
playing the role of nuisance parameters. We have addressed the question how to
proceed if the graphical inspection indicates that the model does not fit, by inves-
tigating the distribution of residuals under the alternative hypothesis.

Our study has been limited to the comparison between the exponential (the
null hypothesis) and the Weibull model (the alternative hypothesis) since they are
widely used in reliability analysis. However the idea can be applied to any couple
of alternative parametric models.

It is worth to remark that the residuals’ density under the alternative hypothe-
sis depends only on the shape parameter, i.e., nuisance parameters have be elim-
inated by moving on the scale of residuals. Since residuals’ distributions are known
both under the nuil and the alternative hypothesis, a formal test could be derived.
When the competing models are nested, as in our case, the classic likelihood
ratio test guarantees already high efficiency. Conversely in the case of separate
families of hypothesis a test based on residuals properties could be a valid alter-
native to the modified likelihood ratio test proposed by Cox in the late 1961
(Cox, 1962).
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Appendix
Appendix A: Proofs of residuals’ densities assuming known parameters
Constant versus monotone hazard

Suppose the Weibull regression model
log T, = B, + 3, b;x, +log T,
1
@ =B, " expl-t*]

holds. Then

£ @0y = B,(BH* " expl-(B, 1B,

._u{[ﬂ+§b%ﬂ

If we incorrectly assume an exponential density as baseline distribution we have

where

S =8T) = exp[—[él + idjx,.j j?}}
1

Since parameters are assumed to be known and the linear predictor correctly
specified 8, = B, b;=d,, j = 1,..., m. Then, being S(T}) a monotone transforma-
tion, the density of S; can be obtained by applying the change of variable formula

B

fi =22 log#)” exp[—(logt)™]

The densities (2) and (3) of Section 3 can be derived by applying the logit and the
probit transformation to S; and taking into account that both the transformations
are monotone.
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Appendix B: Proofs of residuals’ asymptotic distributions

Throughout this appendix we assume that lim, ,_n™' 2:’ x X is a bounded posi-

tive-definite matrix. Under this assumption, the models considered here fulfill
the regularity conditions required in the asymptotic theory of mles.

Constant versus monotone hazard

Suppose theWeibull regression model (see Appendix A) holds, while an expo-
nential baseline density is incorrectly assumed. The corresponding pdfs are

£(0)=B,(B 1y exp[~(B,1)**1B,

= fi (BB,
where
B = exp{—(,ﬁ1 + i bx, H
=1
and !
fo:(t) =exp[~(D” 1)] D\ = fToE,- (D 1) D ©
where

D\ = expl—[&’” + Zd}"’xij H
=t

Let 6" and d™ denote the mles of the corresponding unknown parameters. As
n — oo, 5" and d” converge to those values that minimize the Kullback-Leibler
divergence between the true and the falsely assumed model. This is equivalent to
maximize the expected value of the log-likelihood function for the exponential
model, the expectation being under the true Weibull model (see also Pereira,
1978). We have
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E, "]

LT
Y[ log (0 7 (nyat
i=1
=y J:"" [log D +log fE (D™ N} B, £, (B,1)ds
i=]
_\ ) _ i [ w
= Z[logD, D[ B f,()i(B,.r)dt] -

i=1

i[log D" %’”r(—ﬁ% - 1]}

i=1 i

By computing the partial derivatives with respect to 5, and d”, we get the fol-

lowing system of equations

i

d S (D" (B, -1 ‘
ad(") EWUE]:Z{(?F[ﬁ_ﬁ—]_IJXU}zoj=1"’m
i i 2

J E -| D ﬁz -1
—=E,[l"]= T -1{=0
adl(n) EW[ ] ;[ B ( ﬁz

=1

leading to the probability limits
8" -, B+ logf(MJ 8)
B,
d" -, b 9)
Starting from these results the following probability limits hold

DV = expli—[&(") + i d}") Xx; H —p exP[*(ﬁl + IOgr(ﬁzﬁﬂ) + ibj Xy ﬂ

J=1 2 1
=pV-E
(T;‘,Di("))-’i’ (Y;vDiW—E)
S = exp[~(T,,D") >, exp(~(T;,D))]=5§,
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The results above are justified by the continuity of the applied mappings and by
the convergence of double random variables given the convergence of the mar-
ginal components. Notice that T, follows here the true Weibull model, while S is
defined according to the falsely assumed exponential model. By transforming 7

(0

according to S; we get the limiting distribution of S;” that follows

fs (D)= %—c-(—c logt)‘sz_‘ exp[—(—clogt)ﬁz]

where

F(/@)

(n)

Finally, applying the logit transformation to S;*, we have

(n)
L™ =1log " —IS.‘”) —, log

i

1-8

i

LW—E

]

where

B ; J(B-D l+e'
fL1w—£ (t) = ﬁz—c,i:log —1'+,_e:| €Xp| —[(lOg [e
l+e e e
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