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Abstract

The field of nonparametric function estimation has broadened its appeal in recent years
with an array of new tools for statistical analysis. In particular, theoretical and applied
research on the field of wavelets has had noticeable influence on statistical topics such as
nonparametric regression, nonparametric density estimation, nonparametric discrimina­
tion and many other related topics. This is a survey article that attempts to synthetize a
broad variety of work on wavelets in statistics and includes some recent developments in
nonparametric curve estimation that have been omitted from review articles and books on
the subject. After a short introduction to wavelet theory, wavelets are treated in the famil­
iar context of estimation of «smooth» functions. Both «linear» and «nonlinearx wavelet
estimation methods are discussed and cross-validation methods for choosing the smooth­
ing parameters are addressed. Finally, some areas of related research are mentioned, such
as hypothesis testing, model selection, hazard rate estimation for censored data, and non­
parametric change-point problems. The closing section formulates some promising re­
search directions relating to wavelets in statistics.

Keywords and phrares: Wavelets, multiresolution analysis, nonparametric curve estima­
tion, density estimation, regression, model selection, orthogonal series, thresholding, cross­
validation, shrinkage, denoising.

1. Introduction

Wavelet theory has provided statisticians with powerful new techniques for non­
parametric inference by combining recent advances in approximation theory with
insight gained from applied signal analysis. When faced with the problem of
recovering a 'piecewise' smooth function when only noise measurements are
available, wavelet smoothing methods provide a natural and flexible approach to
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the estimation of the true function due their outstanding ability and efficiency to
respond to local variations without allowing pathological behavior.

This article surveys recent developments and applications of wavelets in non­
parametric curve estimation, as well as topics that were omitted from previous
review articles and books. Both «linear» and «nonlinear» wavelet estimation meth­
ods are presented and the relative advantages and disadvantages of each method
are discussed. Our exposition assumes no prior knowledge of the theory of wave­
lets, and we briefly develop all the necessary tools, under minimal conditions. As
in almost all nonparametric smoothing methods, there are some smoothing para­
meters which determine how much the data are smoothed to produce the estimate.
Automatic choices of these parameters by cross-validation methods are addressed.

Our present discussion is organized as follows: Section 2 deals with the funda­
mentals of wavelet theory. It contains a short overview of the basic definitions
and the main properties of wavelets that will be used throughout this article. The
next section focus on linear wavelet estimators in univariate regression and den­
sity estimation while Section 4 is devoted to nonlinear wavelet smoothers. Cross­
validation methods for selection of the smoothing parameters are also discussed.
In Section 5 we discuss the use of wavelets in a variety of other statistical prob­
lems such as model selection, hazard rate estimation for censored data, and non­
parametric change-point problems as well as their use in time series analysis. In
the concluding section that closes this article we try to identify a number of chal­
lenging open problems and some promising research directions. Note that the
references, though numerous, should not be regarded as exhaustive.

2. Some background on wavelets

In this section we give a briefexposition of the relevant aspects of wavelet theory
that will be used in the sequel and try to explain why wavelets are desirable in
nonparametric curve smoothing. For precise mathematical statements, clear def­
initions and detailed expositions we refer the reader to Meyer [62], Mallat [58],
Daubechies [27], Chui [24], Wickerhauser [92], Cohen and Ryan [26] and Hols­
chneider [52].

2.1. Wavelet analysis

Wavelet analysis requires a description of two basic functions, the scaling func­
tion qJ(x) and the wavelet tp(x). The function qJ(x) is a solution of a two-scale
difference equation

qJ(x) = {2'LhkqJ(2x - k)
keZ
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with normalization JR qJ(x)dx =J. The function l{I(x) is defined by

'11(x) =.J2''i)-J/ h'_kqJ(2x - k~
keZ

(2)

The coefficients h, are called theftlter coefficients, and it is through careful choice
of these that wavelet functions with desirable properties can be constructed.

A wavelet system is the infinite collection of translated and scaled versions of
qJand '11 defined by:

qJj,k(X) =2
j12qJ(2j

x-k~ j,k E Z

'IIj.k( x) = 2j
/
2'11(2j x - k~ i, k E Z

Some additional conditions on the filter coefficients imply that {If!J,b j.k E Z} is
an orthononnal basis of L2(R), and {qJj,k' k E Z} is an orthononnal system in
L2(R) for eachj E Z.

A key observation of Daubechies ([27]) is that it is possible to construct finite­
length sequences of filter coefficients satisfying all of these conditions, resulting
in compactly supported qJ and '11 that have space-frequency localization (this lo­
calization allows parsimonious representation for a wide set of different func­
tions in wavelet series). The derived wavelet basis is well localized in space since
the total energy of a wavelet is restricted to a finite interval. Frequency localiza­
tion simply means that the Fourier transform of a wavelet is localized, i.e., a
wavelet mostly contains frequencies from a certain frequency band. The Heisen­
berg uncertainty principle puts a lower bound on the product of space and fre­
quency variance. The decay towards high frequencies corresponds to the smooth­
ness of the function. The smoother the function, the faster the decay. If the decay
is exponential, the function is infinitely many times differentiable. The decay
towards low frequencies corresponds to the number of vanishing moments of the
wavelet. A wavelet '11 has N vanishing moments in case

JR xP'II(x)dx =0,

for 0 ~p ~N. Thinking of «frequency localization» in terms of smoothness and
vanishing moments, allows a generalization of this notation to settings where no
Fourier transform is available.

In technical terms, a scaling function qJ is said to be r-regular (r E N) if for any
f ~ r and for any integer k one has

I
d !qJl ( )-k
dx( ~ C, J+lxl

where C, is a generic constant depending only on k.
We assume throughout that qJ is r-regular for some re N. Of course the prima-
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ry wavelet inherits the regularity of the scaling function. Moreover if lJfis regular
enough, the resulting wavelet orthonormal basis provides unconditional bases for
a wide set of function spaces, such as Besov or Triebel spaces, see Meyer [62].

The wavelet representation of a function g E L2(R) is

g =L L Wj,klJfj.k
jeZ keZ

where the wavelet coefficients Wj.k are given by Wj,k =fR g(t}lJfj.k(t)dt.
Typically we want algorithms with linear or linear-logarithmic complexity to

pass between a function g and its wavelet coefficients w. Such algorithms are
referred to as a fast wavelet transform. Fast wavelet transforms are often ob­
tained through multiresolution analysis, a framework developed by Mallat [58],
in which the wavelet coefficients <g, lJI.i.k> of a function g for a fixedj describe
the difference between two approximations of g, one with resolution 'li, and one
with the coarser resolution r'.

A multiresolution analysis (or approximation) of L2(R) consists of a nested
sequence of closed subspaces ~,j E Z, of L2(R),

... C V_2 CV_I C V-o C \-j C V2 C "',

such that they have intersection that is trivial and union that is dense in L2(R),

n j Vj ={O}, u j Vj =L2(R),

they are dilates of one another,

f(X)EVj ~f(2x)EVj+I'

and there exists a scaling function f/J E Vu whose integer translates span Vu, the
approximation space with resolution I,

An orthonormal basis of ~, the approximation space with resolution 2-j is then
given by the family {f/Jj,k:k E Z}. The orthogonal projection of a function f E

L2(R) into ~ is given by

Ijf= L<f,f/Jj.k >f/Jj.k'
keZ

and can be thought of as an approximation offwith resolution r'. The multires­
olution analysis is said to be r-regular if f/J is r-regular.

Defining ~ as the orthogonal complement of ~ in ~+I' we get another se­
quence {"'J:j E Z} of closed mutually orthogonal subspaces of L2(R), such that
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each ~ is a dilate of Woand their direct sum is L2(R). The space Wo is spanned by
integer translates of the wavelet lfI that is associated to qJ through equation (2).

According to the above, if g represents a square integrable function, it can be
represented by

(4)

where j, represents a «coarse» level of approximation. The first part of (4) is the

projection Ijog of g onto the coarse approximating space \j", and the second part

represents the details.
One can associate to the projector P, onto Yj its integral kerneldefined by:

g~ Ij (g)=fEl,t )g(t )dt=projection of g onto Yj,
R

where Ej(x,y) =2
j
Lkez I{Jp (x)l{Jp(Y). It is easy to see that Ej(x, y) =i Eo(~x,

iy) and that EO<X+K, y=k) =Eo(x, y) for k E Z. Obviously, Eo is not a convolution
kernel, but the regularity of qJ and lfI implies that it is bounded above by a

convolution kernel, that is IEo(x, y~:s; K(x - y) where K is some positive, bound­

ed, integrable function satisfying moment conditions, see Meyer ([62], p. 33).
The main properties and the key to applications of wavelets and multiresolu­

tion analyses are their powerful approximating qualities, i.e., they provide accu­
rate approximations of a function using only a relatively small fraction of the
coefficients. Given that the norm of a function g usually depends only on the
absolute value of its wavelet coefficients, one can show (see Devore et al. [31])
that the best approximation of a function g with M coefficients, is obtained by

gM = L wj,klflj.k
j,keAM

where AM contains the indexes of the M largest in absolute value coefficients.
Note that this approximation is nonlinear. The speed of convergence of this ap­
proximation as we add more terms quantifies the approximation properties of gM'
This is given by the largest positive exponent a for which

Ilg - gM11 =o(M-a} (5)

The question on how to find a has been extensively studied in the area of nonlin­
ear approximation and smoothness spaces. The main result (see Devore et al.
[31]) says that if the normed space to which g belongs is a Besov space of smooth­
ness index a, then (5) holds. We will give a precise mathematical definition of
Besov spaces in the next subsection. But to gain some intuition on why they are
important, note that functions that are only piecewise smooth still belong to Bes-
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ov spaces with high smoothness index. For such functions it is known that Fouri­
er-based methods give very slow convergence rates (a =1). Therefore, wavelets
are optimal bases for compressing and recovering functions in such spaces.

In many practical situations, the functions involved are only defined on a com­
pact interval, such as the interval [0, I], and to apply wavelets requires some
modifications. Cohen et al. [25] have obtained the necessary boundary correc­
tions to retain orthonormality, and their wavelets on [0, I] also constitute uncon­
ditional bases for the Besov spaces on the interval with an associated multireso­
lution analysis structure. For the phenomena that we wish to present in the fol­
lowing sections one may work with such wavelets without altering the results.

2.2. Besov spaces on the interval

In this subsection we shall only mention the minimum aspects of the Besov spac­
es on the interval to be explicitly invoked in the sequel. For a more detailed study
we refer to Triebel [81].

We restrict the consideration to the range of parameters 1 ~p. q ~ 00, s > 0 and
denote the respective Besov space by S;:" =S;:iR). If the wavelet y has regularity

r > s (more precisely, if lfI E B(... (1 B:..,), then {({JO.k' lfIj,k; k E Z. j 2:: o} is a Riesz

basis simultaneously for all S;:,,(R), 1 ~p, q ~ 00, 0 < s < r, so that for g E S;:,,(R)

g(t)= LaOk({Jo.k(t)+ LL,Bjklflj.k(t)
keZ j=O keZ

is always convergent in the norm topology of the space and

J _ (a. /3) = Ila.ll, +(t(2'('""'H"'>111/3,11,Jr
is an equivalent norm in S;~. Here the notation

(6)

has been used. Hence, for the above range of the parameters, the Besov space

S;:,,(R) can be defined as B;~(R) ={g E L"(R); J"H/(g) < col
An important fact is that Besov spaces can also be defined on the interval [0,

J] (see Triebel [81D. For the considered range of parameters p, q, s all Besov
spaces over Rand [0, I] are continuously embedded in LI./'H' hence, consist of
regular distributions only, and elements of S;~([o, ID are obtained by taking the
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usual pointwise restriction on [0, 1] of a function defined Lebesgue-a.e. on R.
When restricted to an interval, the Besov norm for a function g E 8,:/[0, 1]) is

related to the sequence space norm of the wavelet coefficients as follows

(7)

where a j (). ={aj ok;k=0, ....z- -I} are the coarse scale coefficients obtained

from the wavelet transform on the interval.
The Besov scales include, in particular, the well-known Sobolev and HOlder

scales of smooth functions H" and C (B';~ and B'.... respectively), but in addition
less traditional spaces, like the space of functions of bounded variation, sand­
wiched between B;, and B;~. The latter functions are of statistical interest because
they allow for better models of spatial inhomogeneity (e.g. Meyer [62], Donoho
& Johnstone [35]).

2.3. Computational algorithms and the discrete wavelet transform

An algorithm described in Daubechies and Lagarias ([28], p. 17) (the cascade
algorithm) allows the construction of orthogonal compactly supported wavelet
as limits of step functions which are finer and finer scale approximations of cp.
The algorithm is easy to implement on a computer and converges quite rapidly.
Given a finite sequence of filter coefficients, h(» ..., hN, define the linear operator
Aby

(Aa)" =LA'-2kak' a=(aktz
keZ

where it is understood that h, == 0 if k < 0 or k > N. Define a' =iVao, where (d\
= 1 and (a~k = 0 for k ~O. Set

CPj(X) =L.a£X(2jx-k), (8)
keZ

where Xis the indicator function ofthe interval [-1-, 1[' Under certain conditions
(see Daubechies [27]), the sequence of functions Cf1 converges pointwise to a
limit function cpthat satisfies the two-scale difference equation (1). Note that the
projection integral kernel E, can be written as

Ej (t, s) =2j L.cp(2j t - k)cp(2j s - k}
keZ

When cP has compact support then this is a finite sum, each term of which can be
evaluated by the cascade algorithm.
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The following weights will be useful for some of the estimators that we are
going to consider later. If Aj denotes a bounded interval to evaluate the weights

fAi Ej(t, s)dsone can employ an integrated version of (8):

f ({Jj(x)dx =~:a£rX(2
j
x-k)dx.

keZ 11

The sequence f~ ({Jj(x)dx converges to f~ ({J(x)dx for each u < v.
If the projection of a square integrable function g onto a fine multiresolution

space Vn is known, it can be written as

Pv"g = LCIJ.k({Jn.k
keZ

Given a lower resolution Jo < n, the projection Pv"g can be decomposed as
n

Pv"g= LCJ",({JJ", + LLdj.k({Jj.k'
keZ j=J"keZ

Due to the multiresolution analysis structure, given the Vn coefficients Cn.k' we

find CJ", and dj .k by the following recursive formulas:

m m

where gk =(-lih,.k' The above computations can be summarized as follows: let f
= if" ..., /,,) be an element of the Hilbert space tZ<n) of all square summable
sequences of length n. The distrete wavelet transform of f is an tZ<n) sequence

f3 = (Gf,GHf, ...,GHJ""f, HJf)

where Hand G are operators from tz<2M) to t 2(M) (M is the length of the filter
sequence h) defined coordinate-wise via

m m

The discrete wavelet transformation described above is linear and orthonormal
and can be represented in matrix form. Given the lowpass filter coefficients {hd
one can write the DWT-transformation matrix W IJ,},,' f3 = W IJ.J" f and f =.W~.J" f3 .
If n = 2J for some positive J, both DWT and inverse DWT are performed by
Mallat's [58] fast algorithm that requires only O'(n) operations and is available in
several standard implementations, for example in the S-plus packages WaveTh­
resh (Nason & Silverman [67]) or S+Wavelets (Bruce & Gao [18]) or in the
Matlab package WaveLab (Buckheit et al. [21]).
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3. Linear wavelet methods for curve estimation

Among the first to consider (linear) wavelet methods in statistics are Douhan and
Leon [40], Antoniadis and Carmona [6], Kerkyacharian and Picard [56] and Waiter
[87] for density estimation and Doukhand and Leon [40], Antoniadis, Gregoire
and McKeague [7] for nonparametric regression. In the following subsection we
will address first the performance of such wavelet estimators in the case of a
single model for nonparametric regression in close analogy with the classical
theory of curve estimation. However the case of nonparametric density estima­
tion is important and is addressed in its own right in subsections of Sections
3 and 4.

3.1. Nonparametric regression

Consider the following standard nonparametric regression model involving an
unknown regression function g:

Y;=g(X;)+E;, i=l, ... .n. (9)

Two versions of this model are distinguished in the literature:

(i) the fixed design model in which the X;'s are nonrandom design point (in this
case the X;'s are denoted t i and taken to be ordered 0 ~ t, ~ ... ~ t, ~ 1), with the
observation errors e, LLd. with mean zero and variance 0'2;

(ii) the random design model in which the (Xi' Y)'s are independent and distrib­
uted as (X, Y), with g(x) =E(YIX=x) and E; =Y; - g(X;) (in this case letjdenote
the design density of the X;'s supposed to be bounded away from 0 and 00).

In each case the problem is to estimate the regression function get) for 0 < t < 1.
In the context of non-uniform stochastic design there is a variety of ways to

construct a wavelet estimator of the unknown mean function g. In this case, the
basic wavelet estimator considered in Antoniadis et al. [7] is of the product of j g,
which is then corrected by dividing by an estimator of the design density jwhich
is constructed by a simple wavelet estimator or a kernel estimator. To simplify
the exposition we will only review here the case of the fixed design model.

For the fixed design model, Antoniadis et al. [7] propose the estimator:
n

get) = LY;L EAt,s)ds,
;=} I

(10)

where the A; = [Si_I, s;[ are intervals that partition [0, 1] with t, E A;. This is a
wavelet version of Gasser and MUller's [45] (convolution) kernel estimator or of
Hardle's ([51], p. 51) orthogonal series estimator. It can be seen clearly that the
kernel Eit, s) is variable, since its form depends on t. This changing kernel al-

105



A. ANTONIADlS

lows the wavelet-based estimator to adapt itself automatically to local features of
the data. The resolution level J acts as a tuning parameter, much as the bandwidth
does for standard kernel smoothers. A key aspect of wavelet estimators is that the
tuning parameter ranges over a much more limited set of values than is common
with other nonparametric regression techniques. In practice, only a small number
of values of J (say three or four) need to be considered. The problem of automat­
ically selecting J is rather easier than the bandwidth selection problem for kernel
estimators, since the bandwidth is essentially reduced to the form 2-1 where

J <1logzn. The selection rule used in Antoniadis et at. [7] is to choose J as the
minimizer of the cross validation function

where gult) is the leave-one-out estimator obtained by evaluating g as a func­

tion of J and t) with the ith data point removed. This gives reasonable results
when applied to real and simulated data. In practice, for sample sizes between
100 and 200, they have found that it suffices to examine only J = 3, 4 and 5.

The wavelet estimator (10) has the advantage that the optimal asymptotic rates
of mean square convergence hold for weaker conditions on the underlying func­
tion g(g E B;z for s > 1/2) than must be assumed in obtaining similar results for
other types of smoothing. A disadvantage is that one can derive an asymptotic
normality of the estimator at dyadic points only. At non-dyatic points, the asymp­
totic variance of the estimator, while remaining bounded, oscillates and asymp­
totic normality cannot be obtained. This phenomenon of erratic oscillations in
the variance was also observed by Hall & Patil [48].

Figure I displays the motor-cycle impact data given in Hardle [51]. The obser­
vations consist of accelerometer readings taken through time in an experiment on
the efficacy of crash helmets. For several reasons the time points are not regular­
ly spaced. The cascade algorithm described in subsection 2.3 of Section 2 was
used to compute the weights defining the estimator. The computational complex­
ity of the algorithm for a general design is of the order O(nz) and does not really
take advantage of the fast discrete wavelet transform.

To obtain a faster computation algorithm in the fixed design model with equi­
distant nonrandom design point t, within [0, 1], Antoniadis [4] used another line­
ar method that takes advantage of the DWT transform. Assuming that g is a func­
tion [s]-times continuously differentiable in R, and such that its [s]th derivative
satisfies a Lipschitz condition of order s - [s], when s > 1 and s e N, or that g is
a function s - 1 times continuously differentiable in R, and such that its (s - l)th
derivative satisfies a Lipschitz condition of order 1 when SE N, and taking the
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design points to be of the form t, =i.1, with .1 =T N for i =0, ... , n - 1, where n =
2N

, he obtains a linear wavelet estimator that attains again the optimal asymptotic
mean squared error rates and that is asymptotically normal at dyatic points. The
approach is as follows.

One advantage of the nested structure of a multiresolution analysis is that it
leads to an efficient tree-structure algorithm for the decomposition of functions
in V" for which the coefficients «g, qJ".k> are given. However, when a function is
given in sampled form there is no general method for deriving the coefficients
<g, qJ".k>' A first step towards the curve estimation method is to approximate the
projection Pv. by some operator IL, in terms of the sampled values g(-Pr) and to
then derive a reasonable estimator of the approximation IT"g. Using coiflets (see
Daubechies [27]) that have L vanishing moments with L > [s], such an estimator
of IL,g is obtained by

,N_ 1

gll(t)=ll'ig(t) =TNI2~)~I/>II.k(t) =T N12 L IjI/>II.k(t)
keZ k=O

where the use of coiflets (wavelets for which the scaling function has integral 1
but admits zero moments) allows to approximate the coefficients <g, qJll,k> by

T N
/
2 gU, )with an error o(r'J'r: ). In order to smooth correctly the data, to

c 0
o
.~

Q

-08 0
co It?

8­,

10 20 30
time

40 50

Fig. 1 - Plot of the motorcycleimpactdata together with the wavelet regressionestimates
gbased on the Daubechies scaling function with filter of order 8 for J = 3 (dotted line), J
= 4 (solid line) and J = 5 (dashedline). Cross validationselectedthe curve J = 4 as giving
the best fit.
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each sample size n = 2N one then associates a resolutionj(n) = logz<n)/(1 + 2[s]),
and estimates the unknown function g by the orthogonal projection of gll onto
~(n)' Once again the parameter j(n) governs the smoothness of the estimator.

Another class of linear estimators that is used in literature is derived within the
framework of regularization methods. Such estimators appear in Devore & Luci­
er [30], in a 1993 technical report of Antoniadis recently published ([5]) and in
Amato & Vuza [2]. In smoothing splines, a popular method for nonparametric
regression problems such as the ones treated here a vth order smoothing spline
g).(x) is defined to be that function with square integrable vth derivative which
minimizes over the Sobolev space HV[O, 1] the «discrete» functional:

where g(V) indicates the vth derivative of g (see for example Wahba [86]) . The

«curvature» term f;(g{V)(t )rdt is a penalty term for lack of smoothness. Noting

that the details of the wavelet coefficients of a function g at high resolution levels
correspond to rough parts of the function, this problem can be generalized by
seeking at the minimizer of an expression similar to

(11)

where Jo is a coarse resolution level, Tl.g is the interpolation estimate based on

coiflets and J,pp is the equivalent norm of the Besov space B;p([0,1)). In Antoni­

adis [5] as well as in Amato & Vuza [2] the particular choice p =2 is made. This
choice and the use of wavelet decompositions of/and g, allows one to find an
optimal solution to the variational problem given in (11). This is possible be-

cause the norms 11/1I~'([o./]) and J;22(/) can be determined simultaneously by
examining the wavelet coefficients of/and g.

The solution to the variational problem is the function

r"-I n 2i - J

g). = LCj",kll'J",k + LLPj,k1l'j.k' (12)
k=O j=J"k=O

where Cj".k' k =0, ...• 2
J" -1 denote the empirical scaling coefficients of the

discrete wavelet transform of the data vector Y and

A d'k
{3p = 1+ ~22Sj' j 2: jo' k = 0•... , 2 j -1
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with dj.k being the empirical wavelet coefficients of W
II

•J" V. The estimator g).
appears as a tapered wavelet series estimator of the regression function, i.e. g).
may be viewed as the result of passing the «raw» wavelet series estimate IIlIg
through a low pass filter controlled by the parameters A and s. It can be shown
that, asymptotically as n ~ 00, if s > 1/2 and if A= O(n-2

'/(2H /) ) then the mean
squared error of the estimate g). behaves like O(n-2

r/(2H / ») .

For the practical application of the method, it is of course necessary to have an
objective rule for the choice of the «coarse» resolution 10 and the penalty param­
eter A. As done for previous estimates the resolution level 10 is chosen as log2n1
(2s+ 1). Nothing that the only term involving A in the upper bound of the risk of

the estimator g). is the expectation of IIIIlIg - g).II:'([o./])' the data-driven determi­

nation of A is based on minimization of an appropriate estimate of this expecta­
tion and the knowledge of the noise variance a', A possible choice for an esti­
mate of the noise variance is the one suggested by MUller [64]:

A2 2 n-/[ 1 ]2
a = ( _ )L Y;--(Y;-I+Y;+/) ,

3 n 2 ;=2 2

obtained by fitting constants to successive triples of the data. Lemma I of MUller
shows 6-2 is almost surely consistent and

IA 2 21 o((IOgnt E]a -a = .L

n'

a.s. as n ~ 00 for any e> O.
In spline smoothing, another method for providing, via a further approxima­

tion, an objective estimate for the minimizers of the integrated mean squared
error of the estimates is generalized cross-validation. It is easy to see that the
wavelet estimator introduced by regularization appears as a particular diagonal
linear shrinker (see Donoho and Johnstone [33]). For each resolution i 2? 10, the
wavelet coefficients dj•k are shrinked by a factor 1/(1 + U 2sj

) which is level de­
pendent. Assuming that g is a periodic function, Amato & Vuza [2] use 10 =0 and
choose Aas the minimizer of the «GCV» function

II(In - Rn (A) )VI1
2

~(A)= 2

[i7 Tr(In-Rn(A))]
where Rn(A) denotes this diagonal shrinkage operator.

The linear estimate suggested by Devore and Lucier [30] approximately min­
imizes the penalized functional (11) by a factor of2 and is obtained by projecting
the data vector on Vk where K is chosen such that
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While a reasonable estimate of the unknown variance can be obtained, it seems

more difficult to estimate the norm IIgll~;, unless one has a precise upper bound

for this norm.
To end this subsection, we briefly mention an interesting result of Donoho

[32] where a linear wavelet estimator for an equidistant regression model with
independent Gaussian errors is shown to attain the best asymptotic minimax rate
(n-'logn )fJl12

/J+lI in the sup-norm for the class of functions

{
1f'"(X)- flll(y~ } { }

f: sup a 5:L () f: sup If(x)l5: B ,
-,.ye[a.,] Ix - yl -,.ye[a.,]

for L > 0, B> 0 and 1/2 < f3 =m + a with 0< a ~ 1. A more elementary and
transparent proof of his result is also given in the paper of Oudshoom [71]. This
result is interesting because it shows that with linear wavelet estimators one can
attain minimax rates for sup-norm loss.

3.2. Nonparametric density estimation

The estimation of probability density functions from data is another example of
basic problems in applied statistics. The idea to use a wavelet series expansion
for the estimation of probability functions was first considered by Doukhan and
Leon [40], Antoniadis and Carmona [6], Kerkyacharian and Picard [56] and WaI­
ter [87]. These works are motivated by the multiresolution decomposition asso­
ciated with wavelet orthonormal bases and the localized character of wavelet
expansions. Specialized versions of histograms constructed via Haar basis de­
compositions are described in Chapter 12 of Waiter [88] and some interesting
properties of such Haar-based estimators on the interval [0, 1] are discussed in
Engel [41]. All these papers assume LLd. observations. In Antoniadis and Car­
mona [6], the unknown density belongs to the Sobolev space 8;2. s » 0, whereas
in Kerkyacharian and Picard [56]fbelongs to the Besov space 8;"" p ~ 1, S > 0.
The consistency rates obtained by these authors for linear wavelet estimators are
respectively
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and

A precise asymptotic expression for Ellf -],,11: in the case offE 8;2> s > 0 was

given later by Masry [60] for more general stationary processes. In the LLd. case
the asymptotic expression is shown to be exactly of the form

asn~ 00.

With the basic introduction of wavelets in Section 2 we can examine more
closely the way these estimators are constructed. Let XI' X,• ...• XII be an LLd.
sample and letfbe the probability density of XI which is assumed to exist and
satisfy f E LiR). Using an orthonormal wavelet basis, the wavelet representa­
tion offis then given by

~

f =LCJ".kqJJ".k + LLdj,klflj.k'
keZ j~J"keZ

where Jo represents again a coarse level of approximation. The first issue in esti­
matingfinvolves in estimating the coefficients in the above decomposition. This
can be accomplished by using their empirical counterparts, that is

11

cJII.k =n-1LqJJII.k(Xi)'
i~l

and
11

dj.k =n-1LlfIj,k(Xi}
i~1

Given these estimates, one then estimatesfby

..... Jf ....

!" =LC\,.kqJJ().k + LLdj.klflj.k'
keZ j=J"keZ

(13)

(14)

(15)

where JI ~Jois a resolution suitability chosen. Note that the estimator ]" defined

in (15) belongs to VJ with J =JI + 1 and can be written as

l" =LCJ.kqJJ.k' (16)
keZ

For linear wavelet density estimators the smoothing parameter is the index J of
the highest level to be considered. Several strategies for the automatic choice of
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the tuning parameter have been suggested in the literature. Waiter [88] discusses
an automatic algorithm to choose the most appropriate level J by using the inte­
grated mean square error criterion

IMSE= JE(J,,(t)- f(t)t dx.

The algorithm begins by computing the CK,k at a high and non optimal level, esti­
mating the IMSE of the resulting estimate, and then recursively computing low­
er-level coefficients and the associated estimated error. The level J chosen by
Waiter is the one at which the estimated error increases most rapidly when mov­
ing from a level to the next coarser.

Another method that is considered to be optimal with respect to the IMSE
criterion is the one discussed by Tribouley [82]. The choice is based on the cross­
validation principle and results in the minimization with respect to J of the
expression:

For densities that are compactly supported within a known interval la, b[ and that
are continuously differentiable, a method for choosing J involving the Fisher
functional of the density J, defined by

I [d J2F(J)= [f(t) dtf(t) dt

has been introduced recently by Vannuci and Vidakovic [83]. The «optimal» J is
chosen such that the wavelet estimator J" has an estimated Fisher information
close to the theoretical minimal bound 4Ti/(b - a)2.

Figure 2 displays smooth wavelet-based density estimates of the duration
times of eruption from the Old Faithfull geyser in Yellowstone National Park.
The Old Faithfull data set has been used as a benchmark for density estima­
tors.

The above «linear» method of viewing wavelet-based density estimators might
not be seen so much as an alternative to the kernel approach but as a way of
enhancing that technique. Indeed, the wavelet estimators described above are
nothing else than generalized kernel estimators based on kernels of the form E}.
The resolution J permits a global level of smoothing in terms of the frequency of
the scaling function and 2-} is analogous to bandwidth for a kernel estimator.
However, contrary to the case of classical kernel estimators, the term represent­
ing bias and variance of wavelet-based density estimators oscillate erratically
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with a wavelength of the same order as T J
• Indeed, as proved by Hall & Patil

[48], the classical pointwise bias and variance formulae,

bias(t) =E ],,(t)- /(t)=a,(t)T 1S

and

variance(t) =var{f,,(t)}=a2(t)2%

for smooth functions a, and a2 are no longer valid. They are replaced by

bias(t)=a,(t)aA21 t)T1S

and
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Fig. 2 - Linear wavelet-based density estimates for the duration times of eruption from
the Old Faithfull geyser data set using Daubechies filters of order 5 and four choices ofJ.
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for new nondegenerate functions a, and a4 • The erratic oscillations represented
by a3(z1t) and ai2Jt) can be clearly observed in the estimates displayed in figure
2. One way to reduce these oscillations, thus resulting in a smaller mean-squared
error, is to not insist on choosing a smoothing frequency that is a power of 2 for
the wavelet estimator. Hall & Patil [48], suggest using the family of orthonormal
scaling functions (A(x) =p'l2qXpX + k) where p > 0 denotes an arbitrary positive
number. It is easy to see that when p =z1 one has (A(x) = qJJ.k" This generalization
permits a wider range of choices for the smoothing parameter in applications of
curve estimation. A quantification of the advantages of non-integer resolution
levels as well as some techniques for choosing the smoothing parameter by cross­
validation as is done for kernel estimation is given in Hall & Nason [47]. Whenp
=pi the resulting estimator may be seen as a classical wavelet-based estimator
applied to a preliminary binned data with bindwidth proportional to p (see Anto­
niadis & Pham [8]). This is also the approach taken by Antoniadis, Gregoire and
Vial [10], to generalize the fast linear wavelet estimators to general design non­
parametric regression and density estimation.

There is a potential problem in using wavelets for density estimation. When
using general scaling functions there is no guarantee that the estimates are posi­
tive or integrate to 1. Indeed, it does happens that they are often negative in the
tails of the distribution. Moreover there is no easy way to norm the wavelet esti­
mator, except to numerically integrate the' estimate in order to work out the nor­
ming constant. Walter [88] considers estimating the density function indirectly,
by using wavelets to estimate the Fourier transform of the density, and then trans­
forming back but he points out that the rate of convergence of such an estimate
may be relatively slow.

Another approach used in literature, that will be discussed further when non­
linear wavelet estimation methods will be presented, is to estimate the square
root of the density and square back the estimate after. The idea of the above
transformation can be found in Good & Gaskins [46] in the context of penalized

likelihood methods. The condition Jf( x)dx =1 becomes J(.fl(x))1/2dx = 1, so

that .fl E L2
• Pinheiro and Vidakovic [73] do exploit this idea of estimating the

square root of the -density in a wavelet setting, but, in order to get estimators of
the needed wavelet coefficients they use a rough but consistent pre-estimator of
the unknown density. There is no theoretical or convincing numerical evidence
in their paper that optimal asymptotic rates can be obtained in this way.

Figure 3 displays the linear estimates corresponding to the Hall & Patil approach
as well as on the binning + smoothing approach of Antoniadis et al. To avoid neg­
ative values of the estimates Pinheiro and Vidakovic's [73] idea was used.

Along the same line, but using a different approach and different estimators, is
the research completed by Penev & Dechevsky [72]. Since their method deals prin­
cipally with nonlinear thresholding methods, it will be discussed in the next Section.
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4. Nonlinear wavelet methods for curve estimation

In the previous section the nonparametric estimation of regression functions and
probability density functions has been restricted to the context of linear wavelet­
based estimators. The application of these methods has provided only asymptotic
upper bounds to the integrated squared error for functions that are traditionally
smooth. For functions that might not be smooth in the classical sense, nonIinear
wavelet-based estimation methods provide levels of smoothing which automati­
cally adapt to local variations of roughness of the curve. Nonlinear wavelets
methods in statistics were introduced by Donoho and Johnstone [33], [34], [36]
and Donoho, Johnstone, Kerkyacharian and Picard [37], to cite only few of their

Hall& Patil
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Fig. 3 - Linear wavelet-based density estimates for the duration times of eruption from
the Old Faithfull geyser data set using Hall and Patil's scaling functions (top) and Antoni­
adis et al.'s pre-binning (64 bins), both based on Daubechies wavelet filters of order 4
adapted to the interval.
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papers. They permit two non-overlapping levels of smoothing, one global, via
the frequency of scaling function, and the other one local, via the scale of the
wavelet function. This section deals with the ability of the nonlinear component
of wavelet methods to adapt to local features of an unknown curve, and thus to
correct for more erratic features of the curve no taken into account by the linear
component.

4.1. Nonparametric regression

In this subsection, contrary to the assumptions used in the linear case, we restrict
our attention to nonparametric regression models on the unit interval with an
equidistant deterministicdesign and a Gaussian noise. Possible extensions that
might be possible for a random design and other types of noise will be discussed
later.

The paper by Donoho, Johnstone, Kerkyacharian and Picard [37] is perhaps
the most significant paper from both a mathematical and practical point of view
for the existence of nonparametric function estimators that behave in a (near)
asymptotic optimal way simultaneously for a broad range of function spaces (Bes­
ov or Triebel spaces) not considered before in statistics and a variety of loss
measures (L, -losses) and whose definitions are independent of the set of function
spaces considered. Mathematically it gives a unified treatment of optimal rates of
convergence for nonparametric function estimation in a very general setup. This
is achieved by using the approximating properties of wavelet bases and the close
relation between the problem of minimax estimation and the theory of optimal
recovery, a survey of which can be found in a paper by Michelli and Rivlin [63].
The connection with deterministic optimal recovery problems is obtained by means
of a simple but powerful thresholding device on the empirical wavelet coeffi­
cients, which works reasonably well in practice. We refer the reader to the above
papers for the exact assumptions and consistency rates, which are nearly optimal
in the sense that they are equal to the optimal asymptotic rates up to a log n
multiplicative factor.

Let us now further describe the regression model and the methods of estima­
tion. The data are discrete and follow the fixed equidistant design regression
model on [0, 1]:

Y; = f(t;)+GE;, i = l, ... .n = 2N
,

where t, =i/n, and the e;'s, the noise in the observations, are LLd.N(O, 1) random
errors. To this data set, we apply the discrete wavelet transform W n.L, : R n ~ R"
for some Jo < N and for simplicity of exposition we will use a periodic version of
the transform. Heuristically, the assumption made in the various papers cited
above is that
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2N12f<p((t-i/2N)2 N)/(t)dt= /(iI2N)/2NI2
,

R

ifN is large. Such an assumption is reasonable when the function/is sufficiently
smooth (see Section 3) but the approximation seems questionable when / be­
longs to classes of functions that may be not even continuous. To overcome this,
one may think of the r N12y;,s as noisy versions of the left hand side of the above

formula. Let c =r N12"W n.L, Y be the empirical scaling coefficients, let f3 =

r N12"W /I,l" r and let z =r N12"W /I,l" €. Since the transformation is linear one has,

for j =0, ... , N - 1 and k =Q, ... , ~ - 1:

f3 2- NI2
C'k = 'k + O"Z'k'},}, r. (17)

and since it is orthonormal, the Zj,k are i.i.d. N(O, 1). The respective mean squared
errors in estimating the wavelet coefficients f3 of / or / are therefore the same.
Now, for the large classes of functions considered, and with the use of sufficient­
ly regular wavelet the vector f3 is generally sparse, i.e., relatively few compo­
nents are large. The noise in the original sequence Yi is spread out uniformly
among all empirical wavelet coefficients. The heuristic idea underlying the 00­
noho-Johnstone procedure is to choose 'the set of coefficients that contain signif­
icant signal and to remove the noise component from the noisy coefficients. This
is achieved by thresholding.

The thresholding estimator of the true coefficient f3j.k' j ~ Jo is defined by

~ - 0" (-In v» Jf3k - rTf, --
s. -vn" 0"

where the function TfA in (18) is either the hard thresholding function.

(18)

H {x,TfA(x)=
0,

or the soft thresholding function

{

X- A,

Tff(x) = 0,

X+A,

iflxl>A,

otherwise.

iflxl>A,

ifixl~ A,

iflxl <-A.

(19)

(20)

Once the thresholding is performed, one applies the inverse empirical transform

"W~,Ju ~to the estimated thresholded vector, obtaining the estimated regression

curve/nU). The method is therefore simple and practical, with an algorithm that
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functions in order O(n) operations. The above arguments produce the regression
estimator

The first part of the right hand side is identical to the linear wavelet-based esti­
mator studied in the previous Section. The second part enhances the linear esti­
mator by incorporating through thresholding some wavelet terms.

Clearly, when using either type of wavelet thresholding, the choice of the cut­
off resolution Jo and of a threshold A. is a fundamental issue (see figure 4).

The typical sparsity of the ~.k sequence ensures that most of the appropriately
scaled coefficients F cj .k / (J are essentially white noise. Motivated from the
«large deviation» nature of the problem, Donoho and Johnstone suggest taking
A. =~210gn , named universal threshold. The procedure is proven to be asymp­
totically optimal for many classes of functions and makes no a priori assump­
tions on the particular class thatfmay belong, producing therefore an asymptot­
ically adaptive estimator.

Another method for global thresholding proposed by Donoho and Johnstone
[33] is labeled minimax thresholding. Briefly, the performances of shrinkage es­
timators are compared to the benchmark

III

B,,(8,(J2)=(J2 + Lmin(O;,(J2)
;=/

where, to simplify the notation, 0 denotes the m-dimensional vector of wavelet
coefficients, which are observed with a white noise of variance (J2. The above
benchmark is derived by using the fact that if one has knowledge of the true

.....u...uLt
"L..,.:.--...--.......---.---.----.,...J"L...,-:--....----.---.---....----,..J

..

Fig. 4 - The effect of varying the thresold value on the resuling wavelet estimator from
a simulated data set.
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coefficients, an ideal minimal mean-squared error estimator is obtained by set­
ting a noisy coefficient to zero if the variance o' of the noise is larger than the
square of the true wavelet coefficient. Note that the benchmark B,,( e, ( 2

) is small
in comparison to me' (the total variance in the signal observed with noise) if eis
sparse, and usually serves as a measure for the sparsity of e. One of the most
significant results of Donoho and Johnstone is that, in the case one observes a
realization from a Gaussian vector m-dimensional vector U - NII/( e, a 2Im) , the
following upper bound holds

lEll1Ji, (U) _ dl2

sup '1 $ (1 + 210gn),
BeRm B,,(e,a 2

)

when A=~210gn is taken to be the universal threshold. It is also proven that the

2 log n factor cannot be improved, that is

I
. . f 1. lEll1Ji (U) - ~12 > 1
lmln,,~~--mfsup ( ') _.

210gn A B B
Il

e.o:
In his thesis, Gao [43], proves similar results for LLd. variables with exponential
tails. Recently, Averkamp and Houdre [14], obtained a stronger result of this type
for a wider class of distributions. Using the above, when eis the vector of wave­
let coefficients of the regression function, then the minimax thresholded wavelet
estimator is obtained by computing the threshold A.;, that attains the bound

. lEll1Ji (U)- el1
2

mfsup ( 2)
A B B

Il
e,o

Note however that the above results cannot be applied to the empirical coeffi­
cients of a regression with non-normal errors since then the noise in the wavelet
coefficients is no longer independent nor identically distributed. For some partic­
ular non-Gaussian regression models a possible approach, using some large de­
viation results, is one proposed by Neumann and Spokoiny [69], where a risk
equivalence between some non-Gaussian regression models and Gaussian white
noise models is established.

The threshold A;, does not exist in analytical form but a numerical approxima­
tion for a range of sample sizes are given in Donoho and Johnstone [33]. For a
given sample size, the optimal minimax threshold is typically smaller than the
universal one, and thus results in less smoothing (see figure 5).

Both thresholding rules require an estimate of the unknown variance a', When
it is known that the underlying regression function is Holder continuous an esti­
mator as the one described in Section 3 can be used. Donoho and Johnstone [33]
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Fig. 5 - Minimax and universal thresholding applied to the simulated data set in figure 4.

propose a robust estimate of (J by taking the median absolute deviation of the
coefficients at the finest level of the empirical decomposition

A median(lcN-I.k - median(lcN-I.k /)1)
(J =---'------------"-

0.6745

since typically there is also some signal present even at the finest level.
The estimators described above, while applicable to a wide range of variable

frequency curves, usually provide an excessive amount of smoothing when ap­
plied to curves that are piecewise smooth. Their mean-squared errors are asymp­
totically dominated by bias. To address this problem, Donoho and Johnstone [35]
look at a variant with level-dependent thresholds. The method, called Sureshrink
employs an unbiased risk estimation that is due to Stein [78] and is shown in
Ogden [70] to be in relation with Akaike's information criterion (Ale), intro­
duced by Akaike for time series modelling.

Hall and PatiI ([48], [49], [50]) studied asymptotic wavelet shrinkage methods
in non-parametric curve estimation from the different viewpoint of a fixed target
function, as opposed to the minimax approach of Donoho et al. In the case of
functions that are smooth or piecewise smooth in the classical sense, using wave­
let decompositions which allow non-integer resolution levels, already described
in Section 3, they derive necessary and sufficient conditions on the asymptotic
form of the threshold and smoothing parameters for their resulting curve estima­
tor to achieve optimal mean square convergence rates.

Most of the methods and results described above are asymptotic in character.
As with any asymptotic result, there remain doubts as to how well the asymptotic
describe small sample behavior. These issues are addressed by Marron et al. [59]
using the tools of exact risk analysis, which was developed in Gasser and MUller
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[45], and first applied to wavelet estimators by Antoniadis et al. [7]. Finite sam­
ple performance of thresholded wavelet estimators has also been studied by Bruce
and Gao [19], where computationally efficient formulas for computing the exact
pointwise bias, variance and L2 risk of thresholded wavelet estimators in finite
sample situations are derived, thus complementing the tools of simulation and
asymptotic analysis. Comparing hard and soft shrinkage, hard shrink tends to
have bigger variance (because of the discontinuity of the shrinkage function) and
soft shrink tends to have bigger bias (because of shrinking all big coefficients
towards 0 by A). To remedy these drawbacks, and paralleling the choice of shrink­
age functions with that of influence functions in robust statistics, Bruce and Gao
[20] introduce a general semisoft shrinkage function

TJ (x) ={~gn(x) A,(I-r1-
A/)

A/.A, ~

X

iflxl:s; AI

ifAI < Ixl:s; A,2

iflxl> A,2

that offers some advantages over both hard shrinkage (uniformly smaller risk
and less sensitivity to small perturbations in the data) and soft shrinkage (smaller
bias and smaller overall L2 risk). A drawback of this semisoft rule is that it re­
quires two thresholds, thus making threshold selection problems much harder
and computationally more expensive for adaptive threshold selection.

One way to choose the thresholds is by generalized cross-validation proposed
first for nonlinear wavelet series estimators by Weyrich and Warhola [91]. Re­
cently, Jansen et at. [53] have shown that, under appropriate conditions, this gen­
eralized cross-validation choice is asymptotically optimal, in the sense of yield­
ing asymptotically the threshold that minimizes the expected mean squared error.
Other data-driven methods for the choice of the smoothing parameter(s) in thresh­
olding wavelet estimators have also been proposed in the literature. For a de­
tailed account and description of these methods the reader is referred to the pa­
pers by Nason ([66], [65]) or the book by Ogden [70].

4.2. Density estimation

Nonlinear wavelet-based density estimators in the LLd. setting were introduced
by Johnstone et at. [54] and Donoho et at. [38] and parallel exactly the results
obtained for the regression case, although the proofs are entirely different. For
the appropriate compactly supported wavelet basis, they take the form

in= LC\,.kfl'J",k+ ±LTJA;(dj,k)'I'j.k' (21)
keR j=J" ke2
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with properly chosen resolutions lo, J, and level dependent thresholds Ai' As
pointed earlier, the estimator (21) may be seen as a coarser approximation of!at
level lo plus some details that are added to improve the approximation. Using

J, =log, n -log2(logn~ Ai =A~(j - lo)/n, where A is some constant and lo is

cho~en according to the regularity of cp and the sample size, the threshold estima­

tor!" in the papers cited above (see also Delyon and Judistsky [29]) is shown to

be asymptotical optimal in the sense that, for s » lip andp' ;::(1 + 2s)p, it attains

the minimax Ll l• rate

in the class of densities in the Besov space B;:" with l'l,q(f) ~ M, where Mis a

given constant. This rate cannot be attained with linear methods. Note, however,

that whenp' ~ 00, Masry [61] has shown that this rate is attained by linear esti­

mators and thus nonlinear estimators do not improve the rate of convergence in

this case.
We have already mentioned the approach taken by Penev and Dechevsky [72],

to estimate first by wavelet methods the square root of the density before taking
its square as the final estimate, in order to preserve the non-negativity while still
retaining the asymptotic minimax properties. The nonlinearity of the estimates is
justified by the fact that they assume that it is the square root of'j'that belongs to
a Besov ball. However, they prove that there are some reasonable connections

between Besov regularity of!and that of H. The advantage of the estimate they

propose is that it can be normed to integrate to 1 very easily without numerical
integration.

Some data dependent methods for choosing lo (Tribouley [82]) and .A.j have
been proposed by Pinheiro and Vidakovic [73] and more recently by Vannucci
and Vidakovic [83].

5. Related topics

The regression models discussed in the previous sections involve additive white
noise of constant level, no weighting and most of the time normality. Antoniadis
and Lavergne [9] extend the linear wavelet-based methods to data with hetero­
scedastic noise. More recently, an extension of Donoho and Johnstone's wavelet
shrinkage smoothing technique to handle data with heteroscedastic noise has been
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given by Gao [44]. Johnstone and Silverman [55] have considered the extension
to more general noise models than the white noise model. When the noise is
stationary, using appropriately chosen level dependent thresholds, they obtain
asymptotic minimax results similar to the ones obtained for the white noise re­
gression model. When the noise is stationary, using appropriately chosen level
dependent thresholds, they obtain asymptotic minimax results similar to the ones
obtained for the white noise regression model. A simpler proof of the optimality
of their thresholding procedure is given by Amato and Vuza [3]. Brillinger ([ 16],
[17]) also presents some inferential aspects of the wavelet technique far a deter­
ministic signal in the presence of additive stationary non necessarily Gaussian
noise. Function estimation for nonparameteric regression with long-range de­
pendence errors is studied in Wang [90].

Wavelet versions ofestimators of a hazard rate function in the context of infer­
ence for a counting process multiplicative intensity model have been studied by
Antoniadis et al. [7]. See also Antoniadis, Gregoire and Nason [12] for a contri­
bution to the methodology available for estimating the density and the hazard
rate from randomly censored data.

The problem of estimating the log spectrum of a stationary Gaussian time
series by wavelet thresholding technique has been addressed by Gao [43] in his
thesis. More generally Neumann [68] applied the thresholding procedure in the
framework of spectral density estimation for a stationary, possibly non Gaussian
time series. It has also been applied by von Sachs and Schneider [85] to the
periodogram of a locally stationary process for the estimation of its evolutionary
spectrum.

A generalization to the problem of recoveringj'from indirect data Y =KC + e,
where K is a known operator has been addressed by Kolaczyk [57] in the context
of integration, fractional integration and tomography.

Since the basic aim of wavelet analysis is to represent a function as a linear
superposition of wavelets centered on a sequence of time points, it forms a natu­
ral tool for the investigation of jump points in time varying functions observed
with noise. Wavelet methods for detecting and locating the jump points can be
found in Vercken and Potier [74], Wang [89] and more recently in Antoniadis and
Gijbels [13] and the thesis of Raimondo [75].

Applications of wavelet decompositions in statistical hypothesis testing and
model selection appear in particular Fan [42] and Antoniadis et al. [11]. Fan
shows that traditional nonparametric tests have low power in detecting fine fea­
tures such as sharp and short aberrant as well as global features such as high
frequency components. These drawbacks are repaired via wavelet thresholding
and the Neyman truncation test. Antoniadis et al. [11] discuss how to use wavelet
decomposition to select a regression model. Their methodology relies on a min­
imum description length criterion which is used to determine the number of non­
zero coefficients in the vector of wavelet coefficients. The developed model se-
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lection rule is then applied to testing for no effect in nonparametric regression
and for martingale structure in time series.

To end this section, let us mention some bayesian methods that have been
proposed recently for nonparametric curve estimation, since they offer an inter­
esting and useful alternative to the methods discussed earlier. In Vidakovic [84],
the wavelet coefficients {3j,k in the decomposition (17) as well as the unknown
standard deviation a of the noise are assumed to be independent random varia­
bles with an imposed prior distribution. The posterior means of the wavelet co­
efficients have the shape of standard soft wavelet thresholding rules and are
used to estimate the unknown curve. Other papers considering wavelet shrink­
age or thresholding within a Bayesian framework are those by Clyde et al. [22],
Chipman et al. [23]. Again, a prior distribution is imposed on wavelet coeffi­
cients of the unknown response function, and the function is estimated by com­
puting the mean of the resulting posterior distribution of wavelet coefficients.
Recent work on this direction has been done by Abramovich et al. [1], with a
prior designed to capture the sparseness of the wavelet expansion and a Bayes
rule corresponding to the posterior median. Moreover, in the last mentioned
paper, the prior model for the underlying regression function is adjusted to give
functions falling in any specific Besov space. In order to achieve this, a relation
between the hyperparameters of the prior model and the parameters of the Bes­
ov spaces is established.

6. Conclusion

So far, we have presented various ways in which univariate orthogonal wavelet
series decompositions have been used successfully and realistically in solving
theoretical and practical univariate problems of nonparametric statistics. The ap­
plication of wavelet methods to nonparametric regression has been mostly con­
fined to the context of the normal distribution, with regularly spaced design points
and for problems where both sample size and resolution levels are dyadic. Despite
some papers addressing ways to remove these restrictions, some progress on al­
ternative approaches to deal with such problems is very desirable in order to ap­
ply wavelet methods «naturally» to the general nonparametric regression setting.

A possibility to deal with non-uniform stochastic design would be to apply a
discrete wavelet transform for unequally spaced data based on a basis particular­
ly adapted to the irregular grid and constructed via the lifting scheme recently
proposed by Sweldens ([80], [79]). Here one entirely abandons the idea oftrans­
lation and dilation. This gives extra flexibility which can be used to construct
wavelets adapted to irregular samples. However, to use such an approach some
progress is needed on the deeper mathematical properties of the resulting scaling
functions and these «second generation» wavelets.
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Research is also needed in developing wavelet based methods to carry over
likelihood-based models such as generalized linear models occurring often in
practice.

Novel bootstrap methods for wavelet-based nonparametric curve estimation,
taking advantage of the O(n) computational efficiency of wavelet decomposi­
tions are also highly desirable, since it is known that when the dimension of the
unknown parameter exceeds that of the data, most classical (naive) boots trap
methods for assessing the variability of the estimates and constructing confi­
dence sets fail (see Beran [15]).

The usual wavelet-based approach can be further enhanced by using wavelet
packets, a generalization of wavelet bases (see e.g. Wickerhauser [92]). In wave­
let packet analysis, a function g is represented as a sum of orthogonal wavelet
packet functions ~,h,k at different scales j, oscillations b and location k. By con­
trast with ordinary wavelet decompositions, in wavelet packet methods, a signal
may be represented by many different combinations of wavelet packets. Thus,
wavelet packets offer an enormous amount of flexibility in possible sets of basis
functions. Adaptive ways to select the most appropriate set of basis functions
with which to represent and estimate a density or a regression are particularly
important and pose a number of interesting statistical issues. Some results on
adaptive model selection using wavelet packets for white noise models already
exist (see for example the papers by Donoho and Johnstone [34] and Saito [77])
but their extension to other types of noise are desirable.

Many results in higher dimensions are still incomplete. Theoretical advances
in higher dimensional signal approximation bounds, regularity, design techniques,
would be very useful in answering some questions that arise in the analysis of
additive models in non-parametric regression, slice regression and multivariate
density estimation.

To conclude let us say that there is room for substantial improvement of the
current state of the art.
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