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Abstract 

With age, gait functions reflected in the walking patterns degenerate and threaten the balance control mechanisms of the 
locomotor system. The aim of this paper is to explore applications of artificial neural networks for automated recognition 
of gait changes due to ageing from their respective gait-pattern characteristics. The ability of such discrimination has 
many advantages including the identification of at-risk or faulty gait. Various gait features (e.g., temporal-spatial, foot-
ground reaction forces and lower limb joint angular data) were extracted from 12 young and 12 elderly participants during 
normal walking and these were utilized for training and testing on three neural network algorithms (Standard 
Backpropagation; Scaled Conjugate Gradient; and Backpropagation with Bayesian Regularization, BR). Receiver 
operating characteristics plots, sensitivity and specificity results as well as accuracy rates were used to evaluate 
performance of the three classifiers. Cross-validation test results indicate a maximum generalization performance of 
83.3% in the recognition of the young and elderly gait patterns. Out of the three neural network algorithms, BR performed 
superiorly in the test results with best sensitivity, selectivity and detection rates. With the help of a feature selection 
technique, the maximum classification accuracy of the BR attained 100%, when trained with a small subset of selected 
gait features. The results of this study demonstrate the capability of neural networks in the detection of gait changes with 
ageing and their potentials for future applications as gait diagnostics.  
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Introduction  
 
With age, gait functions reflected in the walking patterns 
degenerate and threaten balance control mechanisms of the 
locomotor system. The reported declines in gait measures 
include: basic spatial-temporal parameters such as stride 
length, walking speed, stance/swing times1,2; joint angular 
excursions at the hip, knee and ankle joints3 and kinetic 
parameters as reflected in the foot-to-ground reaction force-
time data such as the vertical and horizontal peak forces2,4. 
Gait analysis has been proposed as a method for identifying 
individuals with a decline in performance of the locomotor 
system. Recently, many research projects have been 
directed at describing age-related changes in gait. The main 
focus  of  these  research  schemes  is  to  devise  diagnostic  
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techniques such that these gait features can be used to 
detect gait degeneration due to ageing and identify the gait 
changes as a result of the effects of fall-proneness in the 
elderly individuals. Like other industrialized countries, falls 
in the older population has been identified as a major public 
health issue in Australia costing the community about 
A$2.4 billion per annum5. 

Gait classification using statistical techniques such as 
Linear Discriminant Analysis (LDA) has limitations, 
especially when the problem to be studied is linearly non-
separable or complex. It has been demonstrated that neural 
networks techniques have the potential to offer a better 
alternative in pathological gait pattern classification6. The 
motivation behind this research was, therefore, to apply 
neural networks (NN) for automatic identification of gait 
types (young/old) from their gait measures. The success of 
such discrimination abilities by a neural network could lead 
to many potential applications, such as for gait diagnostics. 
As an example, a neural network could be used for early 
identification of at-risk or faulty gait so that appropriate 
measures could then be undertaken for gait rehabilitation. 
In recent years, neural networks have emerged as powerful 
tools for solving various classifications and modelling 
problems in biomechanics7; for example, to classify normal 
and pathological gait using force platform measures8,9 and 
to simulate various gait types (e.g., leg length discrepancy) 
from their joint-angle measures10, with reported excellent 
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success rates. These research outcomes also highlight that 
gait features inherent in the kinetic ground reaction forces 
and joint angular excursion measures carry useful 
information regarding the quality of gait and its functional 
status such that these characteristics might be used to detect 
the declines in gait performance due to ageing or pathology.  

At present, there is no reported research known to the 
authors exploring the classification ability of the neural 
networks in ageing gait. In this paper, we apply three well 
known neural network algorithms (Standard 
Backpropagation (BP), Scaled conjugate gradient (SCG) 
and Bayesian regularization (BR)) for the automated 
recognition  of  young/old  gait  patterns  from  standard 
gait  measures,  and  compare  their  relative  suitability  as 
a gait classifier. Performance of the classifiers was 
evaluated using their accuracy rates in recognizing the 
young/old gait patterns and areas under the receiver 
operating characteristics (ROC) curves to examine their 
strengths and weaknesses in relation to detecting the gait 
changes with age.  
 
 
Materials and methods 
 
Participants   

Twelve young and twelve older adults participated in 
the gait data collection. There were equal numbers of male 
and females within the two age groups. The young adults 
were recruited from the academic community of Victoria 
University and the elderly participants were volunteers 
from local senior citizen clubs. All subjects undertook 
informed-consent procedures approved by the Victoria 
University, Melbourne, Human Research Ethics 
Committee. The subjects had no known injuries or 
abnormalities that would affect their gait. Means and 
standard deviations (in brackets) of subject characteristics 
were as follows; Age (year) - young 28.1(5.6), elderly 
68.8(4.6); Height (cm) – young 172 (11.2), elderly 166(10); 
Body Mass (kg) – young 72.4 (16.4), elderly 67.8(9.1).  
 
Data collection and features 

Gait recordings were carried out during normal walking 
on the laboratory walkway. All subjects completed a 
minimum of 3 walking trials while their gait characteristics 
were captured using an AMTI force platform and a PEAK 
2D Motion Analysis system (Peak Performance Inc, USA). 
The walkway used in this experiment was 20m long with 
the force platform installed in the middle of the walkway. 
The subjects were given a few practice trials during which a 
suitable starting position was determined for each subject. 
This allowed a more natural footfall on the platform during 
the actual walking trials without targeting the force 
platform. Altogether 24 gait features were extracted from 
the gait data describing lower limb joint motion and foot-
ground reaction force-time characteristics. Mean values of 
3 walking trials were calculated and then used as gait 
features for training and testing the gait classifiers. The gait 
features used in this study included stride cycle time-
distance data, lower limb joint angles and angular range of 

motion (ROM), and characteristics of the foot-to-ground 
reaction forces (GRF): 

i) Stride phase gait cycle data – Walking speed, stance, 
swing and double-stance times and their 
corresponding normalized data and stride length,  

ii) GRF data – Foot-ground reaction forces along vertical 
and anterior-posterior directions were recorded using 
one force-sensing platform. Peak forces during key 
phases of the gait cycle were normalized to body 
weight – this included vertical peak forces during 
weight acceptance, mid stance and push-off phases, 
and horizontal peak forces during braking and 
propulsive phases, and  

iii) Joint angular data - Movement of the lower limb was 
recorded using the PEAK system and reflective 
markers attached to lower limb joints and segments 
(greater trochanter, lateral epicondyle, lateral 
malleolus, calcaneus, 5th metatarsal head). The 
angular data included knee and ankle joint angles at 
key events (heel contact and toe-off), and joint angular 
excursion or range of motion (ROM) during the stance, 
swing and stance-to-swing transition phases of the gait 
cycle. These gait measures have been shown to be 
useful indicators of ageing in a number of 
investigations1, 4, 11-14.  

 
Neural network algorithms 

Artificial neural networks can be very useful to realize 
an input to output mapping when the exact relationship 
between input and output is unknown or very complex. 
Because of its ability to learn complex mappings, it has 
been used as a powerful classifier in many engineering15, 16, 
financial17 and biomedical applications 6-10, 18. In this study, 
we applied an artificial neural network for the analysis of 
human gait and investigated the performance of different 
neural network learning algorithms in relation to this 
particular problem.  

The multilayer feed forward network (Fig. 1) is one of 
the most commonly used neural network architectures. It 
consists of an input layer, an output layer and one or more 
intermediate layers called the hidden layer(s). All the nodes 
at each layer are connected to each node at the upper layer 
by interconnection strengths called weights. All the 
interconnecting weights between the layers are initialized to 
small random values at the beginning. During training, 
input features are presented at the input layer and associated 
target outputs are presented at the output layer. A training 
algorithm is used to attain a set of weights that minimizes 
the difference between the target output and actual output 
produced by the network. 

There are various algorithms proposed in the literature 
to train a multilayer feed-forward network. There exists a 
theoretical framework that focuses on estimating the 
generalization ability of a network as a function of 
architecture and training set considering the region of 
weight space consistent with the training set; that is, a 
particular learning rule might favour some regions over 
others19,20. However, the suitability of a training algorithm 
in  producing  good  generalization  ability,  in  relation to a  
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Figure 1. Architecture of a multilayer feed-forward neural 
network. 
 
 
particular application, is usually determined by 
experiments. In this study, we experimented using three 
commonly applied neural network learning algorithms, 
namely, standard Backpropagation (BP), Scaled Conjugate 
Gradient Algorithm (SCG) and Backpropagation with 
Bayesian Regularization (BR) in order to find the best 
suited algorithm for detecting human gait pattern changes20. 
In the following, we provide a brief description of the three 
algorithms. 
 
Standard Backpropagation (BP) 

The standard Backpropagation20 algorithm iteratively 
updates the weights to map a set of input-output pairs 
{(x1,y1), (x2,y2), …, (xp,yp)} using gradient descent 
technique. The input vector xp, upon multiplied by weight 
vectors, produces outputs at the hidden layer. Similarly, 
hidden layer outputs, being multiplied by their respective 
weights are propagated to the final output layer. In a three-
layer network, the activation at each layer is represented by 
the following equations. 
 

),( opop �hy W �� f                                                       (1) 
 

),( hphp �xh W �� f                                                      (2) 
 

where Wo and Wh are the output and hidden layer weight 
matrices, hp is the vector denoting the response of hidden 
layer for pattern ‘p’, �o and �h are the output and hidden 
layer bias vectors, respectively and f(.) is the sigmoid 
activation function. 

Backpropagation minimizes the sum of squared error 
defined as 
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where tp is the target output vector for pattern ‘p’ and T 
denotes transpose of a matrix. Denoting the fan-in weights 
to  a  single  neuron  by  a weight vector w, its update in the 
t-th epoch is governed by the following equations. 

1��)( E�� -ttt www ww �	�� �                                  (4) 
 

The parameter 
, called learning rate, controls the step 
size in each iteration process and �, called momentum 
factor, reduces the oscillation in the learning process as 
well as provides faster training. Learning speed in 
Backpropagation largely depends on the suitable choice of 
these parameters. In training Backpropagation for larger-
scale problems, the error surface may contain long ravines 
with sharp curvature and gently sloping floor causing slow 
convergence.   
 
Scaled conjugate gradient (SCG) 

The scaled conjugate gradient technique is designed to 
achieve faster convergence in training in multilayer feed-
forward network.  In conjugate gradient methods, a search 
is performed along conjugate directions21. The new search 
direction is determined by combining the new steepest 
descent direction with the previous search direction so the 
current and previous search directions are conjugate. This 
technique is based on the assumption that the error in the 
neighborhood of a given point is locally quadratic. The 
weight changes in successive steps are given by the 
following equations.  
 

dww tttt �1 ���                                                            (5) 
 

dgd 1� ���� tttt                                                            (6) 
 

with 
 

wwwg t
t

E �	� )(                                                          (7) 
 

gg
gg

dg
gg

gg
gg

11

1

11

1

11
T

T

T

T

T

T

��or� or
��

�

��

�

��



�



��

ttt t

tt
t

t

tt
t

t

tt
t

                (8) 

 

where dt and dt-1 are the conjugate directions in successive 
iterations, and gt and gt-1 are the corresponding gradient 
directions. The step size is governed by the coefficient �t 
and the search direction is determined by �t. In scaled 
conjugate gradient the step size �t is calculated by the 
following equations.  
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where �t is the scaling co-efficient and Ht is the Hessian 
matrix at iteration t. The term � is a multiplicative factor 
introduced to make the Hessian matrix positive definite. 
With sufficiently large �, the modified Hessian is 
guaranteed to be positive (� > 0). If the error function is not 
quadratic or � <0, � can be increased to make � >0. In case 
of � <0, Moller22 suggested the appropriate scale coefficient 
� t  to be 
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Rescaled value 
�

t� of t�  is then expressed as 
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                                               (12) 
 

The scaled coefficient 
�

t� needs adjustment to validate 
the local quadratic approximation. A detailed description of 
scaled conjugate gradient algorithm together with how 
scaled coefficients can be adjusted have been given by 
Moller22 and Bishop23.  
 
Bayesian Reguralization (BR) 

In classification problems, the main target is to build a 
network that, once trained, is capable of recognizing not 
only the training data but also the test data, i.e., generalizes 
well on the unseen data. In order to achieve better 
generalization in multilayer feed-forward network training, 
Mackay24 proposed a method to constrain the size of 
network parameters by regularization. Regularization 
technique forces the network to settle to a set of weights 
and biases having smaller values. This causes the network 
response to be smoother and less likely to overfit22 and 
capture noise. In the regularization technique, the cost 
function F is defined as 
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where ED equals E defined in Eq. (3), Ew= 2/2w , and is 

the sum of squares of the network weights, and  � (<1.0), 
called regularization parameter, determines the emphasis of 
the training on regularization. A large � will drive the error 
ED to small value whereas a small � will put excessive 
emphasis on weight size reduction at the expense of higher 
error. Mackey24 proposed Bayesian framework to 
automatically determine the optimum regularization 
parameter. The Bayesian framework considers a probability 
distribution over the weight space assuming some initial 
prior distribution. Let D={xm, tm} be the data set of the 
input-target pair, m being a label running over the pair and 
M be a particular NN model. The posterior probability 
distribution for the weight p(w|D,�,M) is given according to 
the Bayesian rule. 
 

M),|(D
M)(),|(D),D,(

�
���

p
pMpMp ,|ww,|w �               (14) 

 

where p(w|�,M) is the prior distribution, p(D|w,�,M) is the 
likelihood function and p(D|�,M) is a normalization factor, 
which guarantees that the total probability is 1. In the 
Bayesian framework, the optimal weight should maximize 
the posterior probability  p(w|D,�,M), which is equivalent to 
minimizing the function in Eq.(13). The performance ratio 
parameter is optimized by applying the Bayes’ rule 
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Assuming  a  uniform  prior  distribution  p(�|M) for the  

regularization parameter �, maximizing the posterior 
probability is achieved by maximizing the likelihood 
function  p(D|�,M). Since all probabilities have a Gaussian 
form it can be expressed as  
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where L is the total number of  parameters in the NN. 
Supposing that F has a single minimum as a function of w 
at w* and has the shape of a quadratic function in a small 
area surrounding that point, ZF is approximated as24, 
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where H=�	2ED +(1-�)	2EW is the Hessian matrix of the 
objective function. Using Eq. (17) into Eq. (16), the 
optimum value of � at the minimum point can be 
determined. To approximate the Hessian matrix, Foresee 
and Hagan25 proposed to apply Gauss-Newton 
approximation, which can be conveniently implemented if 
the Lebenberg-Marquart optimization algorithm26 is used to 
locate the minimum point. A detailed discussion of 
Bayesian Regularization techniques is presented by 
Mackey24 and Bishop23. 

In this study, gait classification between young and 
older adults was performed using BP, SCG and BR 
algorithms to find out which algorithm would be most 
effective in gait data training for recognizing ageing effects. 
Each NN model had an input layer consisting of 24 input 
neurons corresponding to the input characteristics (features) 
of the gait patterns, one hidden layer and an output layer 
unit representing the gait types (+1 =young, -1=elderly). All 
24 features were normalized using their equivalent z-scores 
to have unity variance before applying them for developing 
the NN models and for subsequent testing of the models to 
assess their generalization ability. 
 
Classifier performance testing  

Cross-validation (k-fold) tests were performed to 
evaluate performance of the classifiers. In this experiment, 
all subjects’ data were divided into six segments (6-fold) of 
equal length; five segments’ data were used to train the 
classifier whereas the remaining data segment was used to 
test the accuracy of prediction. This was then repeated until 
all subjects’ data appeared in the test sample. Experiments 
were conducted with varying number of hidden units, 
however, 3 hidden units produced the best results. In 
designing a neural network, an important issue is to select 
the appropriate number of hidden units and layers as the 
network size influences the generalization capability of the 
network. Using Kolmogorov theorem, it has been shown 
that a neural network with a single hidden layer can learn 
any non-linearly separable problem provided sufficient 
number of units are used in that hidden layer27. However, 
there are no widely accepted rules or analytical methods for 
determining the optimal number of hidden units. A network 
with too few hidden units will be unable to learn the input-
output mapping well, whereas too many hidden units will 
generalize poorly on any unseen data. Most applications use 
a single hidden layer and the usual practice is to train 
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networks with different number of hidden units and select 
the one that yields the best results. Similar practice has been 
adopted in the current application which produced best 
results with three units in the hidden layer. All the results 
presented here are therefore based on three hidden units. 
Neural network’s performance also depends on the 
selection of initial weights – therefore, all tests were run 20 
times starting with different initial random weights. 
Average and maximum classification accuracies of 20 trials 
were used to report the overall performance of the machine 
classifier. A statistical classifier (Linear Discriminant 
Analysis, LDA) was also built to classify the same data and 
its performance was compared with that of neural networks.  

Classification outcomes were also represented using 
receiver operating characteristics (ROC) curves. ROC plots 
have been used in many investigations28 to gauge the 
predictive ability of a classifier over a wide range of 
threshold values. The predicted output of the neural 
network in response to an unknown gait pattern resulted in 
an output in the range between -1.0 and 1.0. A threshold 
value was then applied such that an output above the 
threshold was assigned into a young category whereas a 
value equal to or below the threshold was assigned into an 
elderly category. In regard to ROC plots, the following 
measures29 were used to evaluate the overall performance: 
 

True positive (TP): A neural network identifies an 
older gait that was labeled as older 
True negative (TN): A neural network identifies a 
young gait that was labeled as young 
False positive (FP): A neural network identifies an 
older gait that was labeled as young 
False negative (FN): A neural network identifies a 
young gait that was labeled as older 

 

TP rate (Sensitivity) is defined as a measure of the 
ability of the classifier to identify an older gait, whereas TN 
rates or Specificity is a measure of the classifier to detect 
young gait characteristics. Selectivity measures classifier’s 
ability to reject false detection of older gaits and 
Detection_rate is defined as an average of sensitivity & 
specificity. These parameters can be calculated as: 
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These measures were calculated for various threshold 
values. In addition, sensitivities at two selected 
specificities28 of 0.9 and 0.75 were calculated to compare 
the classifiers’ performance. ROC curve plots sensitivity 
against (1 – specificity) as the threshold level of the 
classifier is varied. ROC curves were plotted for all three 
classifiers to examine qualitatively the effect of threshold 
variation on the classification performance. Furthermore, 

ROC areas were calculated numerically to compare the 
three classifiers quantitatively. All neural network 
architectures were developed, trained and tested using 
routines written in Matlab toolbox 6.12 (The MathWorks, 
Natick, MA).  
 
 
Results 
 

The neural networks were trained using three different 
algorithms (Standard BP, SCG and BR) and each algorithm 
was tested 20 times. The average and maximum accuracy 
rates are shown in Table 1. Although there were some 
minor differences among the three classifiers with regard to 
average classification accuracy, the maximum accuracy rate 
was the same for all the classifiers (83.3%). These 
classifiers results were better when compared with the 
accuracy results obtained with LDA-based statistical 
classifier (75%).  
 
Table 1. Correct classification rates by neural networks to 
differentiate young/elderly gait patterns, BP – Backpropagation, 
LDA – Linear Discriminant Analysis. Average accuracy results 
are presented from 20 trials. The standard deviation over 
accuracy among the trials is shown within the bracket. 
 

Algorithms 
Average 
Accuracy 

(%) 

Maximum 
Accuracy 

(%) 

Standard BP 
Scaled Conjugate Gradient 

Baysian Reguralization 
LDA 

79.4 (4.16) 
79.6 (3.55) 
82.7 (1.52) 

75.0 

83.3 
83.3 
83.3 
75.0 

 
Figures 2(a)-(d) plot sensitivity, specificity, selectivity 

and average detection rates for the 3 classifiers as a 
function of threshold variation (-1 to +1). BR showed 
greater sensitivity and detection rates over a wide range of 
thresholds, and also consistently higher sensitivities at two 
selected specificities of 0.9 and 0.75 (see Table 2). ROC 
plots of the three classifiers (Figure 3) display graphical 
representation of the relationship between sensitivity and (1 
– specificity) for a range of thresholds and confirm higher 
sensitivity results by the BR classifier particularly for 
higher specificities. ROC area was higher for the BR 
(ROCarea=0.9) compared to the other two classifiers (0.82 
for BP and 0.84 for SCG), however all three were 
considerably higher than that of the LDA (0.77). Area 
under the ROC curve represents performance of the 
classifier over a range of thresholds. In general, the larger 
the area, the better the classification performance. Out of 
the three neural network classifiers, BR displayed improved 
classification performance when trained and tested with all 
the 24 gait features.  

A forward feature selection algorithm revealed that the 
performance of the BR classifier was dependent on the 
number of features used to train and test the classifier (see 
Figure 4).  In  this  feature  selection method,  a  feature was  
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Figure 2.  Performance  measures:  a) Sensitivity, b) Specificity, 
c) Selectivity  and  d) Detection  rate  as  a function of thresholds 
(-1 to +1). BP - Standard Backpropagation, SCG - Scaled 
Conjugate Gradient, BR - Bayesian Regularization 

Table 2. Comparison of performance using ROC area and 
sensitivities at selected specificities. 
 

Classifier BP SCG BR LDA 

ROC Area 0.82 0.84 0.90 0.77 
Sensitivity at 

specificity of 0.9 
 

0.60 
 

0.67 
 

0.73 
 

0.31 
& 0.75 0.75 0.79 0.86 0.67 

 

 
Figure 3. ROC curves for the three classifiers (Std BP - Standard 
Backpropagation, SCG - Scaled conjugate, Baysian 
Regularization) over a range of threshold selections. Sensitivity 
=True positive rates, Specificity = True negative rates. 
 
added one at a time that provided the maximum 
classification accuracy28. It is interesting to note that the 
%accuracy rate was in fact higher with a few selected 
features compared to that obtained when trained with all 24 
features. With 3 selected features the performance curve 
peaked showing 100% generalization accuracy. The three 
features that were selected were knee range of motion 
during the swing phase, maximum horizontal (anterior-
posterior) push-off force and step length. However, some 
features were found to negatively affect the classifier in that 
their addition to the classifier resulted in a decrement of 
detection accuracy (see Figure 4). A comparison of ROC 
plots for the BR classifier using all the 24 features and 
using only the 3 selected features can be seen in Figure 5 
which suggests consistently better performance 
(ROCarea=0.9 versus ROCarea=0.999) with a few selected 
features across all the thresholds.  
 
 
Discussion 
 

The major aim of this research was to test whether an 
artificial neural network could be applied to detect gait 
changes due to ageing using standard gait features that are 
recorded during gait analysis. The results of the cross-
validation test and from the three neural network classifiers 
suggest that an artificial neural network is able to 
differentiate   young/old  gait  with  an  accuracy  of  83.3%  
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Figure 4.  Graph  illustrating  the  reliance  of  accuracy  rates  in 
gait classification on the number of features selected by the 
feature selection algorithm. The first 3 features selected for 
maximum accuracy were: knee range of motion during the swing 
phase, maximum horizontal (anterior-posterior) push-off force 
and step length.   
 
 

 
Figure 5. ROC plots of BR classifier using all 24 features and 3 
key features selected by the feature selection algorithm. 
 
across all the subjects. The results also suggest that 
although there were differences in accuracy rates in 
individual trials, presumably due to variation of initial 
weights of the networks30, the maximum accuracy was the 
same with all three BP algorithms. Scaled Conjugate 
Gradient was found to be the fastest learner of the three. 
While previous research has supported neural network’s 
ability to differentiate between normal and pathological gait 
from respective force platform recordings8,9, this research 
suggests that a neural network can also be quite effective in 
detecting gait changes due to ageing. Such automatic gait 
classification capability has many potential benefits 
including, monitoring gait deterioration due to ageing, 
identifying at-risk or faulty gait and also in the evaluation 
of the effectiveness of intervention outcomes.    

Receiver operating characteristics and other associated 
measures (e.g. selectivity and average detection rate) on the 
test data suggest that out of the three classifiers, a BR 
trained classifier would be most effective for recognizing 

gait changes as a result of ageing. This is particularly 
evident in ROC, sensitivity, selectivity and detection rate 
plots of the classifiers (see Fig. 2 & 3). It also appears that 
BR would be particularly more sensitive for recognizing 
elderly gait characteristics as well as in its capacity to reject 
false detection of elderly gait characteristics. This is due to 
higher sensitivity, selectivity and detection rate results 
displayed by the BR classifier across a wide range of 
threshold values (Fig. 2). Furthermore, BR’s performance 
remained invariant over a wide threshold range (–0.4 to 0.4) 
whereas performance for the SCG and BP classifiers was 
variable with threshold changes.  

Among other factors, complexity of the model is one 
that can affect the generalization performance of a 
classifier; therefore in order to achieve the best 
generalization it is important to optimize the complexity of 
the classifier19. Models, which are either too simple or too 
complex, will exhibit poor generalization performance. One 
approach to control the complexity of a neural network 
classifier is through the use of regularization technique that 
penalizes a highly complex model and searches for a 
balance between the training error and the classifier 
complexity. A classifier trained by Bayesian Regularization 
estimates the degree of regularization and hence controls 
the classifier complexity by optimizing the regularization 
parameter. The regularization technique is formulated to 
produce smooth network mappings by favouring small 
values for network weights19. The BP and SCG trained 
classifier do not incorporate such constraints in their 
learning rules. As a result, without any constraints in weight 
values, a network may settle to a set of weights with huge 
variation in their values. In such cases, a slight variation in 
gait pattern may result in a completely different 
classification decision by a BP and SCG trained classifier. 
A BR trained classifier achieves a better performance in 
identifying gait patterns through the use of regularization 
technique in the learning rule.  

In this study, feature selection significantly influenced 
the classifier’s ability in distinguishing the young and old 
gait patterns. As demonstrated in the ROC and %accuracy 
plots (Fig. 4 & 5), a small subset selected from the original 
features could provide improved performance compared to 
the entire set of input features. This also highlights the 
importance of selecting relevant features before applying 
the features to the machine classifier for the classification 
task. Such dependence of classification performance on 
features has also been highlighted in other applications, 
such as classification of hand movements31. 

An artificial neural network classifier, particularly with 
BR learning algorithm, appears to have high potential for 
applications in automated gait recognition from its features. 
In this application involving age-related gait classification, 
the neural network’s performance was considerably higher 
than that offered by an LDA classifier. Such observation is 
also in line with previous finding involving pathological 
(ankle arthrodesis) gait classification6. Future research in 
this area may include: applying neural network algorithms 
for recognition of gait changes due to falling behavior and 
various pathologies. Other feature selection algorithms, 
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such as backward elimination techniques28 and genetic 
algorithms31 may be applied for separating the relevant and 
irrelevant features in order to improve the effectiveness of 
gait detection and classification tasks. 
 
 
Conclusion 
 

In this study we explored gait pattern recognition and 
classification abilities using three neural network 
algorithms: standard Backpropagation, scaled conjugate 
gradient and Backpropagation with Bayesian regularization. 
Gait features for training and testing the neural networks 
were extracted from gait recordings in young and elderly 
subjects using standard techniques and instrumentation. All 
three neural network algorithms provided very good 
classification results, however the Bayesian regularization 
proved to be superior in performance measured in ROC 
areas/ plots and sensitivity and specificity measures. The 
classification performance was significantly enhanced when 
a subset of selected features was used as classifier inputs. 
These results demonstrate neural networks’ potential in 
mapping the relationship between ageing effects and gait 
characteristics and provide support for its future 
applicability as gait diagnostics in ageing and pathological 
populations.  
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