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Abstract
In this paper, we model the human head using the Volume and Wang’s constraint methods, and study the inhomogeneous 
anisotropic conductivity for white matter (WM) using finite element method (FEM). To represent the WM accurately, the 
conductivity ratio approximation (CRA) and statistical conductivity approximation (SCA) techniques are applied to 
assign inhomogeneous anisotropic conductivity. This model is evaluated and compared with a homogeneous isotropic 
model and a homogeneous anisotropic model. The results show that the effects of inhomogeneous anisotropic 
conductivity of WM on the scalp EEG are significant. 
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Introduction  

The electrical activity in the brain is caused by some 
chemical actions within neurons which produce potential 
differences1. The measurement of these potential 
differences  between  various  locations  at the surface of 
the scalp is called EEG1,2. The estimation of the potentials 
at  scalp  with known source configuration is termed as 
EEG  forward  problem2-4.  The forward problem is a part 
of  source  localization  or  inverse problem2-4, which is 
used for diagnosing neurological disorders (such as 
epilepsy), analysis of the depth of anaesthesia, origin of 
evoked  potentials and other brain research functions5. In 
order to solve the forward problem, human head is 
modelled as a volume conductor. The accuracy of volume 
conductor depends on head geometry and conductivity. 
Since the volume conductor model represents the 
conductivity distribution in the head, therefore, it needs 
accurate  conductivity for each head element. If 
conductivity is inaccurately assigned, it  makes a significant  
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effect  on  source  localization5. It is known that human 
head is composed of different tissue layers which have 
different conductivities5-7. According to the physiological 
structure,  there is further discrimination to each tissue 
layer. Scalp layer is also divided into the fat and muscle 
layers. Skull consists of a soft bone layer (spongiosa) 
enclosed by two hard bone layers (compacta). Since the 
spongiosa has a much higher conductivity than compacta, 
the  skull shows an anisotropic conductivity with a ratio of 
1 to 10 to the skull surface6,8,9.  Skull resistivity varies 
between  1360 �cm  and  21400 �cm,  with a mean of 
7560 �cm  and  a standard deviation of 4230 �cm. It is 
also known that the brain white matter has an anisotropic 
conductivity  with  a ratio  of  about  1 to 10 5,6,10,11. WM 
has  the  mean  resistivity 700 �cm with 350 �cm and 
1050 �cm values for lower and upper bounds, respectively, 
having  the  variation  of  �50%23. Therefore,  the  skull  
and WM exhibit the inhomogeneous and anisotropy 
properties. Due to the complication of tissue type, fiber 
direction, the irregular structure and segmentation 
difficulties, there are some constraints: Volume 
constraint6,7,14 and Wang’s constraint6,7,15 to implement 
inhomogeneous anisotropy model. Volume constraint 
restricts the geometric mean and the volume of the 
conductivity tensor as constant. And Wang’s constraint 
restricts the direction of longitudinal and transverse 
conductivities as constant. Wolters et al6,7  generated WM 
anisotropic conductivities for both constraints using 
different conductivity ratios to show the effect of 
anisotropy on head modelling.  Li et al11 generated 
inhomogeneous anisotropic conductivity for Volume 
constrained WM elements using the fractional anisotropy 
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(FA) obtained from diffusion tensor magnetic resonance 
images (DT-MRIs)16. They found that WM anisotropy and 
inhomogeneity would affect the scalp EEG. Gullmar et
al12,13  also generated anisotropic conductivities for Volume 
constrained WM and simulated on rabbit head model. They 
mentioned that the anisotropy of WM conductivity affect 
the EEG forward and inverse computations. Most recently, 
Hallez et al14 implemented anisotropic conductivity for 
Volume constrained WM to analyse the source localization 
error. They showed that source localization is affected by 
WM anisotropy. However, to the best of our knowledge, no 
research has been done on Wang’s constraint in WM 
inhomogeneous anisotropic conductivity. 

The purpose of this study is to investigate the effects of 
WM inhomogeneous anisotropic conductivity on EEG 
forward computation. In particular, we focus our attention 
on two related problems: Are there any effects of 
inhomogeneous anisotropic conductivity on forward 
computing? Does the Volume or Wang’s constraint affect 
on EEG? In this paper, we introduce new techniques, 
conductivity ratio approximation (CRA) technique and 
statistical conductivity approximation (SCA) technique to 
generate inhomogeneous anisotropic conductivity for 
constrained WM. We consider the inhomogeneity into two 
categories: (i) the discrepancy ratio of the longitudinal over 
transverse directional eigen values (Study I); (ii) the 
discrepancy of two transverse eigen values (Study II). We 
use a spherical model to simulate the head volume 
conductor with different inhomogeneous anisotropic 
conductivities for WM elements using finite element 
method (FEM). A current dipole inside the gray matter 
(GM) is used to simulate the electrical activity. The effects 
of WM inhomogeneous anisotropy on the scalp EEG are 
assessed by comparing the scalp potentials generated by 
inhomogeneous anisotropic with homogeneous isotropic 
and anisotropic WM conductivity models, separately. 

This paper is structured as the following. The 
Introduction section provides  a brief literature review. The 
Problem formulation section defines the head modelling 
and forward problem. The Homogeneous anisotropic 
conductivity section describes the Volume and Wang’s 
constraints. Inhomogeneous anisotropic conductivity 
section defines CRA and SCA techniques. The Forward 
computation section presents the forward simulation and 
error measurements. The Simulation and experiment 
section illustrates the experimental setup. The Result 
analysis section describes the experimental result found in 
this research. And finally, Conclusion section summarizes 
our research findings. 

Problem formulation 

Anatomically, human head is made up of scalp, skull 
and brain layers. The brain layer, surrounded by 
cerebrospinal fluid (CSF), is divided into gray matter (GM) 
and white matter (WM). Human head is modelled either 
spherically2,5,9 or realistically6-8. In spherical model, most 
researchers prefer three or four layered model. However, 
Hallez et al5 proposed a five-layered spherical head model 

with scalp, skull, cortical, WM and thalamus shell. Wolters 
et al31 also constructed a realistic head model with scalp, 
skull, CSF, GM and WM. Based on these anatomical 
concepts and literature5-9,30-31, we consider a five-layered 
spherical head of scalp, skull, CSF, GM, and WM layers 
with radii of 8.8cm, 8.5cm, 8.1cm, 7.9cm and 6.5cm, 
respectively. We segment this five-layered sphere and 
perform mesh generation which produces tetrahedral 
elements for FEM. Based on literature2,6, we set the 
homogeneous isotropic conductivities as � = 0.33 S/m 
(skin), � = 0.0042 S/m (skull), � = 1.0 S/m (CSF), � =  
0.33 S/m (GM), and � = 0.14 S/m (WM), respectively. 
Though both the skull and the WM layers are 
inhomogeneous and anisotropic, in this study, we consider 
only WM layer as inhomogeneous and anisotropic while we 
treat other layers as homogeneous and isotropic. To apply  
FEM, we assign anisotropic conductivity tensor to each 
element of the WM layer. We assume that the conductivity 
tensors share the same eigen vectors with the effective 
diffusion tensors measured by DT-MRI6,7,12,13,21.  Then, we 
consider the conductivity tensor for a WM finite element 
as6,7,12,13

                                                                                           (1) 

where S is orthogonal matrix of unit length eigenvectors of 
the measured diffusion tensor at the barycentre of the WM 
finite element, �long  is the parallel (longitudinal) eigen 
values and �trans  is the perpendicular (transverse) eigen 
values where translong �� � .

Mathematically, the forward problem is described by 
Poisson's equation for electrical conduction in a human 
head as shown below2,3,6

                                                                                           (2) 

where � is a conductivity tensor  and Isv is internal current 
source per unit volume (�) due to current dipoles placed 
within the brain. The unknown � is the electric potential 
created in the head by the distribution of current from the 
dipole sources. Then the forward problem is solved by 
applying the Newman boundary condition as 18,19

                                                                                           (3) 

where n is the unit surface normal and � is the surface. 

Homogeneous anisotropic conductivity

In this study, we, firstly, use isotropic conductivity and 
simulate the anisotropic conductivity ratios according to 
Wolters et al6,7. Then, we calculate the longitudinal and 
transverse eigen values using either Volume or Wang’s 
constraint.

Volume constraint 
DT-MRI doesn’t measure conductivity tensor directly 

but rather infers from the diffusion tensors which describes 
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the movement of both water molecules and electrically 
charged particles (ions)12. To implement conductivity 
tensor we assume that the same structural features that 
result in anisotropic mobility of water molecules also result 
in anisotropic conductivity. This assumption can be 
expressed as the eigen vectors of the conductivity tensor, 
similar as those from water diffusion tensor21. However, 
there are some problems for the conductivity tensor 
reconstruction process as addressed by Zhao et al22. One of 
them is the volume caused by low spatial resolution22.
Volume varies due to several factors, such as age, diseases, 
environmental factors, and personal constitutions7,23. To 
overcome volume obstacle, Wolters6 proposed Volume 
constraint, which restricts the geometric mean and the 
volume of the conductivity tensor as constants. The Volume 
constraint is defined as 6,7,12

                                                                                           (4) 

where �iso is isotropic conductivity. 

Wang’s constraint 
Another problem for the conductivity tensor 

reconstruction process is the movement of water molecules 
(direction). Water molecules usually move towards the high 
conductivity direction. In white matter, the diffusion of 
water molecules perpendicular to fiber direction is slower 
than parallel21,22. To stay constant for these molecules, 
Wang et al15 proposed a constraint method. Wang’s 
constraint is defined as the product of longitudinal and 
transverse conductivities is constant and is equal to the 
square of the isotropic conductivity. It is represented as 6,7,15

                                                                                           (5) 

Inhomogeneous anisotropic conductivity
for Study I 

To implement inhomogeneous anisotropy, Li et al11 

proposed threshold controlled fractional anisotropy (FA) 
using step and linear functions. They used two thresholds 
and three slopes. However, there is no reliable algorithm to 
construct inhomogeneous anisotropic conductivity11,12. In 
this study we propose conductivity ratio approximation 
(CRA) and statistical conductivity approximation (SCA) 
techniques. 

Conductivity ratio approximation 
From the literature6,7,12,13 it is understood that the 

anisotropic conductivity ratio varies from 1 to 10, which 
can be expressed as 

1:: ��� 
translong where � =1 to 10                                (6) 

Based on these concepts, we apply CRA to construct 
the inhomogeneous anisotropic model. Firstly, we generate 
a vector r with all possible conductivity ratios from 1 to 10. 
Secondly, we select the conductivity ratio �lt using random 
selection, where �lt � r for each element. Based on this 
conductivity  ratio  �lt,  we  determine  the  longitudinal and  

inhomogeneous conductivities by means of eq (4). 
However, we only select those whose values 
satisfy translong �� � . For example, if �lt is 2, then the 
longitudinal and transverse conductivities are 0.222 and 
0.111, respectively. Finally, using the similar procedure, we 
determine the longitudinal and transverse inhomogeneous 
anisotropic conductivity for Wang’s constraint applying 
eq(5) in place of eq(4).  

Statistical conductivity approximation 
Shimony et al24 measured diffusion anisotropy in 12 

regions of interest in human white and gray matters. 
Gullmar et al13 showed that Rayleigh distribution fits the 
mean and variance of their experimental results, which 
produces prolate shape. Therefore, we assume that Rayleigh 
distribution can generate random numbers that fits the 
inhomogeneous anisotropic conductivities for WM. The 
probability density function (pdf) of Rayleigh distribution is 
defined as25:

                                                                                           (7) 

where x is a vector of random variables and  � is the only 
parameter which equals to the mode of Rayleigh 
distribution. 

The mean, variance and cumulative density function 
(cdf) of Rayleigh distribution are as  

2
��
mean                                                                     (8) 

                                                                                           (9) 

                                                                                         (10) 

We select the inverse transform method for random 
number generation25,26. The following algorithm generates 
the random numbers which meet Rayleigh distribution. 
Firstly, we determine X = random number generated from 
uniform distribution. We set the mean conductivities 
according to literature2,6,12. Then we determine � based on 
eq(8). Finally, we determine the random numbers according 
to Rayleigh distribution by applying the cdf defined in 
eq(10). We treat these random numbers as longitudinal 
inhomogeneous conductivities. And based on these 
conductivities we determine the transverse inhomogeneous 
conductivities by using Volume and Wang’s constraints 
where translong �� � , repectively. 

Inhomogeneous anisotropic conductivity for 
Study II 

Tissue anisotropy means that the electrical conductivity 
of this tissue is direction dependent as shown in figure 1, 
where one longitudinal and two transversal directions are 
shown5. Some literature6-7,12-13 assume that two transverse 
conductivity eigen values presented in eq(1) are identical. 
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Based on this assumption we calculate the inhomogeneous 
anisotropy conductivity in Study I.  However, in other 
literature11,14, it is found that these two transverse 
conductivity eigen values are not the same every where in 
WM due to the fiber-crossing. These eigen values produce 
a ratio from 1 to 1011.

Figure 1. Anisotropic conductivities of white matter5�l represents 
longitudinal and�t represents  represents transversal conductivity.

In Study II, we consider the ratio between these two 
transverse conductivities. We consider the same ratio (�lt)
produced in Study I by CRA for these transverse 
conductivity  ratios  (�tt)  such  that  � � � �� �ltttx x �� ��  , 
however, we select �tt in random order. We also generate 
the inhomogeneous longitudinal and transverse 
conductivities by means of both constraints, separately. The 
Volume constraint stated in eq(4) can be redefined as11,14

                                                                                         (11) 

�trans1 and �trans2 represent two transverse conductivities 
where lttranslong ��� 
1:  and tttranstran ��� 
21 : . For 

example, if �lt is 3 and �tt is 2, then �long, �trans1, �trans2
values are 0.3699, 0.1223 and 0.0612, respectively. In this 
case, Li et al11 used 21 :: translonglttranslong ����� 


but we don’t consider it as an inhomogeneous. Because 
�trans1 always shows WM isotropic conductivity (� = 0.14). 
For example, if �lt = 3, then it produces the values of �long =
0.42, �trans1 = 0.14, and �trans2 = 0.046667. Again if �lt = 5, it 
produces the values of �long = 0.7, �trans1 = 0.14, and �trans2 = 
0.028. To avoid this situation we use lttranslong ��� 
1:
and tttranstran ��� 
21 : . For Wang’s constraint we 
consider eq(5) while �trans represents average of �tran1 and 
�tran2. For SCA, we determine the longitudinal 
conductivities according to Study I and then we apply 
eq(11) for Volume constraint and eq(5) for Wang’s 
constraint in the similar manner as CRA. 

Forward computation 

The EEG forward computation is performed by 
assigning conductivity to the individual elements putting a 
current source in the volume conductor (here, head is used 
as volume conductor). The Poisson equation in eq(2) and 

eq(3)  are solved by means of FEM. For the modelling of 
the current source, we use ‘single dipole’, which has been 
introduced by Yan et al20. We use a standard variation 
procedure to transform the Poisson equation from the quasi-
static Maxwell’s equations into an algebraic system of 
linear equations. We solve the linear equations by 
preconditioned conjugate gradient method6  using Cholesky 
factorization preconditioning29 with a drop tolerance of 1e-4.
We calculate the electric potentials produced by a single 
dipole for both radial and tangential sources using 64 
electrodes positioned at different places on a head surface27.
The forward computed data obtained from the 
homogeneous isotropic, homogeneous anisotropic and 
inhomogeneous anisotropic models are analysed by 
calculating relative difference measure (RDM) for the 
topology errors (minimum error: RDM=0) and magnitude 
difference (MAG) values (minimum error: MAG=1) of the 
electric potentials. Homogeneous isotropic model is 
obtained by assigning homogeneous isotropic 
conductivities. The homogeneous anisotropic model11 is 
obtained by setting the maximum conductivity ratio. The 
inhomogeneous anisotropic model is obtained by assigning 
inhomogeneous anisotropic conductivity. The RDM and 
MAG values are calculated as follows12,28:

                                                                                         (12) 

                                                                                         (13) 

where the values obtained from the homogeneous isotropic 
or homogeneous anisotropic model are interpreted as 
reference (ref) and the values obtained from the 
inhomogeneous anisotropic model are used as measurement 
(meas). The index i represents the numbers of electrodes. 

Simulation and experiment 

Firstly, we implement a five-layered concentric 
spherical head model5 with the radii shown in row 2 in table 
1 using Matlab29. Secondly, We segment the head model 
into surfaces, perform tessellation for mesh generation, and 
then apply a constrained Delaunay tessellation technique29

using Tetgen® package provided by Baillet et al27. The 
mesh generation produces 315K tetrahedral  elements  from 
54K nodes shown in table 1 (last row). We use these 
tetrahedral elements for FEM modelling. For homogeneous 
isotropic case, we assign the mean WM conductivity 
studied from several samples of that tissue type to each 
element (row 3 in table 1) and we also assign anisotropic 
WM conductivity using 10: 
translong �� for homogeneous 
anisotropic    head    model.    However,    we    assign    the  
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Table 1. Head model parameters. 

 Scalp Skull CSF GM WM 

Radii (cm) 8.8 8.5 8.1 7.9 6.5 
Means (S/m) 0.33 0.0042 1.0 0.33 0.14 
Elements 52519 67403 278846 66665 50489 

                                           (a)                                                                                          (b) 

                                           (c)                                                                                          (d) 

Figure 2. (a) Value of conductivity ratio (�lt) between longitudinal and transverse conductivity for each WM 
element generated by CRA, (b) clear view of (a) from 102 to 103 WM elements, (c)  longitudinal (long.) and 
transverse (trans.) conductivity values for each WM elements based on �lt of (a) using Volume constraint, and (d) 
clear view of (c) from 102 to 103 WM elements. 

conductivities produced by CRA or SCA (shown in figures 
2(c) or 3(c)) to individual WM elements for the 
inhomogeneous anisotropic purpose. We also implement 
CRA and SCA techniques in Matlab. For both 
homogeneous isotropic and inhomogeneous anisotropic 
cases, we assign the homogeneous isotropic conductivity to 
other head layers. After assigning conductivities, we 
perform forward computation using the adopted FEM tool 
provided by Baillet et al27. We place a fixed dipole at 2mm 
below the cortex surface inside the GM32 with the azimuth 
and elevation orientations �/4 and �/5, respectively. We 
choose the unit magnitude of the dipole and consider XY 
plane only. We measure the EEG using 64 electrodes. 
Finally, we apply RDM and MAG techniques to analyse the 
results. We implement those computations using an Intel® 
dual core 2.0 Ghz processor. It takes approximately 3 hours 
to carry out each computation. 

To investigate the influence of inhomogeneous 
anisotropic WM conductivity, two types of experiments are 
carried out. Each Study uses the same head model except 
their conductivities.  

The conductivity ratio between longitudinal and 
transverse for each element is generated using the CRA. 
Based on this ratio, we determine the longitudinal and 
transverse conductivities by applying either Volume or 
Wang’s constraint for WM tissue layer. In the case of 
homogeneous anisotropic model, �lt is constant. For 
example, Wolters et al6,7 and Gullmer et al13 used 1,2,5 or 
10 for the value of �lt . However, for inhomogeneous 
anisotropic case, �lt can be 1 to 10.  CRA generates 
different values for �lt as shown in figure 2(a). Figure 2(c) 
shows the longitudinal and transverse conductivities for 
Volume  constraint  generated  by  means of the values of 
�lt shown  in figure 2(a).  In  the  similar  way,  we  generate  

long.

trans.



Australas. Phys. Eng. Sci. Med. Vol. 31, No 2, 2008                              Bashar et al � Influence of white matter inhomogeneous anisotropy  

127

                                             (a)                                                                                      (b) 

                                             (c)                                                                                      (d) 

Figure 3. (a) Value of �lt (conductivity ratio) between longitudinal and transverse conductivity for each WM 
element generated by SCA, (b) clear view of (a) from 102 to 103 WM elements,  (c) longitudinal and transverse 
conductivity values for each WM elements based on �lt of (a) using Volume constraint, and (d) clear view of (c) 
from 102 to 103 WM elements. 

Table 2. RDM and MAG values between homogeneous isotropic (homo_iso) and inhomogeneous anisotropic (inho_aniso) models, and 
homogeneous anisotropic(homo_aniso) and inho_aniso models  using conductivity ratio approximation for Study I  calculated by either 
Volume or Wang’s constrained conductivities.

homo_iso vs inho_aniso homo_aniso vs inho_anisoConductivity 
RDM MAG RDM MAG 

longitudinal 27.60% 1.4384 6.47% 0.9023 Volume constraint 
transverse 28.21% 0.9104 42.06% 0.9518 

      
longitudinal 19.16% 1.2637 6.11% 0.79 Wang’s  constraint 
transverse 32.90% 0.8923 45.15% 0.9329 

longitudinal and transverse conductivities for Wang’s 
constraint.

The SCA determines the random numbers using 
Rayleigh distribution, which we consider as longitudinal 
conductivities. Later on, we generate transverse 
conductivities according to either Volume or Wang’s 
constraint. Similar as figure 2, figure 3 shows the 
conductivity ratio (figure 3(a)) and conductivities for 
Volume constrained WM (figure 3(c)). Comparing figure 2 
and figure 3, we see that CRA produces higher conductivity 
ratios than SCA. 

Result analysis 

To analysis our research findings we compare 
inhomogeneous anisotropic results with both of 
homogeneous isotropic (homo_iso vs inho_aniso) and 
homogeneous anisotropic (homo_aniso vs inho_aniso) 
results for each case. 

Study I 
Table 2 presents the RDM and MAG values produced 

by  the  CRA  technique. For  all the cases, RDM and MAG  

long.

trans. 
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Table 3. RDM and MAG values between homogeneous isotropic (homo_iso) and inhomogeneous anisotropic (inho_aniso) models, and 
homogeneous anisotropic (homo_aniso) and inho_aniso models  using statistical conductivity approximation for Study I  computed by 
either Volume or Wang’s constraint assuming the identical longitudinal conductivities. 

homo_iso vs inho_aniso homo_aniso vs inho_anisoConductivity 
RDM MAG RDM MAG 

longitudinal 19.91% 1.3056 5.09% 0.8235 Volume constraint 
transverse 24.55% 0.9458 39.38% 0.9888 

      
Wang’s constraint transverse 18.61% 0.8471 36.44% 0.8856 

Table 4. RDM and MAG values between homogeneous isotropic (homo_iso) and inhomogeneous anisotropic (inho_aniso) models, and 
homogeneous anisotropic(homo_aniso) and inho_aniso models  using conductivity ratio approximation for Study II calculated by either  
Volume or Wang’s constrained conductivities. Transverse1 and transverse2 represent two transverse directional conductivities shown in 
figure 1. 

homo_iso vs inho_aniso homo_aniso vs inho_anisoConductivity 
RDM MAG RDM MAG 

longitudinal 23.56% 1.4505 1.278% 0.9148 
transverse1 4.99% 0.9635 36.12% 1.00 Volume constraint 
transverse2 35.52% 0.7852 46.12% 0.8209 

      
longitudinal 19.36% 1.2185 5.9% 0.7686 
transverse1 30.88% 0.9235 43.89% 0.9656 Wang’s constraint 
transverse2 21.85% 0.7373 37.27% 0.77089 

values are far from the ideal values, 0 and 1, respectively. 
This indicates a strong affect of WM inhomogeneous 
anisotropy on EEG. While we implement inhomogeneous 
anisotropy, different conductivities rather than 
homogeneous isotropy are assigned. Therefore, electrical 
potentials vary from the reference model. Volume 
constrained �long and Wang’s constrained �trans are more 
affected by inhomogeneous anisotropy. From eq(4) and 
eq(5), we find that the Volume constrained �long has higher 
values and Wang’s constrained �trans has lower values. 
These two conductivity values are far away from the 
homogeneous isotropic conductivity (0.14). For instance, 
when �lt = 10, the value of �long  and �trans are 0.65  and 
0.044 for Volume and Wang’s constraints, respectively. In 
comparison with homogeneous anisotropic model, 
inhomogeneous anisotropic models produce less MAG 
error. In our experiment, we consider �lt = 10 for 
homogeneous anisotropic model. As our inhomogeneous 
anisotropic model is generated by different conductivity 
ratios ( 1 to 10) defined in eq(6) and shown in figure 2(a), 
therefore, it produces big magnitudes than the reference 
model. As a result, it becomes closer to homogeneous 
anisotropic model. Here, the MAG is 1.58 between 
reference and homogeneous anisotropic models. The 
longitudinal conductivities for both constraints are more 
affected by homogeneous isotropy than homogeneous 
anisotropy (comparing columns 5 and 6 with columns 3 and 
4 for longitudinal conductivities). However, transverse 
conductivities are more affected by homogeneous 
anisotropy than homogeneous isotropy  as  shown  in  row 3  

and row 5 in table 2. 
Table 3 shows the results of the topology and 

magnification errors where the inhomogeneity is 
determined using the SCA technique. Tables 2 and 3 show 
the similar results, namely, the WM inhomogeneous 
anisotropy has a strong effect on EEG. Wang’s constrained 
transverse conductivities produce higher MAG and lower 
RDM error than that of Volume constraint. In this case, we 
calculate transverse conductivities for both constraints 
using the same longitudinal conductivities. For example, if 
the value of �long = 0.65, then �trans = 0.065 for Volume 
constraint and �trans = 0.0302 for Wang’s constraint 
(applying eq(4) and eq(5). In a way, applying Volume 
constrained transverse conductivities; we obtain the 
magnification values (0.9888) close to homogeneous 
anisotropic model. Though the RDM values produced by 
Wang’s constrained transverse conductivities are 
comparatively lower than that of Volume constraint, but it 
produces higher MAG errors (3rd and 4th rows in table 3). 
Comparing CRA technique with SCA, it is found that CRA 
produced conductivities generate more topology and 
magnification errors than those of SCA. 

Study II 
Table 4 presents the RDM and MAG values produced 

by CRA technique based on Study II for both constraints. 
These experiments also demonstrate that WM 
inhomogeneous anisotropy has a strong effect on EEG. 
According to eq(11), the value of Volume constrained 
�trans1  is  very  close  to  isotropic  conductivity  (0.14). For  
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Table 5. RDM and MAG values between homogeneous isotropic (homo_iso) and inhomogeneous anisotropic (inho_aniso) models, and 
homogeneous anisotropic (homo_aniso) and inho_aniso models  using statistical conductivity approximation for Study II  computed by 
Volume or Wang’s constraint assuming the identical longitudinal conductivities. Transverse1 and transverse2 represent two transverse 
directional conductivities shown in figure 1.

homo_iso Vs inho_aniso homo_aniso Vs inho_anisoConductivity 
RDM MAG RDM MAG 

longitudinal 19.98% 1.2327 5.34% 0.7775 
transverse1 17.61% 0.9878 36.72% 1.0327 

Volume constraint 

transverse2 40.34% 0.8301 50.06% 0.8679 
      

transverse1 18.80% 0.8628 36.31% 0.9021 Wang’s constraint 
transverse2 41.56% 0.8432 48.37% 0.8314 

example,   if   �lt  is  5  and  �tt  is  3,  then  �long, �tran1,
�tran2 values are 0.590403,  0.118081, and 0.039360, 
respectively, for Volume constraint. As a result, �trans1 
produces  less RDM and MAG errors than others. 
Similarly, Wang’s constrained values are 0.313050, 
0.093915, and 0.031305, respectively. Volume constrained 
�long  generates more RDM (23.56%) and MAG (1.4505) 
errors than Wang’s constrained �long  (RDM = 19.36% and 
MAG = 1.2185). Volume constrained �trans1 and �trans2
generate less MAG errors than those of Wang’s constraint. 
Like table 2, we observe here, the longitudinal 
conductivities for both constraints are more affected by 
homogeneous isotropy than homogeneous anisotropy 
(comparing columns 5 and 6 with columns 3 and 4 for 
longitudinal conductivities in table 4). However, transverse 
conductivities are more affected by homogeneous 
anisotropy than homogeneous isotropy (rows 3,4, 5 and 6 in 
table 4). 

Table 5  shows  the  RDM  and  MAG  values  where 
the inhomogeneity is obtained from SCA produced 
conductivity ratio (�tt). The similar results presented in 
tables  2-4  are  also  observed  in  table  5. Comparing  
table 5 with table 4, we also found that CRA based 
conductivities are more affected than SCA based 
conductivities. 

In this experiment, RDM and MAG errors between the 
reference model and homogeneous anisotropic model are 
23.85% and 1.5854, respectively, for longitudinal 
conductivity. According to the conductivity generation, 
inhomogeneous anisotropic models are produced by less 
conductivity ratios than homogeneous anisotropic model. 
As a result, all of the RDM and MAG errors in this 
experiment are lower than those values. Similarly, the 
reference model and homogeneous anisotropic model 
generated by transverse conductivity produce 35.11% RDM 
and 0.9565 MAG errors. Most of our RDM and MAG 
errors are close to above mentioned values except �trans2 .
As these conductivity values are generated by random 
numbers, in some cases it produces more errors than above 
mentioned values, for example �trans2 . Therefore, by using 
inhomogeneous anisotropic model in place of homogeneous 
anisotropic model we are able to reduce RDM and MAG 
errors.  

Conclusion

In this study, we apply the conductivity ratio 
approximation and statistical conductivity approximation 
techniques to assign the longitudinal versus transverse WM 
conductivity ratio for inhomogeneous anisotropic head 
model. The preliminary results show that EEG is affected 
by the WM inhomogeneous anisotropic conductivity in the 
both models generated by using the Volume constraint and 
Wang’s constraint. On the one hand, the model generated 
by using Volume constraint is more influenced by its 
longitudinal conductivity inhomogeneity. On the other 
hand, the model generated using Wang’s constraint is more 
influenced by its transverse conductivity inhomogeneity. 

In this study, we use five-layered spherical head model; 
however, we consider the similar approaches for realistic 
head model by assuming the random anisotropy in lieu of 
DT-MRI data. Therefore, more similar studies of 
inhomogeneous and anisotropy tissue conductivity will be 
thoroughly investigated in the future using realistic head 
model from DT-MRI.  Although this study does not 
quantify the absolute errors, we conclude that incorporating 
the WM inhomogeneous anisotropy effects on the EEG 
forward solution by up to 50% in RDMs and 0.7 to 1.45 in 
MAGs when compared with homogeneous isotropy and 
anisotropy models.
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