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We have considered some aspects of the structural features of the classical (Newton-
ian) equilibrium of a highly rotating spheroidal polytrope n = 1, governed by the equation
of state: P = constant p7 (P denotes the pressure, p the density and v the adiabatic con-
stant). Approximate analytical solutions to the equilibrium equations suitable for use in
very short computer programs or on small calculators have been given in (up, ve ), (up,vp),
(up,vp) and (€@, ©) planes for vy = 2 following Padé (2,2) approximation technique. Under
certain transformations, the equilibriur equation has been cast into first order differential
equations in (ue,ve ), (up,vp), (4p,v,), (z6,ve), (2p, yp) and (z,,y,) planes. Transforma-
tions connecting solutions in these planes have been derived. Graphical material is included
showing a comparative study of the runs of ug with ve (Fig. 1), up with vp (Fig. 2), u,
with v, (Fig. 3), © with £ (Fig. 4) and ¢ with Aw (Fig. 5) for rotating (w = 0.05 and
w = 0.15) and non-rotating (w = 0) configurations. It has been found that the present
method of approach i3 also more suitable for the study of both slowly and highly rotating
configurations.

1. Introduction

The study of the properties of polytropes has been a fascinating subject of
discussion to applied mathematicians in general and to astrophysicists in particu-
lar since long (102 yrs according to some estimates). The theory of polytropes is
fundamental not only in precise investigations of stellar structure, star formation,
galactic dynamics, etc. but also in the rough estimation of some processes in real
stars. Most of the stars in the sky are adequately described by Newtonian physics,
without taking into account general relativity. Such Newtonian stars deserve some
attention here, both because they serve as limiting cases for the more exotic objects
that interest general relativists, and also because they guide us in understanding the
qualitative properties of these objects. The fundamental problem of the equilibrium
of a configuration under its own gravitation with underlaying law

P=Kp't® (1)

is almost due to Ritter [1] (K is a disposable constant). The foregoing relation can
represent a variety of different possible physical conditions. For example, n = 0
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56 J. P. SHARMA and R. B. YADAVA

represents a homogeneous liquid, n = 1, a not centrally condensed matter {which is
quite reasonable approximation for neutron stars of one solar mass or greater; and
planets like the Earth are better approximated by a polytrope withn = 7 /10 (Allen
[2]). White dwarfs and main-sequence stars are approximated by polytropes with
1.5 < n € 3. An isothermal perfect gas is defined by n — co. Mass distribution
and velocity dispersion in the bulge halo subsystems correspond approximately to
that of a polytrope of index 5 (Mark (3]). Knowledge of polytropic (or isothermal)
configurations is useful in the study of gaseous filaments or of spiral arms and
globular star clusters.

Considerable amount of work has already been done towards the study of
the equilibrium of static, polytropic (or isothermal) configurations (for example,
Emden [4]; Eddington (5]. Milne [6]; Chandrasekhar [7); Ostriker [B], Taff et al [9];
Lightman [10]; Srivastava [11]; Seidov and Sharma [32); Sharma [13], Sharma and
Yadav [14]) and rotating configurations (Jeans [15); Chandrasekhar [16), Roberts
(17]; James [18] Monaghan and Roxburgh [19]; Carl ). Hansen et al [20); Cunningham
[21]; Sharma and Yadav [14)]) in classical (Newtonian) theory. Extensive studies
have also been made towards the above mentioned eonfigurations under special
relativistic treatment (for example, Stoner [22]; Kothan [23); Chandrasekhar [7],
Schatzmann [24], Sharma {13, 25, 26]) and slowly ot highly rotating configurations
{neutron, supermassive and polytropic stars) under general relativistic treatment
(for examnple, Hartle {27]; Hartle and Thorne [28); Hartle et al [29]; Hartle and
Munn [30}; Sharma [31}).

In most of the above works, pariizniarly, In rotating cases, with which we are
presently concerned, the fsllowing methods have generally been adopied to solve the
equilibrinm equations (i} a perturbation approach, {ii}) the Roche approximatios,
{iil} variational principle, {iv} formation of self-consistent density and potential
distributions, and (v} numerical methads.

The abave mentioned methads are, however, lengthy, cumbersome, aard in-
volve cansiderable mathematical complexities. Hence, these may not be economical
for computer pragramming. Further, ane is faced with inhetent analytical difficyl-
ties for the case of highly ratating palytrapes (high angular velocity € or w as it
needs developing in pawers of ), expansians far the departures of the equilibria from
Emden spheres). All this could he avaided by emplaying a2 much simpler method
known as Padé (2,2) approximatian technique, as used elsewhere (see for example,
Seidov and Sharma [12], Seidav {32], Sharma (13|, Sharma and Yadav [14]), to solve
the equilibrium equation for ratating spheraidal palytrape of index unity (n < 1
are only physically admissible values ta the present case). The main advantages of
the present approach are: (i) it does nat invalve taa much mathematical complexity
related with computational work, (ii) it is less time cansuming, (iil} it is computa-
tionally efficient and economical, and (iv) it is suitable for both cases of slowly and
highly rotating polytropes.

First, in Section 2, we will present the structural equation in (£g, ) plane.
In Section 3, we will derive first-order differential equatians in (ug, vq), {4y, %),
(u,,v,), (za,¥%0), (2p,yp) and (z,, y,) planes. Sectiaon 4 deals with certain transfor-
mations connecting the solutions in these planes. Appraximate analytical solutions
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describing the physical structure of the configurations in (ue,ve), (up, vp), (up, v,)
and (£g,©) planes for ¥ = 2 have been given in Section 5. Section 6 throws some
light on possible values of the critical angular velocity attainable by the configu-
rations. Concluding remarks are given in Section 7. Results of our calculations
are displayed in Figs 1-5. Stability considerations or bifurcation analysis could be
another interesting aspect of the problem which we, however, intend to include in
future work, as some light has already been thrown towards this aspect by some of
the above mentioned authors following different methods than the present one.

2. Structure equation

Structure equation in the (o, ©) plane

The fundamental equation of classical equilibrium of a highly rotating (sphero-
idal) mass of fluid obeying a polytropic equation of state (1) is given by

. 1d 2 dplfﬂ 447G 2 % a1 2
K(n+1 r_zﬁ(rT = - —-é——(l--e) sin™" el p 4+ 2Q%, (2)
where G is the gravitational constant, e the eccentricity, and 2 the angular velocity.

To reduce the foregoing equation to a manageable, dimensionless form, we
introduce the dimensionless variables © and £g defined by

o e (n+ DK i ,]¢
p =207, T‘[(1_ez)%sin-le U] e, (3)

and w and v by

w ° v L (4)
= T y V = o,
(1 - 62)5 sin~le 2xGA
Then, Eq. (2) in (£, ©) plane is obtained in the form
1 d ( 2 d@)
—_— —_—) =—-0" + w, )
& % \"° %o ®)
which satisfies the initial boundary conditions
d
9(0) =1, ~%=0 at £o = 0. (6)
d§e
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3. First-order differential equations in (ue,ve), (up, vp), (up, v,),
(z0,90)s(2p, ¥p) and (z,,y,) planes

3.1 First-order differential equations in (ua,ve), (4p, vp) and (u,,v,) planes

Let the two independent functions ug and ve be related with the variables

{o and O by
o (0" — w) £ ®
Uez—‘“—e—l—, Vg = — 0 (7)
Then, Eq. (5) reduces to its equivalent first-order differential equation:
dug _ _ue |ue t+nagve — 31 v = o" 8
dve ~  vs ug + v — 1 ' e-en—w' (8)

In (r, P) and (r, p) planes, Eq. (5) can be written as

1 d T2 dP n n

. )= —pH . o= AKFH

r2 dr (Pn'i"x dr) Pt tew, =K ’ ®
Ld (2 dp + 10)
——— —_— . — _ - w
r2dr \p=+1 dr p ’ (

where the dimensionless variables {p and £, are defined by

r=aplp = [(n—fl)K%ﬁ)\&'l}%& (11)
and 1
rE o, = [nz\i‘l] Y&, (12)

Further, if we define the four independent variables up and wp, u, and v, by
equations

2n n
_ Y(P*H — CP™1w) _rP , _dP
up = 5 , vp=— (P= o), (13)
I O Y ™)) _ dp
= P ! ”p—"T (r = ?r-) (14)
Then, we obtain from Eq. (5) the following first-order differential equations
dup up [up + apvp — 3 ( n ) P , 1
= |—7F——|; ap= —5— , ap =
dvp vp {up +apup —1 n+l/ P+ —~Cuw n+1
(15)
and d 3 1
Qup _ _Yp [Upt XeVp =) P ro 2
dv, v, [up+a;7"p—'l]’ % p—iw YT w (16)
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3.2 First-order differential equations in (2e,ye), (2P, yp) and (2,,y,) planes

The relations between the variables (z@,ys) and (£g,©) like those used in
the discussion of static polytropic gas spheres are (Chandrasekhar [7])

zo = log{n(®" — w)} + 2logée (17)
and 4 on-1 d@
- dze _ O™
Yo = Gt - @ —wodis D (18)

respectively. In consequence of the foregoing Egs (17) and (18), Eq. (5) reduces to
the form of first order differential equation

[yeji —y-2- u(e,ye)] v(®©) +¢*® =0, (19)
20
where
-1 no__ n __
woe) = {8 = ih v o) = G

If we further define

(i) zZp = f;mP, m= -2,

(20)
. _ dZP _ —-m+41 dP — -t
(i) yp = I = ép e +mzp, {p=e
and
() 2, =§™p, m=-2,
(21)
. _9% o _mp dp — a1,
(n)yp_.ﬁ;— £ d£ +mz,, £,=et,

then Eqs (9) and (10) get transformed into two similar first-order differential equa-
tions

dyp _ n -1,2 m
P, yp + mzp <n+1) Vbt | (mzp — 2yp)
+ F1 p(ép,2p) — CwFa p(€p,2p) = 0, (22)
where o
Fy p(€p,zp) = p_rz;'a'“
and

Fy p(€p,zp) = ;T pT;

Acta Physica Hungarica 72, 1992



60 J. P. SHARMA and R. B. YADAVA

dyp

1, , 1. _
yﬂa ~Yp+mz, + ;(m 2, = 2my,) — (1- ;)zp ly;z;
+ 1,580y 2p) + F2,p(§p25) = 0, (23)
where
Y
F1,(p,2,) = fzzp(fznzp)l b
and

F2,5(€,2,) = —Aw £ ™ (€7 2,) 3.

4. Transformations connecting solutions of polytropic equations
in (ug,ve), (up,vp), (u,,v,) planes
and (ze,yse), (2p,yp) and (z,,y,) planes

Dividing the first equation in (7) by the first equation in (13), and using
relations in (3) and (11), we have

ue _ (1- e?)tsin~le - 4rG

r . R , (24)
since
,_dP _(n+1)EKAtzon . @ ,_ do®
Pl=—r= o , (© = i (25)
09:[ C(T:+1)K /\%_1]3‘
(1—-¢?)3sin~tednG
We find from (24)
— el sin~le.
ug = ¢;up, where ¢; = (d-e Ls}x{nﬁg—le 47rG. (26)

Further dividing the first equation in (7) by the first equation in (14), and using
relations in (3) and (12), we get

1-¢e?)isinle| 4G
Ug = Cal,, Cz = (n:]_) {( )e } T (27)

because
, _dp _nl@""l.©

T dr ae
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Hence from Eqs (26) and (27), we can easily deduce that

1
ve —n ¥ lvP)
1
vo —;v,, (28)

1
vp —(1 + ;)'Up.

Similarly, using Eqgs (3), (11), (12), (17}, (18) and (21), one may obtain the trans-
formations connecting the solutions in (zg, ye), {zp,yp) and (z,,y,) planes.

From the viewpoint of astrophysical applications, we are more interested in
obtaining approximate analytical solutions of some of the above first-order differen-
tial equations, say, Egs (5), (8), (15) and (16), as given in the following Section §.

5. Approximate analytical solutions of the structure equations for v = 2
§.1. Approzimate analytical solutions of Eq. (8)
We assume a series expansion of Eq. (8) of the form
ue = 3+ ajve + byvd + chvd + dyvd, (29)
which satisfies the initial conditions ug — 3, vg — 0 as £g — 0. With the help of

Eqs (8) and (29), we may determine the coeflicients a§, b}, cg, d5, . . ., successively
by equating the coefficients of like powers of vg. Thus, we have

0 ==3nas, b =-za5(2a3 + 1+ nao),
1
co =—3b5(5a3 +2 +nae), dh =—-(3F +cp(bap+3+nae)}.  (30)

Now, we may express the function ug as Padé (2.2) approximant:

1+ Agve + Bgvd

=3
Y=Y T3 Cyve + Dyvd’ (31)
where
L] 1 - » - 1 - - » L
As =396 +Cs, Bp = 3(bs +apCs) + Db,
a:d-_bxvc- Ct?_bcd:

cy=20% %% p_% —Ye% (32
Ag A% )

Ay =bg — ageh.

Figure 1 shows run of ug with ve for highly rotating (w = 0.05 and 0.15) and
non-rotating (w = 0) configurations.
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5.2. Approzimate analytical solutions of Eqs (15), (16) and (5)

The series expansion of Eq. (15), near the origin {p — 0, satisfying the initial
conditions up — 3, vp — 0, is given by

up=3+apvp+bp‘U}2:+va?p+dpv;>+.... (33)

3001
2701
2401

2101

080

0601

02 04 06 08 10 12 14 16 18 20
U

[}
Fig. 1. Run of ug with vg for the rotating polytropen =1
With the initial conditions u, — 3, v, — 0, near the origin £, — 0, we obtain the
series solution of Eq. (16):
- 2 3 4
up =3+ apv, +bpvy + v, H v, + (34)
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The series solution of Eq. (5), satisfying the initial conditions in (6), can be written
as
O =1+a0fd +bofd +cold +dotd +.... (35)

Corresponding to the above three series solutions up, u, and © [Egs (33), (34) and
(35)], we obtain the following expressions for Padé (2.2) approximant:

1+ Apup + Bpv?
up =3 £ F Z, (36)
1+ Cpvp + Dpvp
1+ Av, + B,
u, =3- oUp P g (37)
1+ Cpv, + Dyv2
A
2.01
jﬁ
151
1.04
051
02 04 06 08 10 12 14 16 18 20
U
Fig. 2. Run of up with vp for the rotating polytropen =1
and Al o Bagd
1
1+ Coll + Dol
respectively.
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Results of our calculations are displayed in Figs 2, 3 and 4, respectively, for
two chosen values of angular velocity (w = 0.05 and 0.15). For comparison, the
non-rotating case (w = 0) is shown by smooth curve (for values of Ap, Bp, Cp,
Dp, ap, bp, cp, dp, A,, By, C,, D,, etc. see Appendix 1).

1.51

1.01

0.51

.

02 04 06 08 10 12 14 16 18 20
Yy

Fig. 3. Run of u, with v, for the rotating polytrope n = 1

6. Critical angular velocity

Spheroidal equilibria would bifurcate at £ = Q, (subindex ‘b’ means bifurca-
tion). More explicitly, we may say that bifurcation (possibility of the two equilibria:
the ‘spheroidal’ and ‘ellipsoidal’) would occur if Q5 < Q. or equivalently if wy < w,
(subindex ‘c’ denotes the critical value), and it does not if wy > wc. The equilibrium
is broken at Q.. If the angular velocity § is increased more and more the matter
would flunge away from the equator, and it would form a thin disk.

From our approximate analytical solution in Eq. (38) we may find that the
value of the critical angular velocity w. is ~ 0.18 for n = 1 polytrope, for which
O — 0 at £ = § = 4.2976495. This clearly suggests that due to rotation the
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geometrical size &) is increased by 36.94 % over its spherical shape. This result is
in good agreement with that of Roberts [17] as found by variational technique.

034

Q21

0.14

02 04 06 08 10 12 14 16 18 20
5,

Fig. 4. Variation of density p, measured in units of central density A, plotted as a function of

equatorial radius £, for rotating polytrope n = 1. For comparison, cases of non-rotating and

rotating polytropes (n = 1), respectively, are shown by solid (Chandrasekhar [7]) and dashed
(Roberts [17]) curves

Further, our interest is to calculate small variation Aw (= w.—wp) in angular
velocity for n = 1 polytrope for two chosen values of wp = 0.05 and 0.15 (subindex
‘P’ means particular) by employing the formula.

w. = a "wp, (39)

where a is the limiting value of © when £ is small. In Fig. 5 Aw is plotted with ¢.
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240+
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724
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241

—T T T T »

0.02 004 006 0.08 010
13

Fig. 5. Run of Aw = (w. — wp) with £ for rotating polytrope n = 1

7. Conclusions

The present formalism attempts to analyze analytically some structural fea-
tures of the classical equilibrium of a highly rotating spheroidal n = 1 polytrope
which obeys an equation of state: P = Kp”. For this purpose, equation of equi-
librium (2) has been transformed into first-order differential equations in (ug, ve),
(up,vp), (4p,v,), (z0,y0), (zp,yp) and (z,,y,) planes (Eqs (8), (15), (16), (19),
(22), (23)). Since our previous methods, numerical, variational, perturbation analy-
sis, etc.) would involve mathematical difficulty associated with computational work,
we have derived here simple approximate analytical formulae (Eqs (31), (36), (37),
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(38)) in concise form from which the desired value of the physical parameter can
be obtained using even an electronic pocket calculator (without using computer
programs). Evidently, therefore, the present method seems more economical on
computer machine than the previous ones.

Results of our calculations are displayed in Figs 1-5, for two chosen values of
angular velocities, wp = 0.05 and 0.15. Monotonic falls in ug with ve, up with
vp, 4, with v,, © with {g and increasing trend in Aw with § have been noted.
As pointed out in the main body of this paper (Section 6), our present approach,
when applied to bifurcation analysis, leads to yielding the value of critical angular
velocity w, ~ 0.18 which is quite a good approximation in view of the previous
findings (Roberts [17]).

With the help of our analytical formulae in Eqs (31), (36), (37) and (38),
one may also obtain very conveniently solutions for other values of n. Qur present
approach may find notable applications in the discussion of stability analysis which
has, however, not been included in the present work.
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Appendix 1

Values of the coefficients in Eqs (36), (37) and (38):
Ap =%GP + Cp, Bp =§(bP +apCp) + Dp,

Cr =aed§ —PbEcE, Dp =SB~ ipdp’

Ap Eb?z — apcp

3 1
ap = - zap, bp = —70P(20p +ap + ap),

1
cp=— §bp(5ap + ap + 2ap),

1
dp =~ H[3b3, + cp(6ap + ap + 3a’p)),

1 1
A, =-3—a,,+Cp, B, ='3'(bp+aPCP)+DP’

a,d, — b,c ¢t ~b,d,
c, =_."__LAT_.0_E’ D, =_L_Kr_,

= p2
A, = b2 —ayc,,
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3 1
G == g% b, = ‘7“»(2% +a, +ay),

1
cp=— §b,(5a, + a, +2a3),

1 ’
dp = H[sbz + c,,(6a, +a,+ 30,)],

Ag =ae + Ce, Bg = bg +aeCs + Do,

Ce =GQdQ‘ —ebQCQ , DS = 623 - beede ,

Ae = b% — agceg

1 Aa
ae=—5(1-—w), bg =~ 206,

1
cg = — 4—12-(Albe + azeBl), de = —ﬁ(AI(:e + QaebeB' + aseC'),

n _n(n-1) n(n—1)}(n-2)
A=y B=—m— C= 3! '
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