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Coherent phonons which start martensitic formation are the solutions of the Duffing
equation. By using this idea the frictional force was included in this undamped nonlinear
equation. Numerical results were obtained for Au-Cu-Zn (30 at% Cu, 47 at% Zn) and
In-Tl (21 at% Tl) single crystal. Dependence of vibrational amplitude of the phonons on
frequency of driving force was researched for various temperatures in the austenitic range.
It was found that damping effects change that strongly as the martensitic transformation
temperature, M., is approached. The proposed model in this study can explain the jump
phenomenon in the response curves more clearly and realistically when damping is included.

1. Introduction

Nonlinear differential equation systems have become increasingly important
in metal physics. Martensitic transformation is associated with certain thermody­
namical features relating to phonons: This transformation occurs with the velocity
of sound, pre-transformation vibrational mode softening, etc. Therefore, in re­
cent years several phonon models relevant to martensitic transformation have been
presented [1]. Zhang has stated that the coherent phonons will be able to start
martensitic transformation [2]. In his model the researcher has neglected the fric­
tional effects which have a retarding role against leaving of interface from austenite.
In this paper pre-rnartensitic internal friction effects, contrary to Zhang's investi­
gation were included in the nonlinear differential equation of atomic motion. The
main result of this study is that the damping parameter affects considerably the
vibrational amplitude of the phonons during the martensitic transformation. The
new model improved in this paper can explain the characteristics of the transfor­
mation and reverse transformation and describes rather well hysteresis phenomena
associated with the transformation.

2. Forced oscillations

2.1 Undamped equation of atomic motion

According to the theory of coherent phonon starting martensitic transforma­
tion, a phenomenon starting transformation depends on cooperative atomic move­
ment in a potential well of coherent phonon waves propagated in austenite phases.
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Therefore, it is supposed that there are various regions including the lattice dis­
placement waves above the martensitic starting temperature, M.. The amplitude
of the lattice displacement wave is enhanced enough to go beyond the critical am­
plitude atoms crowd through the energy barriers into the positions determined by
the crystal lattice of the low-temperature equilibrium phase and these dynamical
displacements are frozen out, resulting in the martensitic structure. The equation
describing the motion ofthe atoms can be derived from a potential <p(r) as marten­
sitic transformation is characterized by cooperative atomic movements. By using
the expression

it is obtained as

where

F = -d<p(r)ldr

mr + kr + rr3 =0,

(1)

(2)

which is called coherent phonon potential, m is the total mass of atoms, k and r
are constants. The frequency of the soft-mode of the transformation is

(3)

where T~ is rnartensitic start temperature and f3 = rim. Since the amplitude of
atoms is enhanced by the coherent phonon waves the motion of atoms must also
be under the influence of an external force Focos wt. This driving force represents
the stress caused by the vibrating atoms driven by the pre-transformation lattice
displacement waves which crowd into the space between the neighbouring atoms and
cause the deformation of crystal lattice in the transformed region. By considering
this force the equation describing the motion of atoms termed Duffing equation can
be represented by

d2rldt2 +ur + f3r3 = (Fo/m) cos wt.

The solution of this equation is given [3]

r =ro cos wt,

w2 =w~ + 3f3rV4 - f tr«.

(4)

(5)

where f = Fo/m. Zhang used this equation to study the amplitude of atomic
displacements during martensite transformation.

e.2 Damped equation of atomic motion

During the martensitic phase transformation it is known that the interface
of austenite-martensite moves with the velocity of sound. When the interface is
influenced from the austenite, this effect appears as frictional force. Therefore, the
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frictional force which is proportional to the velocity of the interface should be added
to the equation describing the motion of the atoms so that the potential used is
much more reasonable. In this study this force acting on such a system executing
small oscillations of phonons may be written -o:r, where 0: is a positive coefficient
and the minus sign indicates that the force acts in the direction opposite to that of
the velocity. Adding this force on the right-hand side of the Eq. (4) we obtain

d2r/dt2 + 2>.dr/dt + J1.r + f3r3 = f cos wt, (6)

where 2>' = o:/m. By using the Van der Pol method [4-6], the solution of this
equation is found as

or

r =ro cos wt,

w2 =w~ + 3f3r~/4 ± [U/ro)2 - (2wo>.)2]1/2 (7)

The coefficient f3 which depends strikingly on the properties of the material
was taken as a positive constant in the equations mentioned. Therefore, the solu­
tions already obtained above were found for the hard spring case. In the soft spring
case this constant is negative [7}.

3. Results and discussion

It is interesting to compare the results obtained in this paper with those for
the response curve which is suggested by Zhang. For this purpose the amplitude of
oscillation displaying atomic displacements during the martensitic transformation is
plotted against the frequency of the driving force for damping parameter, >., and a
given amplitude of that force. The values C2 =48x 106 jm-3 K - l , /3 =6x 1011 jm-3 ,

m = 95.1 x 10-3 kg for a gram mole of the alloy Au-30 at% Cu-47 at% Zn and
C2 = 2.5 X 106 jm-3K - 1 , 13 = 1.04 X 1012 jm-3 , m = 133.6 x 10-3 kg for a gram of
the alloy In-21 at% Tl were used in computing amplitude-frequency response curves
[8-10].

The effect of the damping parameter >., which represents the friction of the
interface between austenite and martensite, is shown in Fig. 1 when all other pa­
rameters are held constant. The peak amplitude of the response increases as >.
decreases and its corresponding frequency decreases. But at II = 110 (resonance),
the amplitude of the response does not decrease appreciably as >. increases. The
curves are nested and bent to the left (since /3 < 0).
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Fig. 1. Effect of the damping parameter>. on the response. Driving amplitude Fa =0.25, T =210 K

o

Fig. 2. The phase transformation jump phenomenon described by the Duffing equation.
This curve was taken from reference [21. Here>. =0, /3 > 0

The response curve for A= 0 was discussed by Zhang's paper (Fig. 2). From
this Figure, it is not understood that the amplitude jumps definitely to which values
of the driving frequency. But the response curves with damping have several fixed
peak values.

Figure 3 shows the effect of the driving amplitude Fo on the response. The
amplitude of response increases as Fa increases and the curves are spaced out in all
regions of the driving frequency.
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Fig. 3. Effect of driving amplitude F o on the response curve for A = 0.3, T = 210 K
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Fig. 4. Amplitude response curve in the case of a damped soft spring Dufling equation (13 < 0)

The most characteristic feature in Eq. (7) is a jump in the response when
the driving amplitude is held constant and the frequency is slowly varied through
the response region. In the case of the soft spring system the amplitude response
curve will be as shown in Fig. 4. The path cd is unstable and there is a sudden
fall in the response from c to e when the frequency of the driving force is decreased
whereas there is a corresponding jump in response from d to b on increasing the
driving force. Consequently, the location of the peak response will depend upon
direction when slowly sweeping the driving frequency, i.e. whether it is upward or
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downward. The hatched region in Fig. 4 shows clearly the transformation hystere­
sis loop. Both reverse transformation and transformation hysteresis are striking
features of martensitic transformation [11].
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Fig. 5. Amplitude response curve of Au-30 at% Cu, 47 at% Zn alloy for F o = 0.25 and ~ = 0.3
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Fig. 6. Amplitude response curve of Au-30 at% Cu, 41 at% Zn alloy for Fa =0.25 and ;\ =0.3

Figures 5 through 8 demonstrate the nonlinear character of the resonance
curves of Au-30 at% Cu-47 at% Zn alloy (M, =208 K). It can be seen from these
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Figures that the nonlinearity effects increase and the response character changes
systematically as the martensitic transformation is approached.
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Fig. 7. Amplitude response curve of Au-30 at% Cu, 47 at% Zn alloy for Fa = 0.25 and A = 0.3
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Fig. 8. Amplitude response curve of Au-30 at% Cu, 47 at% Zn alloy for Fa =0.25 and A =0.3
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Fig. 9. Amplitude response curve of In-21 at% Tl alloy for Fe =0.25 and A =0.3

Figure 9 demonstrates the nonlinear character of the response curve for an
In-21 at% Tl alloy (M. = 314 K).

Consequently, the maximum amplitude of the resonance curve is governed
by the value of the damping parameter and a similarity between the shape of the
curves in this paper and those of reference [12] can be readily seen.
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