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The stability of two homogeneous fluids under gravitational force has been discussed.
A general perturbation in the horizontal plane % == 0 has been taken with wave number kz ,

k ll along and perpendicular to the streaming motion, respectively. It is found that critical
wave number k- lies on an ellipse in the first quadrant of kz , k ll plane.

Introduction

Initially, Jeans [1] studied the problem of gravitational instability of a static
infinite homogeneous medium. He found a critical wave number k-[= 47rGp/C2P /2
and showed that the system becomes unstable for all perturbations of wave numbers
less than k-. Here C stands for velocity of sound p for density of medium and G for
gravitational constant. Ledoux [2] considered this problem of stability in an infinite
isothermal medium and showed that the medium in unstable for perturbations
propagating parallel to the plane of symmetry of the medium. Ficke [3] discussed
this problem with effect of rotation. Chandrasekhar [4,5,6] reviewed the work of
Jeans and showed that, when the medium is rotating with an angular velocity n
and perturbation is propagating in perpendicular direction then the critical wave
number k- is given by

Later Sharma and Thakur [7] considered the problem of two fluids in porous
medium. Here, we propose to discuss the problem of instability of two superposed
homogeneous fluids for general perturbation in horizontal plane z = O. A general
dispersion relation be obtained. Critical wave number P will be derived and some
special cases will be discussed.
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Mathematical formulation of the problem

The two streams of different densities are separated by the plane z = 0, such
that in the region z > 0 the system is of density Pl and in the region z < 0 the
system is of density P2. The streams are moving along the x axis with velocity V1

in region z > 0 and V2 in region z < O. The external force on the system is the
gravitational force.

Following Chandrasekhar [8] the linearized perturbation equations are

(1)

(2)

(3)

(4)

(5)

(6)

Here the suffix r stands for the two regions. For r = 1 we have the region
z > 0 and for r = 2 we have z < O. (u, v, w) are components of perturbation of
velocity along x, y, z axes, respectively. C; is the velocity of sound in the medium
and v;. is the streaming velocity in the region along x axis. Other symbols have
their usual meanings.

We ascribe to all quantities describing the perturbation a dependence on x I

y and t of the form
(7)

where

k = Jk~ + k~. (8)

Here k"" ky are the real numbers denoting the wave numbers of the propagation of
the disturbance along x and y axes, respectively. k given by (8) is the wave number
of the disturbance. i = A, t is symbol for time and t/J(z) denotes some functions
of z. n is a constant, in general a complex number, of the form n = nR + in],

For the perturbation of the form (7) we have

o 0.1.. 0 .,- !.... = D
8t =n, ox = ~II:"" oy =tll:y , oz

and

(9)
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Now writing
a; = n + ikzv,.

and taking the perturbation of the form (7) we get linearized Eqs (1) to (6) as

p,.u,.u,. = - ik"ap,. + ik"p,.a¢;,.,

p,.u,.v,. = - ikyap,. + ikyp,.a¢;,.,

p,.u,.w,. = - D ap,. + p,.D a¢;,. ,

u,.op,. = - p,.(ik"u,. + ikyv,. + Dw,.),

(D2 - k2)oep,. =- 41rGop,.,

ap,. =C;op,..

15

(10)

(11)
(12)

(13)

(14)

(15)

(16)

Substituting the value of '11,., v,. and w,. from (11) and (13), respectively, in (14) and
eliminating ap,. with the help of (16) we get

(17)

Eliminating ap,. from (15) and (17) we get a fourth order differential equation in
oep,. as

where

(18)

(19)

Solutions of the differential equation

The differential equations are solved subject to the physical conditions of the
problem. The solutions are to be bounded in the two regions. This leads to the
solution of (18) in the two regions giving Oep1 in the region z > a and Oep2 in the
region z < 0, as

Oep1 =A1e- h + IIIe- Ot1 z
,

aep2 =A2eh + 1l2eCt~Z,

(20)

(21)

where 0'1, 0'2 are non-negative quantities. A1, Ill, >'2 and 112 are arbitrary con­
stants in the above equations, to be determined with the help of the four boundary
conditions.

Boundary condition 1:
Perturbed gravitational potential 8'1' is continuous at z = 0, i.e.
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this gives,

or

R. P. SINGH and H. C. KHARE

(22)

Boundary condition 2:
Normal derivative of the perturbed potential is continuous at z = 0, i.e.

Dcep1 = Dcep2 at z = 0,

this gives,

or
kA1 + Cl:1J.l1 + kA2 + Cl:2J.l2 = O.

Boundary condition 3:
Total perturbed pressure is continuous at z = 0, i.e.

this gives,

i.e,

r.e,

(23)

(24)

Boundary condition 4:
Normal displacement of any point is unique at the interface z =°equivalently,

at z = o.

Now from Eqs (1.13), (1.15) and (1.16) eliminating cpr, and cpr we get

Hence the above condition gives

1 [ C? 2 2 ] 1 [ C? 2 2)]2' 1 +-4G (D - Ie) ose; = 2' 1 +-4G (D - Ie Dcep2
0'1 If P1 0'2 If P2

at z = 0,
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i.e.

Writing the above linear equations in matrix form we get,

or, symbolically as
(26)

where

Xl = AI,
all = 1,
a21 = Ie,
a3l = 0,

a _ Ie
41 - -::'1,

0"1

a _ Ie
43 - -::'1,

0"2

X 2 =/-'1, X 3 =A2'
au =1, a13 =-1,
a22 =01, a23 = k;
a32 = Ci(o~ - k2

) , a33 = 0,

a42 = ~ [1 + --fL(oi - k 2
) ] ,

0"1 41TUPl

a44 = ~ [1 + -.-fL(0~ - k2
) ] .

0"2 41TUP2

X 4 =/-'2,
au = -1,
a24 = 02,

a34 = -C~(o~ - k 2
) ,

For non trivial solutions of the Eq. (26) we must have the determinant of the
coefficient equal to zero, i.e,

laiil=O.
Simplifying the above determinant we get

(27)

(28)

or

(:~ -:J [Ci(o~ + k) - Cj(o~ + k)] = 2:G [p~;~ + p~~r] .
Equation (28) is the dispersion relation for the problem in the most general case.
Solving this and putting n = 0 we can get the critical wave number k", This k"
determines the criterion for instability. However, it is not possible, in general, to
get the value of k = k" from the dispersion relation in closed form. The numerical
value of k" can be obtained in a specific physical problem. In order to get a feel of
the solution, we do this in special cases of physical interest.
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(29)

Special case 1:
Let the two streams be moving in opposite directions with equal velocities

parallel to x axis, i.e. V I =YIi, V 2 = - Y2i.
In this case

ui = u~ = (n + ik z y)2 .

Putting this value in Eq. (28) we get

al + a2 = O.
PI P2

Simplifying this equation and putting the value of ar and a~ from (19) we have the
above dispersion relation as

n(n + i2kzY) [p~C~ -p~cij + [p~C~(Ci - y 2) - p~Ci(C~ - y 2
) ] k;

+ cic~ [p~ - pi] k; = 41rGpIP2 [p2C~ - PICij .

For discussing the marginal state when the instability sets in we put n = 0 in the

above dispersion relation and obtain the critical wave number k* (= JF; + k;).

Thus

I.C.

(30)

where
2 41rGpIP2[P2Cj - PICn

d l == p~C?(Ci _ Y2) _ PICr(C? _ y2)'

~2 _ 41rGpIP2[P2Ci - PlCn
2 - C2C2[p2 _ p2]

1 1 2 1

We observe that when the perturbation propagates along both the axes x and
y with wave numbers kz and ky , respectively, then the value of the critical wave
number k" lies on the elliptic orbit in the first quadrant given by Eq. (30) whose
axes are k y =0 and kz =O. Thus the positive k z , k y plane is divided in two regions
by the marginal state elliptic curve (30). One is the unstable region where k < k"
and the other is the stable region where k > k",

We also see that if we have horizontal wave propagation of the perturbation
along and perpendicular to the streaming motion then the criterion for the stability
is different from those as it would be when the perturbation is propagating only
along the streaming motion or perpendicular to the streaming motion. k Z 1 k y play
a combined role in deciding k" , and it is not just by simple addition but by the rule

of Eq. (30). For a given set of kz , k y the critical wave number k* = Jk; + k~ does

not mean that kz and ky are separately critical numbers. It is critical only when
one of them is zero, i.e, when kz =0, k" = k y or when k y =0, k" = k z .
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(31)

Particular cases
1. When the perturbation is propagating only along the streaming motion,

then k y = 0 and k", = k- is given by

_ [ 41l'GplP2(p2C~ - PlCD ] 1/2

k = p~C~(Cr _ V 2) - prCr(Ci - V2)

The above expression clearly shows that the determination of the stability is
dependent on streaming velocity and it has destabilizing effect on the stability. k­
also depends on density and sound velocity in the medium. Similar results have
been obtained by Sengar and Khare.

2. When the perturbation is propagating perpendicular to the direction of
the streaming motion in the horizontal plane, then k", =0 and ky = k" is given by

(32)

This expression is free from streaming velocity showing that in this case the stability
of the system is unaffected by the streaming motion.

Further considering Eq. (29) since al and a2 are non-negative, it follows that

(33)

r.e.

giving
k2 P__"'_+ __11_-1

4;Gp, 47tG/'-
c,-v~ c,

(34)

and

(35)

(36)k" _ 41l'GPI 41l'GP2and
- C? - V2 C~ - V2 .

When the perturbation is propagating in the perpendicular direction to the stream­
ing motion in its plane, i.e. ky = k"; k;r = 0 we have

k 2 k 2

'" y 1
4[Ge~ + 47tGp = .
c>-v~ c~

Thus the two media become disentangled for the stability conditions in this case

and the system becomes unstable for the wave number k(JF; + k;) whenever it

is less than k- given by (34) or (35) for the two regions, respectively. Particularly,
when the perturbation is propagating only along the streaming motion, i.e. k", = k-,
ky = 0 we have

le" _ 41l'Gpi
- C? and (37)
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The results (36) clearly show that k" dependence is only on streaming velocity,
medium density and velocity of sound in the medium. It is independent of the other
medium density and sound velocity. Thus the values of k" show that the system is
decomposed.

Similarly in the case of (37) the system is decomposed with k" depending only
on the medium density and sound velocity. The streaming velocity has no effect on
P.

This decomposition of the system in two separate media suggests that the
two media may be treated independently for various results under consideration.

Special case 2:
For a single homogeneous medium when the two streams are moving in op­

posite direction with equal velocity v, (i.e. PI = P2 =P, CI =C2 = C, VI =V,
V2 =- V) we have Eq. (33) as

giving

(38)

which determines the critical wave number k* satisfying (38) and k" = Jk';, + k:.

In particular, for the perturbation along the streaming motion kll = 0 and

k - k* _ 47rGp
0: - - C2 _ V2

and for the perturbation perpendicular to the streaming motion ko: = 0 and

Obviously, for the single static homogeneous medium

[ ]

1/ 2
k* _ 47rGp

- C2 '

(39)

(40)

(41)

which is Jeans result. Talwar and Kalra have obtained a similar result.
Special case 3:
Let the two media be at rest, i.e, VI = V2 = O. Then (j~ = n 2 . Putting in

dispersion relation (28) we get,

al a2 0-+-= ,
PI P2
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where
n 2

- 41l"Gpr + k2C2
ar2 = r,. C;

From these two relations we get

p~C?[n2 - 41l"Gp,. + k2CrJ = PICf[n2
- 41l"Gp2 + k2C?L

2 41l"G(PIP~C? - P2p~Cl) - k2CrC?(p~ - pn
n = (2 2 2 2)P2 C2 - PICI

For the critical wave number k" we put n = 0 in the above equation and get

21

(42)r _ . /k2 + k2 _ [41l"GPlP2[P2C? - PlCn] 1/2
- V z; y - CrC?(p~ - pi) ,

which shows that k" follows a circular path of radius

[
41l"GPlP2[P2C? - PlCn] 1/2

ClC?(p~ - pD '

i.e. in every direction of perturbation propagation for the wave number k < k·
given by (42) the system is unstable and for k > k· it is stable.

Conclusion

A general dispersion relation for horizontal propagation has been derived.
The limitation of obtaining a general solution for k- has been discussed and results
obtained in special cases. It is suggested that numerical calculation may be made
to get some results.

For some special cases the critical wave number has been obtained. In par­
ticular, we discussed the stability criteria for the perturbation propagation along
the streaming motion, and perpendicular to the streaming motion separately. We
found that the streaming motion has destabilizing effect when the perturbation is
propagating along the streaming motion, but for perpendicular propagation the in­
stability criterion is unaffected by the streaming motion. In general, k· follows an
elliptic path in first quadrant. The value of critical wave number k* can be found
for the perturbation propagation in any direction in horizontal plane z = O. In case
of static medium, i.e. in the absence of streaming motion, the value of k" is the
same in every direction. In other words, we find a circular path in first quadrant
for k- I of a radius equal to Jeans critical wave number k;. But in the presence of
streaming motion, because of destabilizing effect of streaming velocity, the value of
k- is increased from kj for perturbation propagation in every direction of the hori­
zontal plane z = 0 other than the transversal. As a result, the circular orbit changes
into an elliptic one. We further observe that the stabilizing tendency is dependent
on the wave number, therefore the system has maximum stabilizing tendency for
the transversal perturbation propagation and minimum for the perturbations prop­
agating parallel to the streaming velocity.
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