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1. INTRODUCTION 

No non-static solutions, with physical significance, of Einstein's field equa- 
tions are known outside the field of Cosmology. The field of a radiating 
mass presents a problem for which general relativity has, so far, not been 
able to provide a solution. Schwarzschild's external solution deals with the 
gravitational field of a cold dark body whose mass is constant. The applica- 
tion of this solution to describe the sun's gravitational field should only be 
regarded as approximate. Various attempts have been made to generalize 
Schwarzschild's solution in order to make it applicable to non-static masses, 
(Narlikar, 1936; Narlikar and Moghe, 1936). 

While discussing this outstanding unsolved problem of general rela- 
tivity, Professor Narlikar (1939) remarks: 

" If the principle of energy is to hold good, that is, if the combined 
energy of the matter and field is to be conserved, the system must be 
an isolated system surrounded by flat space-time. A spherical radiat- 
ing mass would probably be surrounded by a finite and non-static 
envelope of radiation with radial symmetry. This would be surrounded 
by a radial field of gravitational energy becoming weaker and weaker 
as it runs away from the central body until at last the field is flat at 
infinity. It has yet to be seen whether and how this view of the distri- 
bution of energy is substantiated by the field equations of relativity." 

We represent below the solution of the field equations which substantiates 
the views expressed above. We begin with the derivation of the energy 
tensor for the radiation envelope surrounding a star. 

* The treatment as given here is essentially different from that of  Professor H. Mineur as 
it appears in Ann. de l'Eeole Normale Superieure, Ser. 3, 5, 1, 1933. Our attention was 
kindly drawn to it by Professor Mineur some years a g o . - - V .  V. N. 23-4-1950. 
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2. ENERGY TENSOR FOR 

By the term " directed flow 
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A DIRECTED FLOW OF RADIATION 

of radiation " we mean a distribution of 
electro-magnetic energy such that a local observer at any point of  the region 
of space under consideration finds one and only one direction in which the 
radiant energy is flowing at the point. Using natural co-ordinates at the 
point of  interest, we may take the components of the energy tensor as being 
given in terms of electric and magnetic field strengths-E and ti  by the typical 
examples given by Tolman (1934). 

Ton __ _1_ ° 2 E E+ H:S), (2'1) = ~ (E~"-- Er --  H~ 2 -  H r ' - -  
To n =  - -  (E~Ey + H~.Hr), (2" 2) 

To 14 = (EyH~-- EzHy), (2" 3) 

To~{= ½ (E~Eq - g/°-k E ? +  H f f +  Hy2÷ H~-). (2.4) 

The suffix 0 to a component of a tensor indicates that the component  is 
evaluated in natural co-ordinates at the point of  interest. Considering, for 
simplicity, that the axes of our natural co-ordinates are oriented in such a 
way that the flow of "radiation at the point of  interest is in the x-direction 
and further that the radiation is polarised with the electric vector parallel 
to y-direction, we shall find 

E~ = E: = H ,  = Hy = 0; Ey = H. (2.5) 

and so the only surviving components of the tensor To ~ would be 
To 11 = T0~a= To 14 = ½ (EyEq - H, 2) = p, (2"6) 

p being the density of the radiant energy at the point. 

Having obtained the components of T~, for one system of co-ordinates, 
we can find them in any other system by the rules of  tensor transformation. 
For a general co-ordinate system with the line-element 

ds ~ = g ~ / l x ~ d x ' ,  (2' 7) 

the components of T ~  will be given by 

bX ~ ~X ~ 
Tt'~ - -  ~x% ?X~ o T°~" (2.8) 

On using (2.6) this yields 

~ x  ~ ?x ~ ~x, ?x ~ ~xU ~x ~ ?x~' ?x" ] (2"9) 
T~'" = I. ~xo ~ ~xo ~ + ?Xo ~ ?xo ~ + ~ 5-~o~ + ~Xo ~ ~xo~J p" 

As the radiant energy travels along null-geodesics 

dxo ~ = dxo 4 = dr  (say). (2- 10) 
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By (2.10) along the radiation flow we find 

g,~,dx~" d x  ~ = O. 

Next we use (2.10) in 

dx~" _ ~x~' dxo  ~ 
d r  bxo ~ d r  

and find 
d x  ~ b x  ~ b x  ~ 
d~- - -  bXo 1 + bXo ~ " 

With the help of  (2"12), (2.9) fnal ly  reduces to 

dx~" d x  ~ 
Tv. ,  = p -d7 cl;r ' 

with 
d x ~  d x "  
. . . . .  = 0 .  

gg~ d r  d T  

(2.11) 

(2" 12) 

(2-13) 

(2.14) 

Thus for our case of  the outside field of  a non-static mass the energy 
tensor is to be taken of  the form 

T~,~ = pv~v ~, (2" 15) 
with 

v~,v~ = 0 ; (v~')~ v ~ = 0. (2" 16) 

3. THE FIELD EQUATIONS 

A star of  mass M and radius ro is supposed to start radiating at time to. 
As the star continues to radiate the zone of  radiation increases in thickness, 
its outer surface at a later instant tl being r = r~. For  ro < r < rl, to < t < tl 
let the line-element be assumed to be of  the form 

ds  ~ = _ eadr° . - -  r °. (dO2 + sin s Od62) + e"dt  ~, 

= a (r, t), = (r, t). ( 3 . 1 )  

For the nature of  radiation we have found the energy tensor T ~'V of the form 

T t'" .--= pv~v", (3.2) 

p is the density of radiation and the lines of  flow are null-geodesics: 
v~,v~ = 0 ; (v~'), v ~ = 0. (3 "3) 

Since (T~)~ = 0, we have the analogue of  the equation of  continuity 
(pv~)~ = 0. (3.4) 

As the flow is to be radial, v 2 = 0, v ~ - - 0  and 
Tzl = pVlVl T44 = pv~v 4, T14 -= pv~v ~, T2 z = Tz 3 = 0. (3" 5) 
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Also %v~ = 0 simplifies to 

- -  e x (vl) ~ + e" (v4)a= 0. (3.6) 

With the usual expression for the components  of T *'" in terms of g~,, and 
their derivatives, (3-5) gives the following three field equations: 

(i) T~eC~-x~/2+ T44 = 0, (3- 7) 

(A' 1 )  1 ~e <x+',/2 O; (3"8) or e-X ~ ~ + 7 ~ + r = 

(ii) T i t +  T~ 4 = 0, (3.9) 

or e-X( a ' - v '  ~2) + 2o r 72 = 0 ; (3- 10) 

(iii) T.  a = 0, (3" 11) 

or --e-X + 4 4 + 2r + e -  ~2+ 4 - - -  ~ ] =  • 

Here and in what follows an overhead dash or dot i~ldicates a differentiation 
with regard to r or t. 

If the total energy is to be conserved, the line-element obtained by 
solving these equations must reduce to the static form 

dsa= - - ( 1 -  2M)-ldr°"--ra(dO " -}-sin 2 0d~")+  ( 1 -  ~M) dt a (3.13) 

at r = r,,, t = to and for r >~ r t at t = t,. 

4. THE SOLUTION OF THE FIELD EQUATIONS 

2m . . . .  m = m (r, t) On putting e -x = 1 r ' 

in the field equation (3.8) we find that it is equivalent to 

e-XJ a ~m ~m ~ + e-~/°" --~t = 0 .  

Using the operator 
d 13 3 
dr  - v  -a-r + v4g t, 

we may express this as 
dm 

- - -  = 0 ,  dr  

(4.1) 

(4.2) 

(4.3) 

(4-4) 

A2 
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From (4.2) we can express e ~/2 in terms of m: 
e ~ ,  n'~ 2m)-" • ( 1 - - - -  2 

Now we can take the second field equation (3.10). 
of 2, and v from (4.1) and (4.5), we find that 

• m" / 27m) 2m (m' ~ , )~  1 -- =7=-. (4.6) 

The first integrai of the above equation is 

m'(1 -- 27)=f(m),  (4.7) 
f ( m )  being an arbitrary function. (4.7) is the differential equation to be 
solved for m. 

We now take the third field equation (3.12). We shall show that when 
a and v are given by (4.1), (4.5) together with the last differential equation 
(4-7), the equation (3.12) is automatically satisfied. The following is an 
identity holding between the components of the tensor T j .  

r (Til) @ ~ (Ti4) -- 2- (T~4-- Tii) @ r (Tii-- T2~) + T*~ = 0. 
(4.8) 

With the help of this identity and the two equations (3.7) and (3.9) the 
equation (3.11) can be transformed into 

d / 2 - , ~  tr e T 4 9 = 0 .  (4-9) 

Thus the third field equation is satisfied, i.e., T . / =  0 provided (4.9) is satis- 
fied, i.e., provided 

-d { m ' ( 1 -  ~ - ) }  dr =0 ,  (4"10) 

dm i.e., provided drr = 0 when we use (4.7). And the last relation is already 

proved as (4.4) above. 
Hence we have solved all the field equations and the final line-element 

describing the radiation envelope of a star is 
[ rh2(1)_~ __2m) _ 2 /  j , _ ,2 + + - 

(4,11) 

(4.5) 

On substituting the values 
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with m ' ( 1 - -  2@z)=f (m) ,  m =  m (r, t) 

for r o < ~ r < r ~ ,  t0~<t~<t~. 

The surviving components  of energy tensor are 
m' m '2 th 

- -  T I  1 -= T~ 4 = 2tgj:a , T14 = 4rrrhr 2 , T.~ I = 4rrr z • 
(Vaidya, 1943). 

d 5. THE OPERATOR ~_ 
The relation (4.4) 

(4.12) 

d/n 
d-~ = 0  (5"1) 

is a type of relation peculiar to the field we are investigating. In this section 
we obtain some more relations of this type. On eliminating v 4 f rom v,,v~* = 0 
and (v~)~ v ~ =  0 we find 

~v___ ~ ~Vl e,~_~,, 2 + vl ( ,V + v' ) ~r + ~ 2 + "a e la-~)' 2 = 0. (5"2) 

But the last term on the left hand side can be shown to vanish by using the 
field equations (3.8) and (3.10). Hence (5.2) becomes 

dv 1 
d-T = O. (5.3) 

Another  such relation can be obtained by starting with the equation of conti- 
nuity (3.4) 

(p 7)*'),, = 0 

which when written out  in full gives 

e(A+v)! 2) ~x----~ (r2 sin Opv~ = 0. (5.4) 

When v 4 is eliminated again we find 

("2Pvl) + e(X-~"2~ ( r " P v l ) +  (t"2t97)1)( ~t' -~"L~2--l"' _~ ~e(,~ _v) ~ .  ' )2 

Like (5.2) this also reduces further to give 

d_ = o. 
d'r 

= 0 .  (5.5) 

(5.6) 

(5.3) and (5.6) together can be used to obtain 

d d_ (r2pvlv 1) _~ 0 or d~" (r2Tll) = 0  &- (5 .7)  
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d 2 and ~ ( rp)  = 0 (5-8) 

the former of  which would again imply T~ ~ = 0 as seen in the last section. 

From the definition of  the operator 

d vl ~ v~ 
~ -  ~-r + ~ ,  

it" is clear that it differentiates following the lines of  flow. Hence the rela- 
tions (5.1), (5.3) and (5.8) show that m, v 1 and r2p are conserved along the 
lines of  flow. Here we shall try to understand the phrase "conserved  along, 
a line of flow ". At any time t, a spherical wave-front of  radius r = the 
radius of  the star starts moving onwards. At every point of  this wave-front 
the functions in, v 1, rap have certain values at the start. The functions will 
retain these values at any point of  this wave-front throughout the motion 
of  the wave-front. The boundary r = r  1 at t = t l  is a wave-front. At 
t = to, this wave-front started moving with radius r =  ro. At that time the 
value of m on the wave-front was M the total mass o f  the star. Our conser- 
vation result now asserts that on this first wave-front, the value of m will 
always be M. Thus at t = tl on the boundary of  the radiation zone r----- q we 
find m----- M. 

We may add some simple mathematical properties of the conserved 
results. If  

d'/J_ O, 
d r - -  

in our co-ordinate system, it means 

~'/' ~ = o g~'~ ~x--- ~ ~x ~ 

which means that b,~[3x~ is a null-vector. 

It tbllows that 

~ ~ ~ = 0 .  ( 5 . 9 )  

For a line-element of the form (3.1), we have from (5.9) that if  

dff d a ,  = 0, ~ (e- ~ ) = 0 (5.10) 

which will show that (4.10) is a consequence of  (4.4). 
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The actual values of  v 1 and v ~ may now be deduced. 
(5.3) we have 

~V 1 m '  ~v I 
~---0. br rh bt 

Hence 
m t 

v 1 = ~ (m), v 4 . . . .  ~ (m). 
rh 

~b (m) is now to be obtained by using any one of  the equations 

m ~ _ m '2 li~ 
- -  Tl1_____ T44= ~ , T14 4~rrbr ~ , T41 =- 4rrr 2 • 

Thus 4~rrZpv4v 1 =  --  lil 

o r  

o r  
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From (5.1) and 

(5.11) 

(5.12) 

_-- m' __Zm) (m)} (1 

v 1 ---- i f ( m  ) ~1/~ m'  I f ( m )  ~1~2 
(&rrZpl ' v4 = m~ [ 4 ~ r ~ )  (5.13) 

6. T H E  B O U N D A R Y  OF THE RADIATION Z O N E  

For the field of  the radiation zone of  a star we have two boundaries" 
(1) the boundary separating radiation from the material contents (or the 
internal) of  the star and (2) the outer expanding boundary of  the radiation 
zone separating it from ' e m p t y '  space beyond. We shall try to find the 
conditions at these boundaries which will ensure a unique solution. 

The line-element under discussion is 

It contains two arbitrary functions, f ( m )  is one of  them. The other is an 
arbitrary function of  t, say ~ (t), which appears when we solve the partial 
differential equation (6.2) for m. 

The expanding bounding surface of  the radiation zone has been taken 
to be a sphere of  radius r = rt at a time t = tl. Obviously rl and tl are inter- 
connected. We shall now say that this bounding surface is a sphere of  
variable radius r = R  (t) which would, o f  course, mean that R ( q ) = r ~ .  
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Beyond the bounding sphere of  the radiation zone the space is ' empty ' 
and the line-element is 

--  (1  - -  -2M) -1 dr 2 - -  r 2 (dO z ÷ sin S Ode ~) ÷ (1  --  2~Mr ) d? .  (6.3) ds2 = 

We show now, that the continuity of  gf,, at r = R (t) will be sufficient, firstly, 
to locate the boundary at any t ime t, i.e., to determine the function R (t), 
secondly, to find out the arbitrary function ¢ (t) and thirdly to ensure that  
the to ta l  energy of  the distribution is M. 

Let V (m, r) = ~b (t) (6.4) 

be the general solution of the equation 

~r k = f (m) 

the condition for which is 

~ -  1 - -  = - - f ( m )  ~ .  (6.5) 

The value of  rh is given by 
?V 

-5m-- rh = ¢. (6.6) 

Continui ty of  g ~  gives, at r = R (t) 
m = M  
r h =  -- f ( M ) .  

(6-4) and (6.6) then give 
V (M, R) = ¢ (t) (6.7) 

?V 
- -  f ( M )  ~hT1 = ¢" ( 6 . 8 )  

bV ~V ~ ?V Here ~ and -3]( denote the values of  the derivatives ~,,, and ~ respec- 

tively at m = M, r =  R;  which is equivalent to saying that they denote the 
corresponding partial derivatives of V when the variables m and r in V are 
replaced by M and R. (6-7) and (6-8) are the equations to determine the 
two functions R (t) and ,} (t). 

To eliminate ¢ (t) between (6-7) and (6.8) we differentiate (6.7) with 
respect to t, to get 

bV • 
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which with (6.8) gives 

~V p, = _ [ '(M) ~V (6.9) 
~R • ~ "  

We shall now compare (6-9) with (6.5). (6.5) is a relation in m and r. 
When m = M, r = R,  it becomes 

~ V (  ~ )  b-R 1 . . . . .  f ( M )  ~V (6.10) 

Comparing (6.9) and (6.10) we find 

2M R = I  . . . . .  R 

The general solution of this last differential equation is 

R q- 2M log (R -- 2M) -- t = a contsant, 

which in our former notation, would mean that if the boundary of  the radia- 
tion zone is r = r, at a time t =  tl, 

rl + 2M log @1 -- 2M) -- tl----= a constant. (6-11) 

The function ~b (t) is now given by (6-7). It is interesting to note that the 
boundary radius r =  R (t) is determined independently of  the nature of  the 
function V (m, r). 

Before we proceed further let us study the condition m = - - f ( M )  at 
r =  R (t). It says that, at all times, on the boundary of  the radiation zone, 
rh is a constant. But ~h is not conserved along a line of  flow. Using the 
explanations of  the last section, we say that the radiating star goes on 
emitting a series of  wave-fronts. As rh is not a conserved function, it is 
not constant for each one of  these wave-fronts. But as m contains an arbit- 
rary function of  t, it is possible to select this function in such a way that 
n~ takes up a constant value on a particular wave-front. And this is what  
we have done by the condition (6-8). Note  that the continuity of  g~,, at 
r = R ensures that at the start, r = r0, t = to, the line-eliment is again (6.3). 

The conditions at the boundary r = R (t) have left f (m)  undetermined. 
We expect that f (m)  will be determined by the conditions at the inner 
boundary of  the star. It is clear that f (m)  is governed by the conditions in 
the interior of  the star, different stellar models giving different forms o f f ( m ) .  
That this will be the case, can be very easily seen from the definition of  f (m)  : 

f ( m ) = m '  ( 1 -  2m)  
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or approximately f ( m ) = m '  or again f ( m ) = -  rh, because m'  is almost 
equal to --n~. Thus f ( m )  measures the luminosity of the star, at the 
Newtonian level of  approximation. 

Lastly we may now verify that the principle of conservation of energy 
holds good. The line-element (3.1) can be expressed in the form 

e x -- 1 
cts2 = --  {(dx)2 + (dY)2 + (dz)~} r" ( x d x  + y d y  + zdz) 2 +. e ~ dt 2 

(6.12) 

By using the well-known formul,'e x the energy content of  (6.12) is found to 
be 

E = l i m  {½r (e x -- 1) ec"-'x)/2}. (6.13) 
r - ,~ o o  

Hence for all distributions for which the line-element (3.1) goes off conti- 
nuously over some boundary to the Schwarzschild's form (6.3), the principle 
of conservation 

E----M 
holds good. 

7. THE ELECTaO-MAGNETIC FIELD 

The outside of  a radiating star is the seat of  electro-magnetic phenomena. 
So the field which we have considered above must be capable of  being 
obtained from an electro-magnetic potential K~,. That this is the case, 
has been already shown elsewhere (Narlikar and Vaidya, 1947, 1948). 

We shall here solve the equation 

br \ - -  = . f ( m )  (8.1) 

under different assumptions for f ( m ) .  

Case (I): Let f ( m )  be a constant. 

f ( m )  ~- k < ~. 

m is given by the algebraic equation (m --  at)  A (m --  fir) ~ = ~ (t). 

Here a, fl----¼{1 ~ (1 -- 8k)1/~-}; 
A, B = ½ { 1  :F (1 -- 8k)-1/2}. 

(t) is an arbitrary function of t. 

1 Formula (91 ' 1) on p. 232 of Relativity Thermodynamics and Cosmology by R. C. Tolman 
(1934) was used. 
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Next let f (m) = k = ~. 
m is given by the algebraic equation r = 4 (m -- r) {log (4m --/") + ~ (t)}. 
Finally let f ( m ) =  k > {-. m is given by the equation 

2tan_ 1 { ( ; m  --1 ) ( 8 k  --1)-l /e  } = (Sk--1) ~ log (2m~--rnr÷kr2)+q)  (t). 

Case (2)" Some more particular solutions may be obtained by trying 
the following method. The condition that the total differential equation 

re'dr ÷ mdt  --  d m =  0 (8.2) 
should be exact is given by 

dt _ dr _ (r - -  2m) din _ (r - -  2m) d (,h) 
0 1 r f (m)  rrh {ff--~fn q- 2 f ( r -  2m) -1} (8" 3) 

Solving (8.3) we try to obtain rh as a function of m, r and t. Then this n'z 
and m" from (8.1) will make (8.2) exact. The solution of (8.2) will therefore 
give us the final solution for m. It can now be verified that the following 
is a solution of (8.3) 

rff (r -- 2m) (m --  ar) '~ (m --  fir) n y = q~ (t) (8-4) 

where (~ -t- fl) 2n = -- 1, a'~f l 'y ' f (m)  = k" (8-5) 
= a (m), fl = 13 (m), y = y (m), k = a constant, (8-6) 

( f ( ~  + 4nn.,+i ( f ( rn )  y)_,~ ) = k (3 q- 2n) (8.7) 

and f ( m )  is to be taken as 

- m 2n z ] = c 4 f ( m )  q- - - -  (8"8) 

n, c are constants and 1 + n ~ 0, 3 q- 2n ¢ 0. Various cases follow from 
this solution for different values of n. 

Case (3)" 1 + 2 n = 0 ,  f ( m ) = c m - - 1 ,  c a constant. Then 

m ' ( l  2 m ) = c m  - - 1 ,  

4 crh 2 (r -- 2m)2 = q~ ~ (cm -- 1) 2 (cr 2 --  4r -? 4n). 

The complete solution for m is 

2(r•  4r q_ 4~_)1'2 4_ 4 -c ) ----c c l ° g  { ( r - - 2 )  + (  r ' - 4 r  ÷ ~ ) ~ ' "  

2 
- -  ) log (era - -  1 )  = qb ( z ) .  
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Case (4)" Let 5 ÷ 6n = 0 then 50f(m) ----- (625 cm 4- 36) ~/~, c a constant. 

3f 
mr 4- -8- 4- 200 Jo 
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f ( m )  X (m, r) = q~, + 200] = X. --  3 

The final (m, r) relation is given by 

V = f ( ~ V ~ + - - f - - r - - 2 m x ) d m  ' 

where the integrand on the right hand side will be a function of  m only and 

v =  f Xr dr + (t). 
In the last expression while performing the integration with respect to r~ 

m is to be treated as a constant. 

My thanks are due to Professor V. V. Narlikar for having suggested 
this problem and for general guidance during the work. 

SUMMARY 

A star o f  mass M and radius ro is supposed to start radiating at time to. 
The zone of  radiation extends to r = r 1 at a later instant t---- tl. The energy 
tensor for the radiation zone, describing the directed flow of  radiation, is 
evaluated and a relativistic line-element representing the field of  radiation 
for ro < r ~< r~ and corresponding to <~ t ~< tl is obtained. It is shown that 
certain quantities m, v 1, r~p, etc., are conserved in the field along a world-line 
of  flow. At r = r0, t = to and at r----- rl, t = tl, the line-element reduces to 
Schwarzschild's static form for a mass M. The corservation o f  energy is 
verified. The electro-magnetic potential K~ of this field has a l ready been 
obtained elsewhere. 


