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Large-scale assessments of student competencies address rather
broad constructs and use parsimonious, unidimensional measurement
models. Differential item functioning (DIF) in certain subpopulations
usually has been interpreted as error or bias. Recent work in educational
measurement, however, assumes that DIF reflects the multidimensionality
that is inherent in broad competency constructs and leads to differential
achievement profiles. Thus, DIF parameters can be used to identify the
relative strengths and weaknesses ofcertain student subpopulations.

The present paper explores profiles of mathematical competencies
in upper secondary students from six countries (Austria, France,
Germany, Sweden, Switzerland, the US). DIF analyses are combined
with analyses of the cognitive demands of test items based on
psychological conceptualisations of mathematical problem solving.
Experts judged the cognitive demands of TIMSS test items, and these
demand ratings were correlated with DIF parameters. We expected that
cultural [ramings and instructional traditions would lead to specific
aspects of mathematical problem solving being fostered in classroom
instruction, which should be reflected in differential item functioning in
international comparative assessments. Results for the TIMSS
mathematics test were in line with expectations about cultural and
instructional traditions in mathematics education ofthe six countries.

Large-scale assessments that serve to monitor educational systems generally follow the
logic of domains of knowledge as they are institutionalised in schools. Thus, domains such as
reading, writing, mathematics, science, history, or foreign languages are examined. These
domains are further structured internally according to curricular or instructional aspects - in
terms of arithmetic, algebra and geometry, for example, or reading and listening comprehension,
grammar and vocabulary. For reasons of curricular validity, large-scale assessments aim at
selecting item samples that will achieve the broadest possible coverage of such subdomains.
Therefore, it is now standard practice for large-scale assessments to employ multi-matrix
designs. With such designs, students do not work on all items, but each testtaker is presented
with only a subset of the item sample. The test's content coverage can thus be substantially
expanded, while keeping the testing time constant.
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The rationale of large-scale assessments is not to measure theoretically defined
psychological constructs, but to evaluate performance in an institutionally defined knowledge
domain. Consequently, these assessments capture complex proficiency syndromes which
include various interacting psychological abilities and heterogeneous content components.
This makes it all the more remarkable that such proficiency syndromes can generally be
approximated on a single unidimensional measurement scale. The fit of the unidimensional
Rasch model (or any other unidimensional IRT model) is usually almost as good as that of
multidimensional models.

The relatively good fit of unidimensional test models is of great benefit for system
monitoring purposes and international comparisons because it allows for parsimonious
descriptions of results and provides a robust basis for time-series analyses. From the
perspective of teaching and learning, however, this parsimony is a drawback, as results
provide no information on the specific strengths or weaknesses of different student
populations or educational treatments. For teaching and learning to be improved, specific
diagnostic information is needed that helps to identify potential points of intervention.

This diagnostic weakness of large-scale assessments forms the starting point for the
present article. It is a robust finding that unidimensional IRT models never show a perfect fit
in large samples. This misfit is generally regarded as negligible specification error or error
variance. The present article investigates this presumed error variance from the perspective of
teaching and learning. The underlying assumption is that the misfit can be broken down into a
negligible error component and a systematic component reflecting an unmodelled
multidimensionality of the test that results from the complexity of individual test items. With
this approach, specific strengths and weaknesses of certain student populations, as well as
specific effects of different curricular and instructional traditions can be revealed.

Profiles of this kind emerge in so-called differential item functioning (DIF). DIF exists
when persons with different group membership but identical overall test scores differ
systematically with regard to the probability of solving test items that demand a particular

ability or particular prior knowledge. On a technical level, this means that it is possible to
identify group-specific item characteristic curves (cf. Camilli & Shepard, 1994; Holland &
Wainer, 1993; Scheunemann & Bleistein, 1999).

In the context of diagnosing individuals' achievement, differential item functioning has
been interpreted as indicating unwelcome item bias, and as precluding fair comparisons of
student outcomes. Items with significant DIF with respect to minority populations are
regularly excluded from the Scholastic Aptitude Test (SAT), for example. This type of item
bias, which may affect the fairness of intercountry comparisons, also occurs in international
comparative large-scale assessments, where it can often be attributed to translation errors
(Brislin, 1986; Ercikan, 1998). As large-scale assessments do not aim to evaluate performance
of individuals, however, not all cases of DIF necessarily have to be interpreted as item bias
that will jeopardise the fairness of the test. Instead, DIF can be viewed as an indicator for
differential effects of specific curricular or instructional conditions (Miller & Linn, 1988;
Tatsuoka, Linn, Tatsuoka, & Yamamoto, 1988).

Recent publications on assessment share the position that DIF can also provide
substantial information that helps to gain a deeper understanding of relative strengths and
weaknesses in subpopulations (Calvert, 2001; Keeves & Masters, 1999; Pellegrino,
Chudowsky, & Glaser, in press). According to this view, DIF is not necessarily an indicator of
bias or methodological Haw, but can "provide information of value in education, because the
existence of bias reflects (... ) differences in the learning experiences involved for providing a
correct response to the item" (Keeves & Masters, 1999, p. 12).

In the present article, we examine DIF in international comparison using data from the
advanced mathematics test for the upper secondary sample of the Third International
Mathematics and Science Study (TIMSS) (Mullis, Martin, Beaton, Gonzalez, Kelly, & Smith,
1998; Baumert, Bos, & Lehmann, 2000). We work on the underlying assumption that
educational systems not only vary in their overall effectiveness, but that they produce different
patterns of outcomes. Students in different countries have different learning experiences, which
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can lead to country-specific strengths and weaknesses. In using DIF to identify proficiency pro­
files, we try to explore the implicit multidimensionality of the TIMSS test which is treated as
error variance in the unidimensional IRT approach. As van der Linden (1998, p. 574) put it, "in
international assessments the achievements are bound to represent multidimensional rather than
unidimensional knowledge. Also, national populations CJn be expected to have different
distributions on each of the dimensions; in fact, international assessments are designed just to
detect sueh differences."

Theoretical framework

The issue of country-specific profiles in student outcomes has, in fact, been a concern for
international educational research since the very start of comparative student assessment in the
1960s (Husen & Postlethwaite, 1996). However, this research concentrated on curriculum
effects on learning outcomes. The straightforward hypothesis was that a country's
achievement results will be better in areas that constitute an important part of the country's
curriculum ar d to which a relatively high amount of learning time is devoted. The coverage of
topics in the educational system was assessed by calculating an "opportunity to learn" (OTL)
index within each school. Mathematics teachers were asked to rate each item in terms of the
relative number of students in the school who had been exposed to the mathematical content
the item addresses. When aggregating these OTL ratings as well as test scores across countries,
it emerged that up to two-thirds of the between-country variance in the lEA's First
International Mathematics Study (FIMS) could be explained by differences in OTL (Wolf,
1998, p. 499). These results have now been replicated by a number of other researchers
(McDonnell, 1995; Muthen, Huang, 10, Khoo, Goff, Novak, & Shih, 1995; Westbury, 1993).

In contrast to the OTL approach, our investigation addresses the question of whether
profiles in student outcomes can be identified with regard to different cognitive demands of
test items. The analyses of the cognitive demands of the test items are carried out within the
theoretical framework for solving mathematical word problems developed by Reusser (1996),
who elaborated on Kintsch and Greeno's (1985) model of discourse processing and reasoning
in working on mathematical word problems. According to Reusser, word problems in
mathematics are processed in five consecutive steps. The process starts with the
comprehension and, in some cases, a reformulation of the word problem. This is followed by
the formulation of an appropriate mathematical model that determines the mathematical
operations to be performed. Once these mathematical operations - which are often of a
numerical na.ure - have been applied, the results have to be translated back into the context of
the original word problem. Following Freudenthal (1983), Neubrand, Biehler, Blum, Cohors­
Fresenborg, Hade, Knoche, Lind, Loding, Mtiller, and Wynands (2001) describe this sequence
as the complete cycle of mathematical modelling.

In principle, this model can be generalised to all mathematical tasks. Depending on the
type of problem, the different parts of the modelling cycle will be covered to a varying extent
and with varying intensity. Because we intend to use a more elaborate form of this model as a
heuristic tool for the analysis of the cognitive demands of test items, the individual
components of the model will be described in some detail:

- In the first step of the mathematical modelling process, a propositional representation
of the problem is constructed on the basis of the information provided. In word
problems, this is the text base. Yet, the problem may also be represented visually in the
form of a graph or diagram. A propositional understanding of the information
contained in such a chart is basically equivalent to the text base.

- In the second step, a more complex situation model is developed on the basis of this
propositional representation. Drawing on prior knowledge, experiences, and plausible
inferences, the original problem is embedded in a meaningful context. Because
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mathematical word problems generally have a narrative structure, Reusser (1996)
terms these mental models "episodic problem models". In our generalised conception,
however, this situation model can also involve the systematic embedding of the
problem in an argumentative context.

- In a third step, the situation model is transformed into a formal mathematical
representation. Reusser describes this step - which primarily involves the reduction
and abstraction of information - as mathernatisation in the narrower sense. Where
demanding mathematics tasks, such as those administered in the advanced TIMSS test,
are concerned, however, the relation between steps 2 and 3 will need to be
conceptualised in a more elaborate way. We assume that, depending on the difficulty
and complexity of the problem, the process of developing a situation model and
engaging in rnathernatisation in the narrower sense may involve several feedback
loops. This serves the iterative optimisation of two steps: (a) restructuring the problem
situation to ensure the fit with a certain mathematical structure, and (b) formal
modelling in the sense of identifying variables, parameters, and structural relations.
Lower-level problem solving activities such as planning intermediate steps or working
back and forth are of crucial importance here.

- In the fourth step of the problem solving cycle, the relevant operations have to be
identified in the formal mathematical model and applied in the correct combination
and sequence. This step calls for the application of different kinds and levels of
declarative and procedural mathematical knowledge. Following Stein, Grover, and
Henningsen (1996), we distinguish between the following:
(1) declarative know ledge of facts and procedures,
(2) algebraic operations,
(3) arithmetical operations, and
(4) conceptual understandi ng.
Conceptual understanding is defined as understanding the relation between various
mathematical concepts, knowing typical examples and counterexamples, being aware
of contexts in which the concept may be applied and being able to discriminate the
mathematical concept from similar notions that are rooted in everyday experience.
The cognitive demands of test items differ depending on which knowledge
components are required for the necessary mathematical operations to be performed.

- In the fifth and final step, the results of the mathematisation process and the
mathematical operations performed have to be translated back into the context of the
original problem and interpreted in a meaningful way. This interpretation must result
in a satisfactory answer to the question originally posed in the task.

This extended and generalised model of mathematical problem solving was used as a
basis for the development of a system to classify the cognitive demands of mathematical test
items. The classification system takes account of both the individual steps of the modelling
cycle and the knowledge components implicit in the mathematical operations. Table I
provides an overview of these process components and cognitive demands. Mathematical
problems and test items can be differentiated according to the extent to which and the intensity
with which specific demands will become salient.

The basic assumption of our approach is that specific aspects of the generalised model of
mathematical problem solving will be accentuated and fostered depending on the cultural
context of maths instruction, shared epistemological beliefs about doing and learning
mathematics, curricular and instructional traditions, and the rationale underlying the teaching
routines that prevail in the classroom. We expect that these instructional patterns are reflected
in differential proficiency profiles and that empirical evidence for such profiles will emerge in
the form of differential item functioning in international comparative assessments. In other
words, strengths and weaknesses of students from different countries should not only result
from differences in learning opportunities but also from differences in educational philosophies
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and instructional traditions which lead to culture-specific lesson scripts in mathematics
classrooms.

Table I

Process components and cognitive demands in mathematical problem solving

Process component

Propositional re oresenration

Situational representation rnathematisation

Inner-mathematical operations (reasoning and calculations)

Interpretation and translation

Previous research

Cognitive demands

Text comprehension
Processing of visual information

Understanding situational contexts
Formal modelling
Restructuring of problems
Problem-solving activities

Declarative knowledge of facts and procedures
Algebraic operations
Arithmetical operations
Conceptual understanding

Interpreting diagrams

International comparative research on cultural scripts in math education and their impact
on learning outcomes is scarce. The TIMS-Video study (Baumert, Lehmann, Lehrke, Schmitz,
Clausen, Hosenfeld, Koller, & Neubrand, 1997; Stigler, Gonzalez, Kawanaka, Knoll, &
Serrano, 1996), which investigated instructional practice in Japan, Germany. and the USA,
and the study on "characterising pedagogical flow" in mathematics lessons conducted by
Schmidt, Jorde, Cogan, Barrier, Gonzalo, Moser, Shimizu, Sawada, Valverde, McKnight,
Prawat, Wiley, Raizen, Britton, and Wolfe (l996) in the run-up to TIMSS, are two of the few
relevant studies in this field. Characteristic pedagogical flow was defined as "culturally
distinct and nationally characteristic patterns in which curriculum and pedagogy intertwined
within classrooms, ( ... ) a characteristic interaction between curriculum and pedagogy in
lessons. Presumably, this interaction stems from certain national beliefs together with the
particular training and experience teachers have had that lead them to share these beliefs"
(Cogan & Schmidt, 1999, p. 82). Based on interpretative analyses of classroom observations,
the authors drew the following conclusions:

"French lessons were characterized by formal and complex subject matter that teachers
actively organized and presented to students",

"the Japanese lessons were characterized as built around a consideration of multiple
approaches to carefully chosen practical examples or activities, through which the
teacher led students into an understanding of mathematical concepts and relationships",

"lessons from Norway were characterized by student activity, both individually and in
small groups",

while in the US, "both teacher and student activity tended to emphasize the basic
definitions and procedures of mathematics" (Cogan & Schmidt, 1999, pp, 79-RI).

The observations on instruction in Japan and the USA correspond with the findings by
Stigler et a1. (1996). Moreover, both Stigler et al, (1996) and Baumert, Lehmann, et al. (1997)
describe German mathematics instruction as a sequence of short teacher questions and student
answers, ultimately converging in the solution expected by the teacher. This description is
consistent with findings on German mathematics instruction (Bauersfeld, 1980; Voigt, 1984;
see also Cobb & Bauersfeld, 1995; Seeger, Voigt, & Waschescio, 1998).
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None of these studies investigated whether differences in instructional practices are
reflected in country-specific achievement profiles, however. Nevertheless, there are a few
descriptive results which lend support to the idea that educational cultures not only differ in
their overall achievement levels or their achievement profiles in different curricular domains,
but also with regard to process-related variables. In comparing the problem-solving behaviour
of US and Japanese students, Becker, Sawada, and Shimizu (1999) found that Japanese
students not only show a higher level of technical mathematical knowledge, but also exhibit
higher levels of sophistication in their problem solving.

Country-specific profiles in the TIMSS lower secondary tests for mathematics and
science have been investigated in several studies. Schmidt, Jakwerth, and McKnight (1998)
found that country rankings in these tests differed depending on the cognitive demands of
items selected for comparison. Rarnseier (1999) asked science experts to rate every item from
the TIMSS lower secondary science test with regard to cognitive level and knowledge of
scientific terminology required. He found that the relative item difficulty for Swiss students
increased when the reproduction of scientific terms was required, but decreased with cognitive
level. For mathematics, Neubrand, Neubrand, and Sibberns (1998) and Blum and Wiegand
(1998) found that, compared to the international average, German students often failed to
solve items that demand mathematical modelling or the interlinking of basic ideas. Yet,
German students showed relative strengths in algorithmic reasoning, single-step operations,
and reproduction of factual knowledge.

In our own previous research, we have studied differential item functioning across
countries in the TIMSS lower secondary mathematics test (Klierne & Bos, 2000) as well as in
the TIMSS upper secondary tests for mathematical and science literacy (Baumert, Bos, &
Waterrnann, 2000a,b; Baumert, Klieme, & Waterrnann, 1999). Klieme and Bos (2000)
explored the link between instructional practice and achievement profiles by comparing
Japanese students and German students in grade eight mathematics. Based on analyses of the
TIMSS-Video material, they expected that Japanese students would be best prepared to solve
high-level, cognitively demanding, inner-mathematical tasks, while German students would be
relatively well-prepared to cope with standard tasks embedded in application contexts. An
analysis of differential item functioning confirmed this prediction. In a similar vein, Baumert,
Klieme, and Watermann (1999) assigned TIMSS upper secondary items addressing mathematics
and science literacy to different levels of proficiency. They found that differential item
functioning across the seven countries under investigation was highly dependent on the
proficiency levels and, hence, on the cognitive demands of the tasks in question. Compared to
their peers in Switzerland, France, and Sweden, German students consistently showed
weaknesses when mathematical modelling and argumentation were required.

The present study

Based on these findings, we work on the assumption that it will be possible to identify
country-specific proficiency profiles for students taking advanced mathematics courses at the
upper secondary level. We further assume that these profiles are built up cumulatively across
the school career as a result of different philosophies of math education and different
instructional scripts. In order to explore these assumptions, the present study compares the
results achieved by students from Austria, France, Germany, Sweden, Switzerland, and the
United States in the TIMSS advanced mathematics test. The following hypotheses are explored:

(1) National proficiency profiles can be aptly described with reference to our generalised
model of mathematical problem solving.

(2) The national outcome profiles will correspond with the culture-specific scripts of
mathematics instruction identified in previous research.

(3) The German-speaking countries of Austria, Germany, and Switzerland share a
common tradition of mathematics instruction. Although the countries differ
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considerably in terms of the overall level of their students' mathematics competence,
it will be possible to identify similar patterns of relative strengths and weaknesses
across these countries.

(4) For students from German-speaking countries, tasks that entail complex cognitive
demands and require problem-solving activities and mathematical argumentation
will present a particular challenge.

(5) French students will show relative strengths in test tasks requiring complex subject
matter knowledge.

(6) Swedish students will be particularly well-prepared to tackle open problems
requiring a situational understanding, restructuring and formal modelling.

(7) US students will be relatively good at procedural tasks.

Method

Participants

The TIMSS advanced mathematics test was administered in 18 countries to representative
samples of stucents attending a pre-university mathematics course in the final year of upper
secondary education in the 1995/96 academic year. Six of these countries were selected for the
present study. III Austria, a sample of N=599 students was selected. The sample is representative
for the target population of all students attending a mathematics course in the final year of
general upper secondary school or high-level vocational school. In France, the sample
comprised N=796 students in the 12th grade of the Lvcee d' Enseignetnent Generate Scientifique.
The target population consisted of all students attending the 12th grade in the natural science
track. In Germany, a sample of N=2, 189 students was drawn from the target population of
Gymnasium track students attending either a basic or an advanced course in mathematics in the
final grade. In Sweden, N=749 students were sampled from the target population of 12th graders
who had opted for the natural science or technology track in upper secondary school. In
Switzerland, the sample consisted of N=I,On students from the final year of all types of
Gymnasium. The sample in the United States, finally, comprised N=2,349 students drawn from
the target population of all 12th graders attending a calculus course, a pre-calculus course, or an
advanced placement course in calculus.

Measures

The TIMSS advanced mathematics test consisted of 66 items, administered in a multi­
matrix sampling design. According to the authors of the test, "the advanced mathematics test
reflected current thinking and priorities in the field of mathematics" (Mullis et al., 1998,
p. B-7), that is, the items cover the content and cognitive demands of pre-university curricula.
Mathematics experts classified 40 percent of the advanced mathematics tasks as application or
problem-solving items, while 60 percent were judged to require the knowledge or use of more
or less complex procedures. Most of the items from the mathematics test have since been
released to the public on the Internet site of Boston College (see also Baumert, Bos, Klieme,
Lehmann, Lehrke, Hosenfeld, Neubrand, & Watermann, 1999). The test was subjected to uni­
dimensional scaling on the basis of the multinomial Rasch model (Adams & Wilson, 1996).

Procedure

The analytical procedure implemented in the present study comprised the following three
steps:
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Step I: Analysis of the cognitive demands of the TIMSS advanced mathematics items
on the basis of expert ratings.

Step II: Estimation of parameters for differential item functioning in the five selected
countries.

Step III: Computation of correlations of demand ratings and OIF-parameters to identify
relative strengths and weaknesses with regard to specific demands.

For Step I, a system for the classification of cognitive demands of mathematics items was

developed, based on the generalised model of mathematical problem solving described above.
The first version of the rating system was tested on all TIMSS items by six experts in the field
of mathematics education. Based on feedback from the experts, interrater reliability results,
and correlations between the ratings and the Rasch threshold parameters, the rating system
was revised. The final version was then applied independently by ten new mathematics
experts. All experts were university staff with extensive teaching experience at the secondary
level as well as research experience in the field of mathematics education. The experts
received verbal descriptions of the components of the classification system. but there was no
interactive training session.

The experts were asked to evaluate each of the 66 mathematics items on the basis of the
classification system presented in Table 1. They rated the importance of each cognitive
demand for solving each of the test items on a four-point Likert scale ranging from 0 (= the
demand is of no importance at all for the solution of the item) to 3 (= the demand is crucial for

success in solving the item). In the final version of the rating system, a further rating
dimension - termed curricular level - was added to the original set of cognitive demands.
Here, experts were asked to judge on a three-point scale whether the mathematical knowledge
needed to solve the item was elementary knowledge as gained from everyday experience or
primary education (Level 0), knowledge typically acquired in lower secondary school (Level
I), or knowledge specifically from the upper secondary advanced mathematics curriculum
(Level 2). Generalisability coefficients (Shavelson & Webb, 1991) were computed in order to
test the reliability of the ratings. These coefficients, which are presented in Table 2, range
from rho=.16 (formal modelling) to rho=.62 (interpreting diagrams).

Table 2

Cognitive demands ofTIMSS advanced mathematics items as rated by German experts

Demand

Text comprehension
Processingof visual information
Understandingsituational contexts
Formal modelling
Restructuringof problems
Problem-solvingactivities
Curricular level
Declarativeknowledge of facts and procedures
Algebraicoperations
Arithmeticaloperations
Conceptual understanding
Interpretingdiagrams

Note. ** p<.OI; *** p<.OOI.

Generalisability
(l0 experts)

.40

.49

.49

.16

.26

.25

.61

.37

.49

.47

.27

.62

Numberof items
with mean

ratings> 1.5

6
14
2

12
2
7

32
56
26
30
24
9

Correlation
with item
difficulty

.08

.09
-.02
.35**
.13
.34**
.44***
.53***
.51***
.00
.54***

-.09
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Judged by the standard criteria of generalisability theory (Shavelson & Webb, 1991),
these indices are low but sufficient because ratings for single items will not be interpreted. In
fact, we are on y interested in correlations between cognitive demands and DIF across items.
The process component that was least reliably judged by the experts is the mathematisation
component. This finding may reflect the fact that the mathematisation process is not yet
clearly enough defined in theories of mathematical thinking and learning.

For Step II, the advanced mathematics test from TIMSS was scaled using the multinomial
Rasch model developed by Adams and Wilson (1996) and implemented in their ConQuest
software (Wu, Adams, & Wilson, 1998). This IRT (Item Response Theory) model basically
assumes that the item characteristic curves (lCCs) for all items within a test have a similar
shape which can be described by a logistic function as depicted in Figure I. Each item is
uniquely identified by its difficulty parameter, indicating the point On the ability/difficulty
scale where the probability of solving the item correctly is .50. This one-parameter IRT model
(Rasch model) is used routinely in international comparative assessments and has successfully
been applied to all items in the TIMS study. Item-fit indices showed acceptable fit across
countries. Furthermore, a reanalysis of the data by the German TIMSS research group
(Kl ierne, 2(00) revealed that, in principle, the tests for advanced mathematics can be
appropriately described as unidimensional. The model fit is not perfect, however, meaning
that it is worth testing for un modelled multidimensionality. When subdimensions of the
mathematics test are defined in terms of content domains or cognitive demands, moreover, the
intercorrelations - after correcting for attenuation - range between r=.77 and .87, suggesting
that the relationships among items entailing different demands are not perfect.

4

I Group b

(P [x = 1 IuJ)
Group a

(P lx =11 uJ)
Group b

1.00

090

0.80

070
~ 0.60

" 0.50
z,
a. 0.40

0.30

0.20

0.10

0.00

-4 a
Ability/difficulty scale u

Figure 1. Differential item functioning in two groups (a and b)

Thus, it seems reasonable to expect differential item functioning (DIF) between countries.
The basic idea behind the Dlf-approach is illustrated in Figure I. If there is differential item
functioning between two groups a and b, the item characteristic curves (ICCs) will differ when
calculated separately for each group. One group is called the reference group, the other the
focus group. In our analyses, the German student sample is always used as the reference
group, while the focus group consists either of the student sample from a specific comparison
country (Austria, Switzerland, France, Sweden, or the US) or the combination of all five
comparison samples.

A separate Rasch analysis was performed for each focus sample. The item-difficulty
parameters estimated within each model were decomposed into four components (see Figure 2):
the general mean (which is an arbitrary value obtained by averaging across items and countries),
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the effect for the focus country (which indicates the overall performance level of that country's
students in relation to German students), the effect for the item (which describes the overall
difficulty of that item compared to other questions from the TIMSS test), and the so-called
DIF-parameter (i.e., the component describing the strength of the item-by-country interaction).
The DIF-parameter was calculated such that positive values reflect relative strengths of students
from the focus country, while negative values indicate that German students perform relatively
well on that particular item. The average of the DIF-parameters across the items of a test is O.

General mean
Effect for

Item difficulty = (reference country + +
focus country

and focus country)

Eff f
Effect for

ect or
item + item-by-country

interaction

t
DIF-parameter

Figure 2. Decomposition of the IRT item difficulty parameter in DIF analysis

In Step III, the DIF-parameters were correlated with the aggregated expert ratings of
cognitive demands. A positive correlation indicates that the more important the respective
cognitive demand is for solving an item, the more pronounced is the relative strength of
students from the focus country compared to German students.

Results

Structure of the TlMSS advanced mathematics tests in terms ofcognitive demands

In addition to the generalisability coefficients for the cognitive demand ratings, Table 2
provides basic information on two aspects of the structure of the TIMSS mathematics test. The
second column shows for how many items experts judged each demand dimension to be
important in achieving a correct answer. A mean rating of at least 1.5 was set as a critical
threshold, indicating that the demand was judged to be of intermediate importance. The third
column shows the correlation between the mean cognitive demand ratings and the item­
difficulty indices of the Rasch model.

The expert ratings indicate that the TIMSS advanced mathematics test has two main foci.
A substantial number of the items entail cognitive demands that are of particular relevance in
the inner-mathematical phase of solving the problem. These items demand declarative
knowledge of facts and procedures, conceptual understanding, and algebraic operations. At the
same time, items involving such cognitive demands proved to be particularly difficult on the
international level; the correlations between these demands and item difficulty are substantial
(r>.50). As expected, tasks involving the typical curricular level of pre-university mathematics
courses proved to be more difficult than tasks referring to material typically covered already in
lower secondary school (r=.44). A second main focus of the test was identified in the form of
items involving the transformation of situation models into formalised mathematical
expressions. This transformation occurs in Step 3 of our theoretical model. The relevant items
involve particular demands with respect to formal modelling and require problem-solving
activities. These items, too, tended to be more difficult on the international level (r=.35/.34).
Table 2 also shows that the TIMSS test contains a small, but noteworthy number of items that
make particular demands with respect to propositional and situational understanding. These
items are distributed relatively evenly across the difficulty scale (r=.08/.09 and -.02).
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In order tc' provide a more detailed insight into the demand configurations on the item
level, a cluster analysis was carried out to identify homogeneous groups of mathematic items
on the basis of their mean demand ratings. This cluster analysis was performed using the Ward
algorithm and Euclidean distances. In the context of our generalised model of mathematical
problem solving, a five-cluster solution proved to be the most appropriate. Table 3 describes
the centers of these five clusters in terms of average ratings on the cognitive demand scales.

Table 3

Final cluster centers identified 011 the basis ofaveraged expert ratings

High level Understanding Inner-
mathematisation and Solving mathematical Propositional

and problem interpreting word reasoning and representation
Cognitive solving diagrams problems calculations and reasoni ng
demands (N=12) (N=II) (N=13) (N=27) (N=3)

Text comprehension .86 .68 1.28 .30 1.93
Processing of visual information 1.82 1.04 04\ .50 1.17
Understanding situational contexts .17 .31 1.03 .00 .70
Formal modelling 1.03 1.06 1.26 .96 .37
Restructuring of p 'oblems 1.20 .61 .69 048 1.07
Problem-solving activities 1.26 .54 .88 .63 1.13
Curricular level 1.31 1.38 1.50 1.59 .47
Declarative knowledge of facts and
procedures 2.03 1.78 2.08 2.07 .33
Algebraic operations .86 .18 .91 1.70 .13
Arithmetical operations .86 .36 1.47 1.71 040
Conceptual understanding lAS 1.27 1.73 1.01 .17
Interpreting diagrams .19 2.00 .16 .18 .00
Mean item difficulty I 633 585 613 562 473

Note. 1Standardised TlMSS-Scale: .1'=500; sd=100.

With 27 of the 66 tasks, cluster 4 is the largest of the five clusters. It contains tasks that
primarily demand inner-mathematical reasoning and calculation. Cluster 5, which includes
only three tasks and thus presents the smallest of the clusters, forms a complement to this: The
tasks in this cluster require predominantly the construction of a propositional text base and a
few steps in the mathematisation process. Inner-mathematical operations are of no importance
here, as these tasks primarily call for logical thinking and text comprehension.

In contrast to clusters 4 and 5, clusters 1 to 3 are mixed types, that is, they contain tasks
that involve demands associated with all components of the theoretical problem solving
model, albeit with varying levels of intensity. The three clusters are medium in size (12, II,
and 13 items respectively) and can be distinguished as follows: Cluster 3 mainly contains
classical "word problems". In comparison to the other clusters, understanding of situational
contexts plays a more central role, as do demands related to transforming a situation model
into a formal expression and inner-mathematical operations. Cluster 2 is the only cluster in
which the components of interpreting and translating the solution back to a verbal context
come to the fore. These tasks do not entail any algebraic demands, but call for the
interpretation of diagrams. Tasks in Cluster 1, finally, demand mathematisation and problem
solving on a higher curricular and inner-mathematical level. The majority of these tasks
involve geometry.

The five-cl LIster solution is highly compatible with our theoretical model. The centroids
of the clusters reflect the degree to which individual components are salient in the solution of
the different test tasks. Furthermore, an analysis of variance revealed that the items in the
individual clusters differ markedly in terms of their difficulty levels. The most difficult tasks
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are those in Clu ster I, which demand ma thernatisa tion in the narrower se nse and, at the sa me
time, inner -mathe ma tica l know ledge and und erstan d ing. T he nex t most diffic ult items are
those in C luster 3, whic h require the co mplete modell ing process to be app lied . In co mparison,
tasks requ iring inner -m athe matica l operations only (Cluster 4 ) are much easier.

Th e TI MSS ad van ced mathematics tes t is traditional in the sense that the majority of the
tasks stress inn er-math ematical ope rat ions . As such, the tes t corresponds wi th wides prea d
habit s in math em atics instruction . However, the TI MSS tes t also con tains a se ries of tasks that
make par ticula rly high dem ands with respect to the formulat ion of a mathemat ica l model or
that requi re stude nts to carry out almost the entire modelling cycle. It is prec ise ly these tasks
that make the TI MSS lest particularly suitable for an attempt to ident ify differential proficiency
profi les in internationa l co mpari son .

Country-specific strengths and weaknesses

In line with o ur ex pec tations, co mparisons of the five selected co untries sho w that
students from these co untries differ with regard to the probability of so lving cert ain items,
eve n when one control s for d iffere nces in overall perfor mance. Particularly when Germany is
compared with Sweden and France, the DIF-parameter s reach substantial levels (DIF> 1.0) .
With values on the Legit-Scale of 10 and higher, this means that the difference in the mean
pe rfo rma nce of Germ an and Swedish students - wh ich is already considera b le - woul d
increase by mor e th an one standard deviati on if the TIM SS advan ced mat he mat ics test
consisted only of ite ms with DIF-scores of this mag nit ude . For the interpretation of the DIF­
para me ters, however, it is essentia l to know whether these parameters ca n be systematica lly
linked to curricu lar characteristics or - as ass ume d in the pre sent paper - to the cognitive
de mands of the items. On ly under this con dition can the DI F-parameters be interpreted as
ind icators for unmode lled mu ltidi mens iona lity. The present study tes ts for such systematic
relat ions by examining the correlatio ns between cog nitive de mands and Dlf -pararneters. Th e
results are presented in Table 4 .

Table 4

Relative national strengths and weakllesses in adl'allced mathemati cs. compared 10 GerJllany *

Cor rela tion betw een cogni tive dem and and DIF in favour o f

Demand Austria Sw itze rland Fran ce Sweden USA All

Text co mprehension
Proc essi ng of visua l info rmat ion
Unders tanding situational conte xts
For mal modelling
Restructuring of problems
Problem- solving activi ties
Curric ular level
Declarat ive kno wled ge of fact s and procedu res
Algebraic operation s
Arithmet ica l operations
Con ceptual under standing
Interpreti ng diagram s

.22

.35

.31

.35
-.45

- A D
-.22
.35
.28
.29

-.25
.32
.22
.24
.22

n.a.

.36

.34

.25

.38
-.46

.38

.32

.34

.28

.25

.29
-,32

.21

.20

.29

.38

.28

.33

.37
-.22

Note. * Correl at ions present ed in the table are statistically sign ifi cant: 1'<.05 .

The pattern of result s allow s for a straig htfor ward interpretation of relat ive strengths and
weaknesses: As hypothes ised by Schmidt et al. ( 1996) , the French cu lture of ma thematics
educa tion see ms to be unique in placin g a strong emphasis an pur e math em atical reason ing
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and high-level knowledge, while neglecting, to some extent, the aspect of constructing
mathematical models for extra-mathematical situations. This confirms the expectation that the
tradition of the French Lycee d'Enseignement Generate Scientifique has a strong focus on
teaching mathematics from a systematically developed inner-mathematical perspective.

Judged by international comparative standards (Mullis et aI., 1998), the overall
performance level of Swedish students is as high as that of French students. Yet, the Swedish
culture of mathematics education represents the Scandinavian tradition of application-oriented
instruction, which, in a way, presents a complement to the French pattern. The strengths of the
Swedish students clearly lie in the building of mental models and mathematising processes.
However, compared to German students, the Swedish TIMSS participants are also quite strong
in algebraic and arithmetical operations.

Students from the US - relative to their overall performance level, which is much lower
than that of the French and Swedish students - show strengths in cognitive demands that relate
to mathematical reasoning processes. This seems to be a result of an approach to instruction
which focuses on declarative and procedural knowledge and ease of mathematical operations,
as opposed to in-depth understanding, application, and applied problem solving. This
instructional pattern identified by Stigler et al. (1996) in the TIMS-Video Study involving
students from the lower secondary level seems to persist even in the upper secondary level.

The three German-speaking countries (Austria, Switzerland, and Germany) seem to have
quite similar profiles, that is, there are almost no significant correlations between cognitive
demands and DIF-parameter estimates for Austria and Switzerland. Although students from
Switzerland in particular show a much higher overall performance than students from
Germany, the snared pedagogical traditions of the three countries seem to result in similar
profiles. The only areas in which German students seem to show relative strengths compared
to students from other countries are the processing of visual information and the interpretation
of diagrams. In other words, the German culture of mathematics education seems to foster the
use of visual representations, but it is relatively weak when it comes to promoting the core
components of mathematical reasoning.

Summary and discussion

National profiles in learning outcomes which may, in turn, be interpreted as differential
effects of cultural backgrounds and educational traditions have played an important role in
large-scale international surveys. However, many of the attempts to examine such profiles
involved two major restrictions: Methodologically, they were most often based on calculations
of percent-correct indices for single items - a method that is inappropriate when judged from
the perspective: of recent psychometric insights (van der Linden, 1998). From a substantive
point of view, moreover, most studies have restricted their investigations to exploring how
differences between national curricula with regard to content coverage result in differential
profiles.

The approach taken in the present study aims at identifying cognitive profiles of students
from different countries. Based on a generalised model of mathematical problem solving,
characteristic cognitive demands were defined for each step involved in the process of solving
mathematics items. More specifically, the model formed the basis for the development of a
classification system that mathematics experts used to evaluate the items from the TIMSS
advanced mathematics test. The expert ratings were subsequently correlated with IRT
parameters describing the differential item functioning across countries (DIF-parameters).
Thus, profiles of relative strengths and weaknesses could be described for each country. The
starting point for this approach is the robust finding that the Rasch scaling model holds only
approximately across subpopulations of large-scale studies. Observed deviations from the,
Rasch model, which have mostly been interpreted as error or bias in previous research, can - at
least partially - be interpreted substantively when it is combined with in-depth task analyses.
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In applying this methodology to international comparative data from the TIMS study on
advanced mathematics, we were able to demonstrate its feasibility. The results of our analyses
were in line with expectations derived from curriculum analyses, case studies, video studies,
and expert knowledge in the field of mathematics education. More specifically, our findings
support the hypothesis that upper secondary pre-college mathematics education

in the US focuses on declarative and procedural knowledge,

in France emphasises knowledge of advanced mathematical concepts while neglecting,
to some extent, the development of problem-solving strategies,

in Sweden is oriented towards application and problem-solving strategies,

in Germany is weak on advanced knowledge and understanding, with strengths only in
the use of visual or graphical representations, and

in the three German-speaking countries shows a similar profile, although Swiss
students perform at a much higher level overall than Austrian and German students do.

In the long run, progress in the area of proficiency profile analysis, particularly in
international comparative studies, will be dependent on the improvement of multidimensional
Rasch models which permit the inherent multidimensionality of test items to be explicitly
modelled. Multidimensional Rasch scaling that takes the factorial complexity of items into
account would increase the practical relevance of large-scale assessments substantially. The
first steps in this direction have been taken by Adams, Wilson, and Wang (1997) as well as
Rost and Carstensen (2000). Hopefully, these steps will be perfected in the near future such
that analyses of within-item multidimensionality will become standard procedure in large­
scale assessments.
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Lcs eva luat lons n la rge ec lie lle co nee rn ant I I' S co mp et cnces
detudiants traitent des dimensions assc; globales 1'1 utilisen t des
modeles de tnesure restrelnts et unidimensionncls.
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Le "differential item [unctionning ", utilise pour certaines sous­
populations, a ete interprete cotntne errcur ou biais. De travaux recents
dans le domain e de l'evaluation en education laissent supposer
cep endant que Ie DlF rcflcte la muttidimensionaiite inherente aux
dimensions de competence et ce qui nous aniene if des profils de
competence differenticls. En consequence, les parametres des analyses
DIF sont aptes (/ identifier les forces et les [aiblesses relatives de
certaines sons-populations etudiantes.

Cet article examine les profils de competences mathematiques chez
des etudiants du deuxieme cycle de six pays differents (Autriclie,
France, Alleniagne, Suede, Suisse et Etats-Unis), Les analyses DIF OJJt
ete combinees avec I'analyse des exigences cognitive» des items, basee
sur des concepts p sychol og iqucs de la resolution de p robl enies
mathematiqucs. Des experts om juge les exigences cognitives des items
TIMSS, ensuit e ces jugements out ere mis en rapport avec les
parametres DIF.

Seton notre hypothese que les d(t!erents cadres culturels et
traditions d 'enseigncment devraient se traduire dans une differentes
priorites attribuees if differents aspects de la resolution de problemes
en classe, phenomena qui devrait se retrouver, en utilisant des analyses
DIF, dans les estimations comparatives internationales. Les resultats
du test mathematique de TIMSS etaient en accord avec les attentes liees
aux traditions culturelles et denseigncment dans l'enseignement des
marliematiques dans les six pays examines.
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