
Japan J. Indust. App!. Math., 18 (2001), 161-180

A Competition-Diffusion System Approximation to

the Classical Two-Phase Stefan Problem

To the memory of Professor Masaya Yamaguti

Danielle HILHORST* , Masato IIDAt, Masayasu MIMURA$
and Hirokazu NINOMIYA§

* Laboratoire de Mathématique, Analyse Numérique et EDP,
Université de Paris-Sud, F-91405 Orsay Ceder, France

t Department of Mathematics, Faculty of Education,
Iwate University, Morioka 020-8550, Japan

$Department of Mathematical and Life Sciences,
Graduate School of Science, Hiroshima University,
Higashi-Hiroshima 739-8526, Japan

§Department of Applied Mathematics and Informatics,
Ryukoku University, Seta, Otsu 520-2194, Japan

Received August 5, 2000
Revised December 5, 2000

A new type of competition-diffusion system with a small parameter is proposed. By
singular limit analysis, it is shown that any solution of this system converges to the weak
solution of the two-phase Stefan problem with reaction terms. This result exhibits the
relation between an ecological population model and water-ice solidification problems.

Key words: competition-diffusion systems, singular limit analysis, two-phase Stefan prob-
lem

1. Introduction

For the theoretical understanding of spatial patterns arising in population dy-
namics, several free boundary problems have been proposed. They model the dy-
namics of patterns such as segregation and aggregation of biological individuals
[7, 15, for instance]. Among them, Mimura, Yamada and Yotsutani [13, 14] pro-
posed a free boundary problem for two competing species which are regionally
segregated. The problem can be stated as follows: Let u(x, t) and v(x, t) be respec-
tively the densities of the competing species at position x and time t and let .(1(t)
and Q(t) be the habitats for u and v in a bounded region S? in R N , that is,

Qu (t)={xE 9I u(x,t)>0 and v(x,t)=0}	 (1.1)

and

Q(t) = {x E ,fl 1 v(x, t) > 0 and u(x, t) = 0}.	 (1.2)

The evolution equations for u and v are given by

ut = d1 Au + f(u) in ƒ2u(t),	
(1.3)

vt = d2 0v + g(v) in .n„ (t),
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where f (u) and g(v) are the growth terms for u and v, respectively. An example of
f is f (u) = r(1 — u/K)u with the intrinsic growth rate r and the carrying capacity
K, which are both positive constants. The function g is defined in a similar way.
Let F(t) be the interface between S?(t) and Q (t), namely

1 (t) = Q \ (S-(t) u 2v(t)),

which is a free boundary (also called a segregating boundary). On the interface, it
is assumed that

u=v=0 on F(t)	 (1.4)

and that the normal velocity of the interface V,, from Q(t) to Q(t) is given by

dl áu d2áv

u^` = kI án k2 án 
on 1(t).	 (1.5)

Here k I and k2 are some positive constants which indicate respectively the mag-
nitude of the competition through fluxes onto the interface; n is the unit normal
vector on 1(t) oriented from Q (t) to S?, (t) and áu/án (resp. av/án) is regarded
as a boundary value on OQ^(t) (resp. 9Q,(t)).

One can interpret the problem (1.3)—(1.5) from an ecological viewpoint as
follows: Suppose that the competition between two species is very strong, then one
can expect that the regional segregation occurs for two competing species u and
v so that the habitat will be divided into two subregions .f1v, (t) and t2„ (t) by an
interface 1(t) where (1.4) holds. It is plausible that the dynamics of u (resp. v) in
t,,,(t) (resp. (1 (t)) is described by (1.3). The remaining problem is to formulate
the equation describing the motion of F(t). They assumed that the struggle of
the two species for obtaining their habitats is represented by the difference of the
normal fluxes of u and v onto the interface, which can be understood as a kind of
competition effect for two species on the segregating boundary. In particular when
kl = k2 = A, the equation (1.5) is known as the classical two-phase Stefan condition
which describes solidification, if u — v is regarded as the temperature, where the
constant A is the latent heat. For the one-dimensional problem corresponding to
(1.3)—(1.5), qualitative behavior of solutions was almost completely analyzed by the
authors [13, 14].

Apart from (1.3)—(1.5), a well known reaction-diffusion (RD) equation model
for two competing species is proposed in mathematical ecology. It is described by

slue
	XE t?, t>0,

E 	(1.6)
vt = d2	

g()
0v + v s2uv x E a, t > 0,

 E

where s1/c, s2/e are the interspecific competition rates between u and V. If s I /s2 is
small, for instance, the influence of competition on u is weaker than that on V. From
a modelling viewpoint, the following question arises: Is there any relation between
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(1.3)—(1.5) and (1.6)? If E > 0 in (1.6), the two species coexist everywhere in ,(1 by
the effect of diffusion. However, if the competition rate is so large (E is so small),
one can expect that the two species hardly coexist and are spatially segregated.

Recently, taking the limit E —+ 0, Dancer, Hilhorst, Mimura and Peletier [4] have
shown the following: these systems (1.3)—(1.5) and (1.6) are quite close. That is,
in the limit where E tends to zero, the habitats of.0 and v are completely separated
by an interface F(t) and that (1.3) and (1.4) truly hold, but (1.5) is replaced by

_ dl áu d2 av
0=--------
 sl án s2 an 

on 1(t). (1.7)

They have concluded that the free boundary problem (1.3), (1.4) and (1.7) is an
approximation to the competition-diffusion system (1.6) when the interspecific com-
petition is very large. Conversely speaking, the RD system (1.6) is a good approxi-
mation to the classical two-phase Stefan type free boundary problem with reaction
terms when the latent heat vanishes.

Motivated by the results above, we naturally address the following question:
Are there any RD system approximations to the Stefan problem with positive la-
tent heat (1.3)—(1.5) which was proposed in [13, 14]? The aim of this paper is to
answer this question. We propose here the following RD system for three unknowns
(u, v, w) with a small positive parameter E:

u t = di Au + f(U) —

vt = d2Av + g(v) —

(1 — w)u w2
wt =	 --

E	 E

s lue kl (1 — w)u
—	 , XE9, t>0,

E	 E

s2uv k2wv	
x E Q, t > 0,	 (1.8)

E	 E

xEI?, t > 0,

where ki = Ase (i = 1, 2) for some positive constant A. When A = 0, (1.8) is

obviously reduced to (1.6). The third variable w is regarded as an approximation
of the characteristic function of the habitat of the species u. We suppose that the
initial distributions for u and v are completely segregated and impose

w(x, 0) = W(x), x E (1, (1.9)

where W(x) = 1 if u(x,0) > 0 and W(x) = 0 if u(x,0) = 0. We numerically
demonstrate in Figure 1 how solutions of (1.8) depend on E. We expect that w
just becomes the characteristic function of S?(t) as E —> 0 and then show that
(1.3)—(1.5) can be derived from (1.8). We emphasize that, when f = g = 0, the
two-phase Stefan problem can be derived from (1.8). It should be noted that the
RD system (1.8) with small E can be regarded as a variant of penalty methods to
solve the two-phase Stefan problem [12].

It is interesting to interpret (1.8) from the ecological viewpoint. Let us intro-
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Fig. 1. Dependence on of the spatial profiles of one-dimensional solutions of

(1.8); solid curve: u, dotted curve: v, grey curve: w.

duce a fourth variable p into (1.8) and rewrite it as

s lue )s lpu
ut =d10u+f(u)—	 —	 , xEQ, t>0,

E	 E

S2UV )'s2WV
vt =d2Lv+g(v)—	 —	 , xEQ, t>0,

E	 E	 (1.10)
Wt_ pu —wv
	 x e S?, t > 0,

E	 E
pu WV

pt= -- + — ,	 xED, t>0.
E	 E

The initial condition for p is

p(x, 0) = P(x),	 x E D,

where P(x) = 1 if v(x, 0) > 0 and P(x) = 0 if v(x, 0) = 0. Because of the complete
segregation of initial distributions of u and v, one knows that W(x) + P(x) = 1
for each x E R. (Here we assume that the initial segregating boundary f(0) is a
smooth hypersurface with one codimension in S.) Obviously (w + p)t = 0, so that

W(x, t) + p(x, t) = W(x, 0) + p(x, 0) = W(x) + P(x) = 1.

Therefore it turns out that (1.10) coincides with (1.8). The system (1.10) can
be ecologically interpreted as follows: u and v are the densities of two competing
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species with their own habitats Q, (t) and .(2 (t), whose shapes are respectively
described by the characteristic-like functions w and p (in fact, as e tends to zero,
both of them become the corresponding characteristic functions of the habitats
,2v,(t) and (1 (t)). There are two different types of interactions between u and v.
One is the directly competitive interaction (due to the term uv), for obtaining their
common resource. The other is the struggle interaction (due to As ipu and As2wv),
for constructing their own habitats, where As, (resp. Ast ) is the cost rate when u
(resp. v) attacks the habitat Q(t) (resp. Q(t)). For this reason, we may say that
(1.10) is not a conventional competition-diffusion model, but a new RD equation
of two competing species which move by diffusion.

To state our main result, we impose the assumptions on f, g and the initial
datum (uo , vo , wo ).

Al (Assumption on f and g)

There exist C l -functions 1(u) and g(u) and positive constants Kl and K2
such that

f(u) = f(u)u, g(u) = g(u)u,

f(u) < 0 for u > Kl , g(u) < 0 for u > K2.

A2 (Assumption on the initial datum)

(uo,vo,wo) E C(i) x C(.(l) x L°°(Q),

0 < u0(x) <a, 0 < vo(x) <8, 0 < wo(x) <1 in 12,

uovo = (1 — wo)uo = wovo = 0 in 12

for some positive constants a and ß.

Set

ro:= {xE.DJuo(x)=vo(x) =o},

QT :_ 12 x [0, T].

THEOREM 1.1. Let T be any positive number and 1 a bounded domain in
RN (N > 1) with C2 -boundary 812. Assume Al and A2. Denote by (u€, vE, wE)

the solution of (1.8) in QT with

áu av__ 	 = 0 on 812 x (0, T], 	 (1.11)
áv áv

u(x,0) = uo(x), v(x,0) = vo(x), w(x,0) = wo(x) in 1, 	 (1.12)

where v is the outward normal vector to 012. Then there exists (u, v, w) E
L2 (0,T;H 1 (Q)) x L2 (0,T;H'(,Q)) x L2 (QT) such that

ne --> u, vE —f v	 in L2 (QT),

0 —* w	 weakly in L2(QT)
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as e --> +0, and

n„n2l„=0,

w= 
1 in S2,,

0 in ,ivy

where

f? :={(x,t)EQT Iu(x,t)>0}={(x,t)EQT IxEnu(t), 0<t<T},

flv :={(x,t)EQT1 v(x,t)>0}={(x,t)EQT 1 XEQv (t), 0<t<T}.

Moreover, if

r:= QT\(ƒ?u U nv ) ={(x,t)EQTI xE1(t), 0<t<T}

is a smooth hypersurface satisfying r(t) C= 1 for 0 < t < T and if u (resp. v) is

smooth on .Ç (resp. fl„), then (r, u, v) is the unique solution of the free boundary

problem

ut =dI Au+ f(u)

vt = dew + g(v)

u=v=0
_ dI óu d2 áv

^Un 	sI 8n s2 On

under the boundary condition (1.11) and the ini

in d2u (t),

in Q (t),

on r(t),	 (1.13)

on r(t)

tial conditions

r(o) = ro ,	 (1.14)

(u(x,0),v(x,0)) = (u o (x),vo (x)) in 12.	 (1.15)

This theorem is derived as a corollary of Theorems 3.6 and 3.7 which deal with
more general situations.

REMARK 1.2. The conclusion of the latter part of Theorem 1.1 holds true
even if r(t) transversally intersects 812 for 0 < t <_ T. On the other hand, the triple
of functions (u, v, w) is always a weak solution to (1.13), whether r is a smooth
hypersurface or not. See Section 3 (especially Definition 3.3) for the definition of
weak solutions.

This theorem implies that we can derive the classical two-phase Stefan problem
from the RD system (1.8) in the absence of the reaction terms f and g, taking the
limit e tends to zero. The parameter A in (1.13) corresponds to the latent heat in
the Stefan problem. For sufficiently small e, one can expect that u and v exhibit

corner layers on the interface r(t), while w has a sharp transition layer, which
clearly indicates a segregating boundary between u and v. It is noted that no

transition layer appears in (1.6) (see [4]). These results seem to indicate that the



Competition-Diffusion Approximation to Stefan Problem 	 167

latent heat vanishes without transition layers. Along the same line, the one-phase
Stefan problem can be discussed. We refer to the papers by Hilhorst, van der Hout
and Peletier [9, 10, 11] and by Eymard, Hilhorst, van der Hout and Peletier [6].

2. Formulation of the Problem and Some Basic Properties

In this section we formulate the reaction-diffusion system which we study and
derive a number of basic properties of the solutions. As was announced in . the
introduction, our problem is

s l ue
ut =diIu + f(u)—

As l (1 — w)u— xE2, t>0,
E E

vt = d2Av +	 v	 S2UV--- --

g( )

i 82wv
x E .2, t>0, 

E E

Wt—
(1—w)u —wv

xES2, t>0,	
(2.1)

E	 E

áu 	 áv
xEaQ, t>0,

8v	 áv

u(x, 0) = uó(x), v(x, 0) = vó(x), w(x, 0) = wo(x), x E n,

where v denotes the outward normal vector to 8S?. Note that the initial data depend
on a small positive parameter e: hereafter we consider a more general setting than
that stated in Section 1. In what follows we impose Al on the functions f, g and
make the following hypotheses about the initial data uó, vó and wó instead of A2.

A2'

uó, VO E C(i ), wo E L°°(,f?),

0 < uo(x) < a, 0 < vo(x) < ß, 0<wo(x)<1 in (1,

uó ---> uo, vó —' vo, 'wó —' wo weakly in L2 (,í2) as e --> 0

for some positive constants a, ß and for some functions uo , vo, wo E L°°(Q).

REMARK 2.1. In A2' we do not assume uavo = (1 — wO)u0 = wovo = 0. In
particular, we do not impose that the supports of uo and vo are disjoint.

Hereafter Al and A2' are always assumed.
By a solution of (2.1) in QT (T > 0) we mean a triple of functions (u, v, w) E

C([0,T];C(,fl) x C(,fl) x L°°(Q)) such that

u, v E C 1 ((0 ,T];C(i7)) nC((0,T];W2,P(Q)), w E C l ([0 ,T];L'(Q))

for each p E (1, co) and (u, v, w) satisfies the equation (2.1).

LEMMA 2.2. There exists a positive number T = T(IIuóIIc(n) , IIvóitc(n) ,
WOHL—(R)) such that (2.1) possesses a unique solution (u', vE, wE) in QT.
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The result of Lemma 2.2 does not immediately follow from the theory of an-
alytic semigroups because of the lack of diffusion for w. In particular, if wb is
discontinuous at some point, wE as well as mau' and OvE may be discontinuous at
that point at later times as well. We refer to Appendix for a sketch of the proof of
Lemma 2.2.

LEMMA 2.3. Let (u', vE, wE) be a solution of (2.1) in QT. Then

0 < u6 (x, t) < max{a, KI }, 0 < v'(x, t) < max{,Q, K2}, 0 < w 6 (x, t) < 1

for (x, t) E QT.

Proof. We deduce from the maximum principle that uE, vE >_ 0. Let x E ,f1
be such that wó(x) is defined. Then the condition 0 <_ wó(x) < 1 implies that
0 < w'(x, t) <_ 1 for all t > 0. Indeed suppose that at a time t = t, wl (x, t) = 0,
then wt (x, t) > 0; similarly if at a time t, wE (x, t') = 1, then wt (x, í) <_ 0. Finally
we apply again the maximum principle to deduce that uE < max{a, KI } and vE <
max{,3,K2}. q

Without loss of generality, we can assume that

a>KI and ß>K2

by choosing a and ß so large that the above inequalities hold. Lemmas 2.2 and 2.3
ensure that the solution (ut, vE, wE) exists globally in time and satisfies

0 < u E (x,t) < a, 0 < vE (x,t) < ,Q, 0 < w E (x,t) _< 1 for (x,t) EQ x [0,00).
(2.2)

Set

Mf :=max{ f (u) 0 < u< a}, M9 :=max{g(u) I 0 < u< ß}.

LEMMA 2.4. For any positive number T there exist positive constants Cz (i =
1, ... , 5) independent of e and A such that

(SI + s2)u 6v'dxdt < CIe,L
^si(l — w 6 )u6 dxdt < C2e,L
ƒQT .^S2w E v'dxdt < C3e,

 dI J VUe l 2 dxdt < C4,
'QT

d21VV 6 1 2dxdt < C5.ƒ £T
In this paper, positive constants which do not depend on e are denoted by Ci

for simplicity of notation.
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Proof. Integration of the equation for u in QT yields

J f `QT slu6v€ + As, (1 — W ,)uE
 / dxdt

E	 E

= f (uo(x) — u'(x,T))dx + J JQT f (u)dxdt < (a +TMƒ)I21,

which implies the second estimate. The first and third ones can be shown similarly.
Next we multiply the equation for uE by uE and integrate by parts on (1. This yields

2 dt f (uE)2dx+d1 J IVuEI 2dx+ J (
s l (UÉ) 2 vE + Ás1(1 — wE)(uE)2 1 dx <_ I,(llaMf,

which we integrate on (0, T) to deduce the fourth estimate. The last estimate can

	

be proved similarly. 	 q

LEMMA 2.5. Let T be any positive number and set

Q :={xEQIx+reEQ for 0<r<1}

with E RN . Then there exists positive constants C6 and C7 independent of e and

A such that ƒTƒ
  

(u E (x + ,t) — U6 (x,t)) 2dxdt < ál1 1 2 ,	 (2.3)

ƒTI
 (ve(x+e,t)— vE(x,t)) 2dxdt < d21^1 2,(2 .4 )
^

f
/^

 J (u(x,t+T)—u(x,t)) 2dxdt < C6T,	 (2.5)
 n
,T-r r

JJ (vE(x,t + rr) — v E (x,t)) 2dxdt < Cr	 (2.6)
	o 	 2

for e E RN and T > 0. Here

C6 = 2C4+aMfTI,Ql +aCl+aC2 i

C7 = 2C5 + ,3M9T I Q I + ßC1 + ßC3.

Proof. The first and second inequalities (2.3), (2.4) can follow immediately
from Lemma 2.4. Indeed, we haveƒTI

 (uE(x+^,t)-uE(x,t)) 2dxdt
e1

dxdt
T 

Le Uo
1	 l

=
	

Vu(x+rt;,t)•edr}
   )))

<_ di II2.
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Similarly the second one can be shown. Next we prove (2.5) and (2.6). We have

f
T-T

fa
(uE (x,t +T) — uE (x,t)) 2dxdt

0 
fT—T f	 /'T= J J (u

6 (x,t + T) — u E (x,t» J ut (x,t + r)drdxdt
0 ,a 0

=f
 T —T f(u(xt+r)_u e (xt))fE,	 ,T {dl Liu'(x, t + r)+f(u' (x, t + r ))
0 

siu 6 (x,t + r)vE(x,t + r) + Asl(1 — w€(x,t + r))uf(x,t + r)
—	 } drdxdt.

We estimate the three terms on the right-hand side. The first term can be estimated
as follows:

J
T_T 

in
(u(x, t + T) — u'(x, t))

 ƒ07, 

 diu(x,t + r)drdxdt

fr 

f=dllJ
0 n

T

< 2d 1 T	 IVuE(x, t)I 2dxdt
Jo ui

< 2C4T.

Secondly, we see that

1
T-r 

in	 In
(u'(x,t +T) — u(x,t))f(u(x,t+r))drdxdt <MfTIQIT.

Finally we have

T-r

fI	 in (uE(x, t +T) — U"(x, t))

X / T siu 6 (x,t + r)v 6 (x,t + r) + Asl(1 — w€(x,t + r))u€(x,t + r)
drdxdtJ0	 E

T-T	 siu'(x, t+ r)v'(x, t + r) + Asl(1 — w E (x, t + r))u 6 (x, t+ r)
10 710 f 

aT J T fa
sluE (x, t)v 6 (x, t) +Asl(1 — w E (x, t))u € (x, t ) dxdt

0 	 E

< a(Cl + C2)T.

Thus we have shown that

rT-T r

J J (u
E (x, t+ T)—u E (x, t) ) 2 dxdt<_(2C4 +aMfTIQI+aCl +aC2)T. (2.7)

Jo ,n
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Similarly, we can prove the following estimate:

/'T—r LJ	 vE(x, t +T)— vE(x,t)) 2 dxdt < (2C5 + ßMgTIQI + ßC1 + ßC3)r. (2.8)
o 

Thus, all the inequalities in this lemma are proved. 	 q

3. The Problem Obtained as the Singular Limit

Choose a positive number T arbitrarily and fix it. We deduce from Lemmas 2.3
and 2.4 that the families {uE} and {vE} are bounded in L2 (0,T;H'(d2)) and that
the family {WE} is bounded in L°°(QT). Furthermore it follows from Lemma 2.5
and the Riesz-Fréchet-Kolmogoroff theorem [3, Theorem IV.25 and Corollary IV.26]
that the families {uE} and {vE} are precompact in L2 (QT). Therefore there exist
subsequences {uEn} and {vEn} and {wEn} and functions u*,v* E L2 (0,T;H 1 (Q))
and w* E L2 (QT) such that

uE^ --) u* V --4 v *

strongly in L2 (QT), weakly in L2 (O,T;H 1 (Q)) and a.e. in QT, (3.1)

and

w 	 w* weakly in L2 (QT)	 (3.2)

as en ---> 0. It follows from (2.2) that

u*>0, v*>0, 0 	 on QT.	 (3.3)

Hence we deduce from Lemma 2.4 that

	u*v* = (1 — w*)u* = w*v* = 0.	 (3.4)

In what follows we will show that (u*, v*, w*) given above is uniquely deter-
mined by the unique solution of a Stefan type problem — see (3.6).

LEMMA 3.1. Let T be an arbitrary positive number. The triple of functions

(u*, v*, w*) given in (3.1) and (3.2) satisfy

'QT \ si s2
 + Aw*1 ^c — I dsu* — ds2 * I V^

+ ( f(u*) — g(v*) I 
JJJ
}dxdt

	sl 	 s2 ) 

_ — J (( uo — vo + ,Xwo
S?	

) ^(x, 0)dx	 (3.5)
s2

for all functions ( E C°°(QT) such that ((x,T) = 0.
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Proof. We deduce from (2.1) that

C AE — vE + Aw = d« u 6 — d2 ^vf + f (uE ) — y(v E )
s	 2	 t	 S1	 2	 SI	 S2

and multiply it by a test function Ç E C°°(QT) with ((x, T) = 0 and integrate by
parts to obtain the identity

J 	 — S2 
+Aw E J (t +V 1 dSUE — dS2E I •V(

— ( fW)
 — y ( S2V') ) 1 dxdt	1 \ SI 	 j

= 1 I u0 — v0 +two I((x,0)dx.
fl \ S1	 52

Letting e = €, --> 0, we deduce (3.5).	 q

We will formulate (3.5) as a weak form of the following parabolic boundary
value problem:

	Zt = Ld(0(Z)) + h(çb(Z)), x E .fl,	 0 < t < T,
8d(çb(Z)) = 0,
	 x E ¶l, 0 < t < T,	 (3.6)
áv 

Z(x, 0) = Zo(x),	 x Eli,

where

dlr	 (r>0),
	d(r) :=	

der	 (r < 0),

r—A (r>A),
«(r) := 0	 (0 <r < A),

r	 (r<0),

f(sir)
	(r > 0),

	h(r) :=	 sI

g(—s2r) (r<0).
s2

We also use the following notation:

1	 (r>0),

	H(r) :_	 [0,11 (r = 0),
0	 (r<0),

r+ := max{r, 0}, r_ := — min{r, 0}.
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LEMMA 3.2. If w E H(z), then O(z + Aw) = z. In particular, the functions
u*, v* and w* which are given in (3.1) and (3.2) satisfy

u * = s1 (Z)+, v * = s20(Z*)_ and w* = Z* — o(Z*) ,	 (3.7)

where

Z* := u* — v* +>,w*.	 (3.8)
sl	 s2

Proof. The former claim of this lemma follows from the definitions of 0 and

H. We can deduce

/ u* v*
w*EHI ---

	\ sl 	 52)

from (3.3) and (3.4). Hence we have

	u* 	 v*
O(Z*)_ '* --,

	Si 	 32

which, together with (3.3) and (3.4), implies (3.7).	 q

DEFINITION 3.3. A function Z E L°°(QT) is a weak solution of (3.6) with
an initial datum Zo E L°° (Q) if

d(O(Z)) E L2 (0, T; H'(Q)),

and

1I
Z(tdxdt +

IS7 
Zo (x)((x, 0)dx = J J	 {Vd(O(Z)) • 17(— h(O(Z))(}dxdt

QT QT

(3.9)

for all functions ( E C°°()T) such that c(x,T) = 0.

REMARK 3.4. If Z is a weak solution of (3.6), then q(Z) is continuous on

fl x [8,T] for each S E (0,T]. Cf. [5].

It is known that the classical two-phase Stefan problem under the Neumann

condition can be formulated as the nonlinear system (3.6) with h - 0. Then Z and

4(Z) correspond to the internal energy and the temperature respectively. We note

that (3.6) can also deal with the case where the interface fattens. We set

Q(t) :_ {x E S2 I O(Z(x, t)) > 0},

Q_(t) :_ {x E .2 O(Z(x, t)) <0},	 (3.10)

r(t) _ S \ (ƒ+(t) u n-(t))
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for t E [0, T] and also use the notation

.(l+ := U 2+ (t) x {t},
O<t<T

:= U L(t) x {t},	 (3.11)
O<t<T

r := U r(t) x {t}.
o<t<T

We could think that Q+ (t) and Q_ (t) symbolize two distinct phases, and r(t)
represents a phase boundary (or an interface) at time t.

LEMMA 3.5. The function Z* defined by (3.8) is a weak solution of Problem
(3.6) with an initial datum Za = uo /s i — va /s2 + Awo.

Proof. It follows from Lemma 2.3 that Z* E L(QT). We observe that (3.7)
implies

	* 	 *

d(O(Z * )) = lu — d2v
	Si 	 S2

In particular, d(O(Z*)) E L2 (0,T;H 1 (Q)) holds true. We also notice that

h(O(Z*)) = f (u * ) — g(v * )
	Si 	 S2

Therefore (3.5) can be rewritten as (3.9) with Z = Z* and Zo = u0/s1— vo /s2+Awo.
This completes the proof of this lemma. 	 q

The uniqueness of the weak solution of the Stefan problem (3.6) for Zo E
L 1 (Q) follows from Hilhorst, Mimura and Schätzle [8]. Thus (uo, vo, wo ) uniquely
determines Z*, which uniquely gives (u*, v*, w*) by (3.7). Namely the limits u*,
v* and w* in (3.1) and (3.2) do not depend on what subsequence {en } is chosen.
Consequently we have proved the following result.

THEOREM 3.6. The function Z* defined by (3.8) is the unique weak solution
of the Stefan problem (3.6) with an initial datum uo/s l — vo /s2 +.\wo. As e —+ 0,

uE —> u*, vE —> v* strongly in L2 (QT ) and weakly in L2 (0,T;H'(ƒ2)),

wE ---- w* weakly in L2 (QT).

Finally we state a result about the relation between (3.6) and (1.13).

THEOREM 3.7. Let Z be the unique weak solution of (3.6) with initial datum
Zo and let .2t(t) and r(t) be the sets defined by (3.10). Suppose that (each compo-
nent of) r(t) is a smooth, closed and orientable hypersurface satisfying r(t)n8Q =
0 for all t E [0, T]. Let n be the unit normal vector on r(t) oriented from Q (t) to
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s2_(t). Also assume that r(t) smoothly moves with a velocity Vn in the direction of
n and that the functions

u := slo(Z) + and v := s2 c(Z)_

are smooth on (2+ and ,fl_ respectively. Then (r, u, v) satisfies

u t = d 1 Lu + f (u)	 in Q+ (t),

vt = dew + g(v)	 in Q_ (t),

_ dl au d2 0v
^un 	si an s2 

an on r(t),

u = v = 0	 on ['(t),
au_av_o
	 on 8Qav av

for t E (0, T] and

{

r(o)_{xEQ1o(zo (x))=o},

	U(X^0) =81(0(ZO(X»)+) v(x, 0) = s2(c(Zo(x)))—, 	XE ,íl.

Here au/an (resp. av/an) is regarded as a boundary value on 8Q+(t) (resp.

a,fl_ (t)).

Proof. It follows from the definition of u and v that

u=v=0 on r,

0(Z)=Z—A= u innl+, 0(Z)=Z=—v in J2—,
	sZ	 82

which are used in some of the calculations below.
Next we derive the parabolic equations for u and v as well as the Stefan con-

dition on the interface F. First we rewrite the first term on the left-hand side of
(3.9). We see that

T  	 l
	ZCtdxdt = f {f

	 (
	vdx }dt.

QT	 o ll 2+ (t)	 S1 	 _(t) S2	 JJJ

From Ulf( t) = 0, it follows that

[L+ 	1
t=T	 rT d (L+ 
	 \	 fT

 u(dxJ 	= J 	uCdx I dt = J 	 (uit +ut^)dxdt;
(t)	 t=o	 o dt 	(t)	 /	 o .n(t)

moreover,

(3.12)

(3.13)

lfs-2+	

1 t=T fTf 	 fT f
(dxJ 	=  	 ^tdxdt +

 	

V, dvdt,
(t)	 t=o	 +(t) 	 '(t)
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and similarly since vI r ( t) = 0, we have that

[L t)
1 t=T	 fT

v(dxJ 	= J 	 (v(t + vt S)dxdt.
 t=o	 o	 n_ (t)

Therefore we have that for the test functions ( which vanish at t = 0, T

Z(tdxdt =	
IT I

ut(dxdt
@T	 1	 2+(t)

+S2 ƒT I
	 vt (dxdt — J T J Xvrl(dudt. (3.14)

_ (t)	 o	 r(t)

On the other hand we have that

J J {—Od(O(Z)) • VS + h(O(Z))^}dxdt
QT

f 	IT I
—

SI

1
T r

JJ	 diVu O^	
S2

dxdt + 1  	 d2^v ^^dxdt
o	 fl+(t) 	-(t)

+ 1/
ƒT ƒ

  f(u)Sdxdt — 1 
IT ƒ
  g(v)(dxdt

SI 	+(t)	 S2 	 _ (t)ƒTI r dI áu d2 ávlfT f d I áu d2 8v l
 (){	 — d2

sIán s2ánJJJ 
dadt + J J	 + — }^dvdt

t 111	 o	 a.n	 sI8v	 s2ávJƒT ƒ 
+ 1  	 {diu + f(u)}(dxdt — 1 {d2 Av+ 	 g(v)}(dxdt.

	sI + (t)	 s2

ƒT I

_(t)

(3.15)

We substitute (3.14) and (3.15) into (3.9). This gives

 dI áuIT

^r(t)

d2 áv
—(dvdt

} sI án s2 án

ƒ
T I

+ i{ —u t + d 1 Du + f (u)}(dxdt
+ (t)

+ SZ 
IT I 	

{vt — d2 0v — g(v)}^dxdt
_ (t)IT 	dI áu d2 áv

} çdadt = 0	 (3.16)
+  Jai t.	 SI Dv + S2 Cav

for all (E C00 (QT) such that ((x, 0) = ((x, T) = 0. Considering successively in
(3.16) test functions with compact support in ,fl+ and test functions with compact
support in Q_, we deduce the parabolic equations for u and v. Then, without loss
of generality, we may assume that r(t) = aS?+ (t) for t E [0,T]. Taking in (3.16)
test functions which vanish on DI? x [0, T] and do not vanish on 1', we deduce the
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Stefan condition describing the interface motion. Since OS? fl 12+ (t) = 0, it is clear
that

au
 =av = 0 on áQ x (0,T).

Thus, taking in (3.16) test functions which do not vanish on OS? x (0, T), we can
deduce that

av = 0 on á.(l x (0, T).
áv

Finally consider (3.9) with test functions which do not vanish at t = 0. Then
we can replace (3.14) with

ff Z(t dxdt
QT

r 	IT I
J Z(x,0)^(x,0)dx —  

 	

ut(dxdt
,a	 S1 +(t)

fT 

ƒS?- 	T
2 (v,Cdxdt — JJ)^V.dvdt.	 (3.17)

.IJ0	 (t)	 o	 r'(t)

Substituting (3.17) and (3.15) into (3.9) and using the fact that both the partial
differential equations for u and v as well as the Stefan condition for the interface
motion and the Neumann boundary conditions are satisfied, we deduce that

— f {Z(x, 0) — Zo(x)}((x, 0)dx = 0

for all (•,0) E L2 (Q). Hence

Z(x, 0) = Zo (x) a.e. in ,fl.

Thus we obtain (3.13). 	 q

Proof of Theorem 1.1. Let (uo , vo , wo ) be a triple of functions satisfying A2

and let Z* be the unique weak solution of (3.6) with an initial datum uo/sl — vo /s2+
)wo. We use the notation .flu (t) and .fl,, (resp. .Q(t) and Sl„) instead of Q(t) and
(l+ (resp. Q_(t) and .fl_) which are defined by (3.10) and (3.11) with Z = Z*. Set
(uó, vo, wo) :_ (uo , vo, wo) for all e > 0. Since (ui, vó, wo) satisfies A2', the solution

(uE, vE, wE) to (1.8) under (1.11) and (1.12) converges to (u*, v*, w*) in the sense of

Theorem 3.6. It follows from (3.4), (3.7) and the definition of .flf that

n„ÍÍƒv =0

1 in Q„,
w* _

0 in Q.

Suppose that P is a smooth hypersurface satisfying r(t) C .fl for 0 < t < T
and that u* (resp. v*) is smooth on .flJ (resp. Qv). Theorem 3.7 ensures that
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(r, u*, v*) satisfies (1.13) and (1.11) with (u, v) = (u*, v*). Observing that w° E

H(uo/sl — vo /s2) in 11 and applying Lemma 3.2, we can deduce from (3.13) that

r o	 x E .i2 
u°(x) = v° (x) 1

O_^	 Jsl	 S2

u*(x,0) _ uo(x) _ vo(x) 1	 v*(x,0) _ ( uo(x) — v°(x) 1	
in (1. (3.19)

sl	 Si	 S2 ) +'	 S2	 sl	 s2

Thus, by virtue of A2, we obtain (1.14) and (1.15) with (u, v) = (u*, v*).	 q

REMARK 3.8. Our proof of the convergence of (u, vE, wE) to (u*, v*, w*) as

e —+ 0 is valid as long as (uó, vó, wó) satisfies A2'. However A2' is not enough for
deducing (1.14) and (1.15). For instance, consider the case where the support of uo

overlaps that of vo. As the proof of Theorem 1.1 shows, we can still obtain (3.18)

and (3.19) if wo E H(uo/sl — vo /s2). But we can no longer obtain (1.14) and (1.15).

4. Concluding Remarks

We have proposed a reaction-diffusion system with a small parameter e which
describes the competitive interaction between two ecological species. In the limit
where e —> 0, we have derived the classical two-phase Stefan problem with reaction
terms. This result implies that the singular limit analysis as e —> 0 reveals the
relation between an ecological system for competing species and the solidification
problem for ice and water. On the other hand, our RD system (1.8) is regarded as
a phase field approximation to the Stefan problem where the variable w is an order
parameter which indicates sharp interfaces between two phases. Note that in the

case that uo(x) - uo(x) - 0 or in the case that vó(x) - vo(x) - 0 Problem (2.1)
involves a system where a single parabolic equation is coupled to an ordinary dif-
ferential equation and that Problem (3.12) reduces to a one-phase Stefan problem,
so that (1.8) can be an approximation not only to a two-phase Stefan problem but
also to a one-phase Stefan problem.

5. Appendix

We show Lemma 2.2. For a positive number d let us denote by Ed(t; x, y) the
Green function which is associated with the boundary value problem

au = dLiu in S?,
át

au = 0	 on
8v

Define a one-parameter family {Ed(t)} t> o of linear operators on L 1 (S?) by

In Ed (t; x, y)0(y) dy, t > 0,
(Ed(t)/) (x) :=

	(x),	 t=0

(3.18)
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for O E L'(.fl). Set

—
Ni('u,v,w) = f(u) — s1E v — As'(1 E w)u

s2UV ))s2wv	N Z(u, v, w) = g(v) —	 —
E	 E

N3(u, v, w) = 
(1 — w)u  wv

E	 E

We consider the system of integral equations

fu(t) = Ed l (t)u +  Ed (t — T)Ni(u(T), v(T), w(T)) dT,

v(t) = Ede (t)v + J t Ede (t — T)N2(u(T), v(T), w(T)) dT,
0

fw(t) = wó + 	N3(u(T), v(T), w(T)) d

in C([0, oo); C(i) x C(T) x L°°(Q)). Although {Ed(t)} t>o is an analytic Co-semi-
group on C(,2), this fact is not enough to prove the local existence for (5.1). In
fact the discontinuity of wo causes that Nl(u(T), v(T), w(T)), N2(u(T), v(T), W(T))

C(Q) for r E [0, to], where to is a positive number. However, the following estimates
of Ed(t) as an operator from L°°(Q) into C(?l) are useful here.

LEMMA 5.1. For E L°°(Q) the function Ed(t)V) of t possesses the following
properties:

(i) Ed( . )* E C'((0 , oo); C(J ) ) n C((0 , oo); W2 ' P (Q)), p E ( 1 , oo),
DEd(')* E C((0, oo); C(D)),
a
av

Ed(t)o = 0 on ag for t > 0;

(ii) IIEd(t)bIIC(ja)	 IIVIIL—(Q), t > 0;

(iii)	 dtEd(t)^ 	 = IIAEd(t)&IIC(.7)	 M II1IIL°(Q), t > 0,

where the positive constant M is independent of t and V).

This lemma is a result from some properties of the Green function Ed(t; x, y)
such as

Ed (t; x, y) >0 (t > 0; x, y E 12),

(

J
Ed(t;x,y)dy=1 (t>0; XE n),

n
a k 	2

at ) Ed(t; x, y) < tN 2+k exp (— c I x t yI + wt) (k =0,1; t>0;  x, y E D),

179

(5.1)

where the constants C > 0, c > 0, w E R are independent of t, x, y. For these
estimates see, e.g., [16, §5.3 and §5.5].
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Due to Lemma 5.1 and the fact that

Eds ( . )nó, Ede ( . )vó E C([0 , oo); C(7)) for uo, vó E C(?7),

we can show that the right-hand sides of (5.1) define a contraction mapping on a
closed ball in C([O,T];C(.fl) x C(.(l) x L°°(Q)) if T is sufficiently small. Thus we
obtain the following lemma.

LEMMA 5.2. For any (uó, vó, wp) E C(S?) x C(,fl) x L°Ó(.(2) there exists a
positive numberT = T(jiuóIIc(^a) , IIV IIc (n) , IIwóIIL(.n)) such that (5.1) possesses a

unique solution (u,v,w) in C([O,T];C(S?) x C(J) x L°°(Q)).

With the help of Lemma 5.1 we can derive the regularity of the solution of (5.1)
in a similar manner to the standard application of analytic semigroups. Hence we
can conclude Lemma 2.2.
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