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In this paper we are concerned with analyzing the numerical stability of  the method of  
fundamental solution [2] applied to the Dirichlet problem of  Laplace's equation. In the course of 
the analysis we clarify the mechanism of the propagation of the perturbation in the boundary 
condition of the problem and develop a numerical technique to examine the numerical stability of 
the method. 
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1. Introduction 

We deal with the approximate solution of the Dirichlet problem 

(1.1) Au=O in f2 

(1.2) u=g on Of 2, 

where f2 = {e~e R21 II~ollz <p}, obtained by the method of fundamental solution [2] 
(or charge simulation method in terms of electric engineering [5]). The method ap- 
proximates the solution u(x) by 

(1.3) u.(x) = ~ ckG(x, Yk), x e f2 
k=l  

where G(x, y) is the Green's function for (A, O), 

1 
G(x,y)= - ~ - l o g  IIx-yH2, x, y E R  2 

points yk'S, called charge points, are chosen appropriately and Ck'S are constants to be 
determined. The vector c = (c1, c2, - . . ,  c,)tE R" is called charge and determined in 
such a way that u,(x) satisfies the boundary condition 

(1.4) u,(2j)=g(s j =  1, 2, . . . ,  n,  

where 2j's are properly chosen n collocation points on the boundary. Let the charge 
points Yl, Y2, ' " ", Y, be on the auxiliary boundary which is the outer circle with radius 
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R (with "outer" we imply R > p). 
With the collocation points f~k=pe (2~t/n)tk-l)i and the charge points yk = 

Re t2~/"~~k-~~z, k=  l, 2, . . . ,  n, the following results are known [4], 
a) The approximate solution u, converges to the solution u exponentially with 

respect to n. More precisely 

2 
Ilu-u, ll~< sup l u ( x ) l - -  

IIx 112 =ro 1 -- P/ro 

(1.5) {(1 + C( R, p) )(p/ro) nI3 -f-4(p/ R)n/3} , 

where we suppose that the harmonic extension of u exists in f2ro={OJ[ II~oll2<ro} 
with p < r o. C(R, p) is a constant depends on R and p. 

b) The condition number of the coefficients matrix of the equation (1.4) which 
determines the charge c grows exponentially with respect to n. Approximately the 
condition number Cond(n, R) can be estimated by 

(1.6) Con0(n, R)~ log R n [ R "] "/2 
2 \ ; /  " 

(1.6) follows from the fact that the coefficient matrix for the particular location of ~~ 
and y~ is circulant. For the properties of circulant matrices, see e.g. [2]. 

From the above facts we can point out an anomaly by overviewing the whole 
procedure of the method of fundamental solution from practical point of view: 

i) If  we try to obtain higher accuracy and quick convergence for the approx- 
imate solution by the charge simulation method, a) suggests that we should take n 
(number of collocation points) and R (the radius of auxiliary boundary) larger. 

ii) For large n and R the condition number of the coefficient matrix of the 
equation to determine the charge c becomes large exponentially. 

iii) Since the boundary value g(.f~) cannot be represented precisely on a 
floating-point number system, the perturbation A 9 of 9(~)=(9(~1), " " ,  9(~,)) may 
introduce arbitrarily large perturbation Ac in c. 

iv) Then the approximate solution u,(x) shall be calculated by the formula (1.3) 
for all x ~ f2 utilizing the charge which may contain the large perturbation Ac. 

In this paper, we examine numerical stability of the method of fundamental 
solution, that is, how the perturbation A9 in 9 propagates to the numerical solution ii, 
by the method. On the basis of the analysis, we propose a numerical technique for 
testing the numerical stability of the method. Fi¡ numerical examples are given. 

2. Formulation 

Though the convergence result a) and the estimate of the condition number b) 
are only valid for circular domain and auxiliary boundary, the following analysis is 
applicable to any simply connected convex domain. First, we prepare the following 
notations. 
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Let c = (c 1, c2, " " ",  Cn) t be charge, 2 = (21, 2 2 ,  " " ' ,  X n )  t be collocation points and 
Y = ( Y l , Y 2 , ' " , Y , ) t  be charge poin'ts. We note that 2 i ,~ i sR  2 and c ieR  for i=  
1, 2, �9 �9 -, n. Setting 

(2.1) 

with 

F(2, y) = (7jk) j ,  k = 1, . - . ,  n 

7jk = G(2�91 Yk) , 

we can write the equation (1.4) to determine c 

(2.2) F(2, y)c = 9(2) 

where 0(2) is defined in the previous section. Hence, for any points x = (xi, x 2, . . . ,  
x J  on the boundary we have from (1.3) 

(2.3) (u,,(xl), "" ", u,(x,)) '= F(x, y)c.  

Furthermore, we let ~(2) be boundary values with perturbation Ag, or 0(2)= 
9(2) + Ag. Ag may be viewed as the rounding error for floating-point representation 
of 9(2). In the course of actual computation, some perturbation AF for F may be 
introduced due to rounding error. We assume, however, that F is computed precisely, 
or AF=O for the simplicity of further analysis. 

Let ~ denote the perturbed charge, or the solution of /"(2, y)6---0(2) for 
perturbed boundary condition 0(2). The "numerical solution ti,(x)" by the method of 
fundamental solution is defined by 

(2.4) ii.(x) = i ('kG(X, Yk), X E 63Q. 
k=l  

We let cq>a2_->"" > t r . > 0  be singular values of F=F(2,  y) and {ui}, {vi} i= 
1, 2 , . - - ,  n be singular vectors. We note that Fvi=aiui, Uui=aiv  i and (u. u ) =  
(v i, v ) =  60, where 6ij denotes Kronecker's delta. 

3. The Propagation of the Perturbation Ay to the Charge c 

First, we consider the propagation of Ay to the charge c. We denote the 
perturbation introduced into charge Ac and the charge with the perturbation 
6(= c+ Ac). Using the notations defined above we have 

(3.1) F(2, y)c= 9 

and 

(3.2) F(2, y)6= g- 

Expanding c and 6 by the singular vectors {vi) i =  1, 2, �9 -.,  n, we have 

~= ~ (6. vi)v, and c= ~ (c. vi)v, . 
i= l  i= l  
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From the relations of  Fourier coefficients 

ni(6, v i) = (0, ui) and 

we can write 

(3.3) 

T.  K1TAGAWA 

ni(c, vi)= (g, ui) , 

A c : ( - c  

A 
1 

= - - (  g, ui)vi 
i= 1 (7 i 

Thus, we have from orthonormality of {vi} 

1 A (3.4) I1~c112= ~ ~-~Ÿ g, ui) 2 
i = 1  

(3.4) implies that II AclP z becomes arbitrarily large as n--* oo and a,--*0, that is, the 
perturbation introduced in the charge shall be of great concern. Next, we examine 
how this "large" perturbation Ac due to Ag propagates to the numerical solution ti,. 

4. The Propagation of Ay to the Numerical Solution ti. 

An advantage to employing the method of  fundamental solution involves the 
fact that the error t i , ( x ) - u ( x )  is harmonic in f2. By the maximum principle, this 
enables us to evaluate the maximum norm of  the error only on the boundary. So we 
can restrict ourselves to consider evaluating the error only on the boundary. We 
prepare the following notations. 

We define n distinct evaluating points g = (gl, 22, " " ", g,)' by 

(4.1) 2(0) = ge ~ , - rt/n < 0 < rt/n 

namely g(0) rotates 2 by the angle 0 counter-clockwise. Setting 

f = F(2(O), y)  = (~,? 

with 

(4.2) gi~ = G(g(0)i, y~), 

we can write the numerical solution ti ,(s (ti,(x0, ti,(g2), " " ,  ti,(x,)) t, 

(4.3) ti,(g) = F(g, y)? .  

Similar to the previous section we denote the singular values of ti(g, y) by 
61 >02 > .  �9 �9 > 0 , > 0  and the singular vectors {ni} , {li}, i=  1, 2, �9 -.,  n. We again note 
that (ni, ni)= (vi, f j )=  6ii and fvi = Oini, F ' n i  = Oiu i .  

Now we examine the propagation of Ag to the numerical solution ti.(2). The 
numerical error Aa.(g)= ª  at 2 can be written as 

(4.4) Aa,(2) = F(2(O), y ) g -  F(2(O), y ) c .  



THEOREM 4.1 

(4.5) 

where 
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(Propagation of A 9 to the numerical solution). 

IJ Ad.  II ~ <-_ x / ¡  11 = * A II FII Ag It + ,  
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Putting (4.7) into (4.6), we have 

(4.8) Ac= 
i = l  

Using the relations of Fourier coefficients 

(4.9) (A c, vi) = (1/ai)(A g, u3, 

we have 

(4.10) Ac=i~_l {~=~ ~(Ag ,  u)vj, Vi)fi}. 

~=~1 (Ac, Vj)Uj, Vi)V i . 

i = l , 2 , . . . , n ,  

Now, since the numerical error Aª satisfies 

(4.11) Ati, = f ~ -  tic= frac, 

we have 

Au,=i~=a FVi 2 l (Ag, uj)v), V i 
\ j  = 1 17 j 

(4.12) = ffiffi (A 9, uj)v~, vi - 
i = 1  

Since {~7i} forms orthonormal basis, we have 

A = (~u) ,  6~j = (~~, v ) ,  

~- * A stands for the Hadamard product of  the matrix ~- and d, that is, Z * A = (hi j),  
hij = ~u6ij, and II"Jle represents the Frobenius norm. 

REMARK: In the ordinary notation, [IS*A[[v can be written as (Trace 
(-=At)) 1/2, but we preVer the former notation which shall be more intuitively appealing 
in the later discussion. 

Proof Firstly, expanding Ac by {~i} i=  1, 2, �9 �9 n, we have 

(4.6) Ac = ~, (Ac, V~)f~. 

On the other hand expanding Ac by {vi} i=  1, 2, �9 . . ,  n, we also have 

(4.7) Ac = ~ (Ac, v)vj . 
j = l  
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2 

We obtain from Schwarz's inequality 

IIA~i, II 2 2 < (vi, ~~)2 (Ag, u)  2 
i = l  "= j = l  

(4.13) - ~  ~ -  - ~ Ÿ  ~ (Vi, v)2NAgl122. 
i = 1  j = l  

Setting Z = (~i), ~ii = #i/ai and A = (6 i )  , 6ii = (vi, vi), i, J = 1, 2, �9 �9 n, 
(4.13) to 

[IAa.ll @ < It -~* AII ,~llAgll ~ �9 (4.14) 

Thus, we have 

we rewrite 

IIA~,II ~ ~n~/211 3 .  AIIFIIAglI~. Q.E.D. 

We call the matrix Z the explosive factor matirx and A the distorsion coefficients 
matrix. These two matrices play the essential role in propagating the perturbation Ag 
and have a vivid intuitive image. We should note that 

1) The magnifying factor II-"* ztltF in (4.5) does not depend on the problem or 
given boundary condition. 

2) -= and A as well as II -~ * A I1~ are readily computable by utilizing the singular 
value decomposition (S.V.D.) algorithm, see e.g. [3]. 

In the next section we discuss the meaning of the matrices -= and A and how to 
make use of them in practice. 

5. Mechanism of the Propagation of Ag and the Meaning of -= and A 

By tracing the proof of Theorem 4.1, we can understand the mechanism of the 
propagation 3g fairly clearly. First, we note that for i , j =  1, 2, �9 �9  n {ui} forms an 
orthonormal basis for the boundary value g, {vi} and {~i~ form basis for the charge e 
and {~7i} forms a basis for the numerical solution ti,. Here, we examine how (3g, u), 
the uicomponent of Ag, propagates to (ti.(~), ~i), the tii-component of t7,(2): 

1) The ui-component of Ag propagates to the vicomponent of Ac and shall be 
magnified by the factor of 1/a i. 

2) The vfcomponent of Ac propagates to the fi-component of Ac on the 
auxiliary boundary and multiplied by the coefficient of (fi, v). 

3) The fi-component of Ac propagates to the ~i-component of A~i,(2) and is 
multiplied by the factor #i. 

Since the indices i and j run through 1, 2, �9 �9 n, n z combinations of paths from 
u i to n i are conceivable. For each path the factors 1/a i and 6i represent the possibility 
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of how the perturbation can be magnified. When the ratio ~i/% is very large the path 
from uj to ~i has the possibility to destroy the numerical solution significantly. So, the 
explosive factor matrix Z 

0 1 / 0 "  1 0 1 / 0 "  2 - - -  #1/0" n 
! 

(5.1) ~ = t 7 2 / 0 . 1  0 2 / 0 " 2  " " ' #2/0"n I 

~,/al " "  #,/a,  / 

shows us how "explosive" each path can magnify the perturbation Ag. We can easily 
recognize which path can be dangerous by constructing the matrix (5.1). For our 
present problem, since (1.6) of b) in the first section implies that a, ~ 0 very rapid- 
ly (exponentially), the upper right corner of ~, where #~'s are re]atively large and 0"~'s 
are close to 0 can be the most threatening area. 

This factor, however, not always fully magnifies the components of Ag. This 
heavily depends on another factor of distortion coefficients matrix A de¡ by 

( 5 . 2 )  ~ = / (li' U1) (fl' U2) ' '" (fl' Un) / 
(fZ, V') (f2, V9 "" (f2'V.) 

(f.,vO (f.,v9 "'" (~.,v.) 
whose element (~~, vi) determines the ratio of the propagation through the path from 
uj to ui. Since {li} and {vi} i= 1, 2, �9 �9 n forro orthonormal bases, [ (vi, vi) l= < I. For 
the present problem {vi} and {li} i , j =  1, 2 , . . . ,  n ate singular vectors of F(~, y) 
and F(g(0), y) respectively, where x(O) rotates g by the angle 0 with - z~/n <= 0 < Ÿ In 
this sense, we can regard f (2(O),  y) a s a  perturbed matrix of F(~, y) and accordingly 
{fi} a s a  perturbed singular rector of {vi}. Ir 0 = 0, li coincide with v i i= 1, 2, �9 �9 n 
and we have, from the orthogonality, (fj, vi)= 0 for i:/:j. This orthogonality, how- 
ever, shall be distorted by the rotation 0, and (vi, vi) represents the degree of the 
distortion. In this sense, we call A the distortion coefficients matrix. 

We can obtain the total magnifying ratio of the path from u i to t~ i by multiplying 
the explosive factor 5i/aj and the distortion coefficient (vi, vi)- Since the largest 
explosive factors locates at the upper right corner of ~, we can examine whether the 
whole numerical procedure is extremely unstable or not by checking the correspond- 
ing atea of A of (5.2). That is, if the upper right corner of A has elements whose 
absolute values are close to unity the perturbation Ag can be magnified significantly 
and the numerical method shall be very unstable. Furthermore, we can recognize 
other reasons why a numerical algorithm does not work well by examining each 
element of -" and A carefully. Some examples shall be presented in the next section. 
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6. Numerical Examples 

Making use of  the singu|ar value der we can construr matrices 
and d very easily. In the following numerical examples we set the radius p of the 
domain ~ unity, the charge points y; = r exp(2~(] -1) i /n)  and the collocation points 
~;=exp(2Ÿ j = l ,  2 , . . . , n ,  where i represents the imaginary unir. The 
boundary �91 is the unit disc, the auxiliary boundary is an outer circle with radius 
R > 1 and the charge points are scattered at similar position to the collocation points. 
R and n, we write the pair (n, R), are varied from (4, ~/2-) to (51, 32). The condition 
numbers of F(~, y; n, R) ate visualized in the Fig. 6.1, where the surfar of the 
cond(F(n, R)) is cut by the plane of  Cond(F(n, R))= 106 which is r for our 
numerical experiments. 

Since it is impossible to present the matrices ~ and A for all n =4 ,  5, �9 �9 ', 51 and 
R �9 [~/2-, 32], we pick up a couple of  combinations of  (n, R) which present typir 
patterns of -= and ~. Furthermore, we set the evaluation points ~~(0)=~~(~/n)= 
e•237 1)i), or the middle point of  ~~ and ~~§ on the boundary aro. 

Example 1. We observe the case of  (n, R)=(16 ,  4.0) where the numerical 

l ~  

l og  10Cond( r ) 

~~', ~ , ~ ~  
/\, , 

Plane of Cond(F)=lO 6 

0 1 1 ~ 2 3 3 3 3 ~ � 9 1  
- - ~ 0 0 ! i Z 2 2 2 ~ 3 � 9 1 1 9 1  
- ! o 0 1 i 2 Z 2 2 3 3 ~ 4 ~ � 9 1  
- � 9 1 1 9 1  
- 2 - 1 - 1 0 0 1 ~ Z 2 2 2 ~ 3 3 ~ � 9 1  

~ - ~ - 2 - 1 - ~ 0 0 1 1 1 1 3 2 ~ 3 3  
--3 - 2  - 2  ~ - ~  0 0  i 1 1 1 3 2 2 3 3 - _  
--3 -2 -~ -2 --2 --l --l 0 0 l l 2 ~ l 2 2  
~ -2 -2 -2 -2 -i --~ 0 0  l 1 2  l l 2 2  

- 4  - 3  - 3  - 2  - 2  - !  - - i  - ~  - - !  0 0 ! 1 ! i Z 
-4 -3 -5 -Z -E -! -~ -! --! 0 0 ! i 1 ! Z 
- 5  - 4  - � 9 1  - 4  - 4  - 3  - 3  ~ --Z - 1  - !  0 - ~  - -1  0 0 - ~  
- - 5 - � 9 1  
-5 -~ -~ -3 -3 -_~ -2 -I__--i -~ -~ ~ 0 O i l 
_- ~ -�91 -~ -~ -�91 -3 -3 ~ --~ -! -~ 0 --~ ~ 0 0 - _  _ -_ 
-~.-~-5-4-�91 _ _ 

Fig. 6.2. Explosive ~ctor matrix ~r (n, R)=(16, 4). 

Fig. 6.1. Surface of condition number of F(n, R). 
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solution attains relatively high accuracy. We should note that Cond(F(n, R))= 
cond(F(16,4.0))~106 (a~.~1.77 and o-~6~2.38,10 -6) and are severely ill- 
conditioned. The numerical solution /i16(.~), however, attains the accuracy of  5 
decimal digits ( l lu , (~ ) -u (2 ) l ]~~ l .2*  10 -5) for u=x~+y-y  ~. In this case, the 
explosive factor matrix ~ reflects the ill-conditioning of  F(n, R) and the upper right 
corner of  S is fairly large. (Fig. 6.2) The elements of  -~ ate rewritten as [log~or u + 0.5], 
or rounding off the fractions of lOgl0r for simple notation. 

Now, we examine the corresponding distortion coefficients matrix A (Fig. 6.3). 
Similar to ~, the elements of A = (6q) are rewritten as rounding off the fractions of  
logro¡233 We can recognize that the upper right corner of  A is small enough to cancel 
the explosive factor. This implies that the propagation of the explosive factor due to 
the ill-conditioning of F(n, R) is shut off by the coefficients 6u = (v~, v~). We can also 
observe that the distortion of  the orthogona/ity can be seen near diagonal elements 
and the lower right corner in which the singular vectors corresponding to small 
singular values are involved. 

0 - 7 - 6 - 7 ~ - 7 - 6 - 6 - 7 - 7 - 6 - 6 - - 6 - 7 - 7  
6 0 - L - 7 - 5 - 6 - 0 - 5 - 7 - 7 ~ - 6 - 6 - 7 - 6  
- 6 L O - 7 - 7 - 5 - - 7 - 6 - 6 - 6 ~ 6 - T - 6 - 7 - 7  
- 6 - - 6 - - ~ 0 0 - 6 - - 5 - - ~ - - 6 - - 6 - 5 - - 5 - 5 - - 5 - - 7  
-7-7--700-5--5-6--6-0-5-5-5-5-6 
- ›  - 6  - 6  - 5  - 5 0 0  - 5  - 5  - 5  - 5  - 5  - 5  - 5  - 5  

~ - 6  - 6  -5  5 5 --5 0 O -�91 - 3  - � 9 1  - 3  - ~  -5  
- 6 - 6 - 7 - 5 - 5 - ~ - 5 0 0 - 5 - & - � 9 1  

- - � 9 1 1 9 1 1 9 1  

- 6  --6 - T  - 5  - T  - 5  - c  - ~  - 6  - 3  - 3  - L  - 2  - 3 0  
-6-6-6-5-5-~-~-~-~--3-S-Z00--3 
_6_6-6-S-5-@-&-~-�91 
- ~  ~ - ~  - 5  - 5  - 5  - 5  - � 9 1  - ~  - 3  - 5  - 3  - 2  - K  - L  

Fig. 6.3. Distortion coefficients matrix ~r (n, R)=(16, 

0 2 2 ~ 3 5 5 6 � 9 1  
- 2 0 0 2 Z 3 H � 9 1  
- Z O O Z Z 3 3 � 9 1 1 9 1  
- H ~ Z - 2 0 0 1 ! ~ 3 � 9 1  

- 5 - ~ - 3 - ! - i 0 0 2 1 2 !  

-~ -�91 -�91 -3 -H -i -l 00 l 0 
-~ -�91 -�91 -3 -3 -i --i 00 ! 0 
-~ --~ --�91 -~ --~ --i li 0 ~ l 0 
-7 --5--5 --3 -Z -2 --Z 0 -/ 0 --i 
-a-6-6-�91191 
-8 -6 -6 -�91 -~ -S --S -i -L O -i 
-8-6-6-�91 
-~-6-6-�91191 
-5-~-6-4-&-3-3-!-~-!-�91 
-a-~-6-�91 
-8-6-5-�91 
-~-5-6-�91191 
-8-~-5-�91 
-8-~-6-�91 
-~-6-~-�91191 
-8-6-6-&-&-3-S--l-2-l-2 

7 7 3 ~ $ 8 8 8  
6 ~ 6 6 6 6 6 6  
6 6 6 5 6 6 6 6  

x 3 3 3 3 3 ~ 3  
3 ~ 3 3 3 3 N 3  

i l l l ~ l ! l  
l l l l l l ! � 9 1  
L i l l l I / I  
O 0 0 O O 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
o 0 0 0 o 0 0 0  
0 o 0 o o 0 o 0  
0 0 o 0 o 0 0 o  
0 o o o o 0 0 0  
0 0 o o o 0 o 0  
0 o o o o 0 o 0  
o 0 0 o o 0 0 o  
o 0 0 o o o ~ o  

0 - ! 0 o 0 o  

R ) = ( 2 4 , 1 6 ) .  

- ~  - 6  - 6  -.5 - 5  -2;  - 3  - - -  ~ - 2  - - !  - -2  - 2 .  - i  

Fig. 6.4, Explosive factor matrix for (n, 

- 5  
- 6  
-7"  
-5 

-5 
-5 
-�91 
-�91 
-�91 

-2 
-L 
-2. 
-2 
0 

4). 

S 
6 
6 
�91 
z~ 

3 
Z 
! 
Z 
L 
O 
O 
0 

0 
0 

0 
0 
0 

O 
0 

8 8 i0 
6 5 8 
5 6 8 
�91 5 7 
z. 5 7 
3 3 6 

3 
2 2 �91 
Z 2 �91 
Z 2 4 
i l �91 
0 l 5 
0 ! 3 
0 0 
0 0 3 
0 0 3 
0 0 
0 0 3 
Q 0 5 
0 Q _3 
Q 0 3 
0 0 2 
Q Q 3 
0 0 Z 
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0 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 0 - - 7 - 7 - 7 - 8 - 3 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7  
-70 -i -6 -6 -6 -6 -6 -7 -6 -6 -7 --6 -6 -7 -6 -6 -6 -7 --6 -6 -6 -7 -6 
-8--i0-6-6-7-6-5-6-6-6-6-7-6-6-5-7-7-6-7-6-6-7-6 
-6-6-6-i0-5-5-5-5-5-b-5-5-5-4-5-5-5-5-5-5-5-5-5 
-~-6-bO-L-4-5-4-~-4-6-5-5-6--5-5-5--4-5-6-5-�91 
-6--7-6-5-500-3--3-3-4-~-�91191191191 
-6-6-6-4-500-3-3--3-3-3-3-G-3-3-3-5-4--~--~-3-�91 
-7-6-6-�91 
-7 -6 -5 -4 -4 -3 -30 -i -s 0 -Z -2 -L -3 -L -Z -L -2 -L -L -L -L -2 
-6-7-6-4-5-3-3-!O-L-I-2-Z-3-2-3-2-2-2-2-2-2-3-2 
-7-6-~-4-6-5-4-LmI-I-I-3-I-L-L-~-L-L-LO-LO0-I 

-7-6-7-6-5-�91 
-~ -7 -6 -�91 -5 -3 -~ -L -20 -2 -L -L -L --L -L -Z -L -~ -L -L -Z 0 O 
-7 -7 -6 ~ -5 -3 -�91 -2 -Z -~ -~ -3 O 00 -~ -~ -~ 0 -Z -~ 0 -i 0 
-7-~-7-6-5-3-~-!-2-i-3-Z-I--!-!-ZOO-&OO-L-L-L 
-7-6-7-5-5-5-3-~-20-~-L-LO-~-L-L-~--!O-L-EO-~ 
- 7 - 8 - 8 - 5 - 6 - � 9 1  
-7--6-7-~-5-4-5-3-2-~-200-LO-~-I--ZO-l-~-~-L-~ 
-7-6-6-4-5-5-3-Z-2-2-20-L-I-~-~-!-20-L-20-L-~ 
- 7 - 6 - 7 - 5 - 5 - 3 - � 9 1  
- 7  - 6  - 7  -5  - 6  - ~  - 3  - L  - 2  --1 - 3  - s  - L  - L  --L 0 - L  0 --~ - Z  - L  - L  --L 0 

Fig. 6.5. Distortion coefficients matrix for (n, R)= (24, 16). 

Example 2. We examine the case of  (n, R) = (24, 16). Though the convergence 
result a) in the first section asserts that the larger n and R are, the more accuracy the 
approximate solution u, attains, this is not true for the numerical solution a,(ff). In 
this case, the condition number of F(n, R) = F(24, 16) is far larger than 106 (a 1 ~ 5.30 
and cr24~2, t 1 * 10 -1~ and the accuracy of the numerical solution a,(s is about 3 
decimal digits ( l tu , (x)-  u(x)It o~ ~ 1.2 * 10-3), which is worse than the case of Example 
1. But still, the numerical solution is not catastrophically destroyed. In the same 
logarithmic notation Fig. 6.4 represents the matrix E. We can observe that the 
explosive area, where the elements of the matrix of Fig. 6.4 are larger than 5, is much 
wider than that of  Example 1. As in Example 1, these corresponding elements of A in 
Fig. 6.5 at the upper right corner are as small as 6i~= 1 0  - 6  ~ 10 -8 in size, but they are 
not small enough to cancel the explosive factor ~u whose maximal elements are 
108~ 10 ~~ In this case, the magnifying factors 6ur 102~ 103 remains. 

We can also observe that the lower right part of A has relatively large elements of 
10-2~10 ~ for i,j>8. The corresponding elements ~~~, i,j>8 of  ~ also contain 
relatively large factors of 1 0  2 ~ 104 in size. In this way, we have the magnifying factors 
~u6u of 10 ~ 102 at the lower right part (i,j=>8) and they accumulate into the 
magnifying coefficient II -= * A 11 • ~ 1.6 * 10 z. This explains why numerical solutions for 
larger (n, R) may give worse results in accur~acy and do not always follow the 
convergence result. This is the case when (n, R) is too large. We should not make 
(n, R) too large so that the lower right part with large distortion coefficients of 6ij's 
shall not spread widely. 

7. Concluding Remarks 

We can utilize the matrices E and A to examine the numerical stability of the 
numerical method. It can also be used to study optimal locations of  the charge points 
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y, or to check if the method  of regularization in stabilizing the numerical  scheme is 

effective or not. The technique developed here is applicable to other problems in 

examining the stability of  numerical  methods which consist of  two steps that  (i) one 

solves an equat ion Fc=9 where F may be severely i l l-condit ioned, and  (ii) one 

utilizes the solution c to ob ta in  the final result u in the form of u = Ac, where F and A 

might be discretizations of  some linear operators.  
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