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We considera diffusion equation with time delay having a stable spatially homogeneous periodic 
solution bifurcating from a steady state. We show that under certain circumstances the 
bifurcating periodic solution loses its stability very near the bifurcation point if the diffusion 
coefficients are sufficiently small. Such a destabilization phenomenon also occurs when in place of 
the diffusion coefficients, the shape of  the domain is varied instead. Sufficient conditions for the 
occurrence of such phenomena, along with some specific examples, will be presented. 
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Introduction 

Differential-delay equations arise in a variety of fields such as biology, optimal 
control etc., and have been studied by many authors including [2], [3], [5], [6], [13]. 
Hutchinson [1], for instance, introduced the following delay equation a s a  biological 
model which describes an oscillatory phenomenon occurring in the growth process of 
a single species: 

d (El) ~y ( t )=~(1  y(~r) )y( t ) ,  

where ~, r, K are positive constants. Letting v(t)=y(rt)/K- 1, the equation (El) is 
transformed into, 

d 
(E2) ~v(t) = - a(1 + v(t))v(t - 1), 

where a=er and the steady state, y=K of (El), corresponds to v=0  of (E2). I t i s  
known that (E2) has a periodic solution for a > ~/2, as was first proved by Jones [2]. 
Furthermore, Chow and Mallet-Paret have shown in [4] that a Hopf bifurcation 
occurs from the steady state, v-- 0, when the parameter a passes through the value ~q 
and that the bifurcating periodic solution is stable. 

Here we shall couple the equation (E2) with a diffusion term. More precisely, we 
consider the following initial-boundary value problem: 
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8 
-~v(t, x)= d A v(t, x)-a(1 + v(t, x))v(t- 1, x), (t, x)e (0, co) x f2, 

(E3) 8v ~ = 0 ,  (t, x)e(0, oo) x 80 ,  

v(O, x)= [~o(0)](x), (0, x)e [ -  1, 0] x O, 

where t2 is a bounded domain in R u with a smooth boundary 80, 8/8n denotes the 

outer normal derivative to 8Q and A stands for )-" 82/8xŸ 4o is an initial function 
i=1 

chosen from a certain function space to be speci¡ later (see (3.1) and (5.1)). 
Ir is clear that fora  > n/2 the equation (E3) has a periodic solution correspond- 

ing to that of (E2) mentioned above. This periodic solution to (E3) is a spatially 
homogeneous periodic solution independent of spatial variables. 

As for stability of the spatially homogeneous periodic solution to (E3), Yoshida 
[7] has proved that the bifurcating periodic solution near the bifurcation point, a = 
7r/2, is stable. However, ir has not been made clear in [7] how the stability region of 
the bifurcation parameter, a, depends on other factors such as the diffusion constant, 
d, and the shape of the domain, t2. 

In the case where the space dimension is N = 1, Lin ancl Kahn [8] have shown by 
the two-timing method that the bifurcating spatially homogeneous periodic solution 
loses its stability fairly near the bifurcation point when d is sufficiently small; they 
suggest that such a phenomenon of destabilization may lead to a chaotic behavior as 
d continues to decrease. 

In this paper we shall discuss the destabilization of the spatially homogeneous 
periodic solution in quite a general framework. Applying our main results (to be 
given in w to the equation (E3), we see that for any Q c R  N the spatially 
homogeneous periodic solution becomes unstable near the bifurcation point if the 
diffusion coefficient, d, is taken sufficiently small. Moreover, in the case of several 
space dimensions (i.e., N >  2), such destabilization also occurs when the shape of the 
domain, t2, is varied. More precisely, this occurs when the second eigenvalue of the 
Laplacian on O with homogeneous Neumann boundary condition becomes suf- 
¡ small. An illustrative example of such domains is given in Fig. A in w 4. 

We will also give a more general sufficient condition on the diffusion coefficients 
and the domain, O, for such destabilization of the spatially homogeneous periodic 
solution. The same argument applies to periodic solutions occurring in reaction- 
diffusion systems without time delay provided that we replace function spaces, inner 
products and other notations by appropriate ones (of. Example B in w 5; for further 
details, see [16]). 

In w 1 we will formulate the differential-delay equation (E2) in a fairly general 
form of functional differential equation (see. (1.1)). And we will give the Hopf 
bifurcation theorem for this equation without proof (Theorem H). 

In w 2 we will expand the periodic solution given by Theorem H in terms of a 
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certain parameter, e, and determine the coefficients of lower order terms. Using the 
result of w 2, we shall discuss, in w 3 and w 4, the linearized stability of the spatially 
homogeneous periodic solution to the diffusion equation with time delay; we thereby 
obtain theorems on the destabilization of the periodic solution mentioned above 
(Theorems B and C). 

In the last section we shall apply our theorems to some specific equations. For 
example, Theorems B a n d  C apply to the equation (E3), so, it is easily checked that 
the spatially homogeneous periodic solution loses its stability very near the bifur-  
cation point if the diffusion constant is sufficiently small, or if the domain, ~2, is of a 
certain shape, as illustrated in Fig. A. 

The author would like to express his gratitude to Professor Masaya Yamagut! 
for bis continued encouragement and to Professor Masayasu Mimura and Masayuki 
Ito for their stimulating discussions. He also wishes to express his sincere acknowl- 
edgement to Professor Hiroshi Matano, for his help in carefully reading the 
manuscript and fruitful suggestions. 

1. The Hopf Bifurcation of Functional Differential Equations 

For any finite interval [a, b], we let C[a, b] denote the space of all R"-valued 
continuous functions defined on [a, b] with the usual supremum norm, ii" J]. Let z ~ R~ 
r > 0 and a > 0. For any X e  C[z -  r, z + a] and t ~ [z, z + a], the symbol, Xi, will denote 
the element in C [ - r ,  0] defined by the relation, 

X,(O)=X(t+O) , -r<O<_O. 

From the definition it is clear that Xi(0) is equal to X(t). 
In this section we shall consider the following functional differential equation: 

(1.1) f((t)=L(/a)X,+G(p, X,)-~F(p, X,), t > 0 ,  

(1.2) X(O)=r -r<_O<_O, ~bo e C [ - r ,  01, 

where �9 denotes d/dt. We assume that the mapping, 

F: lo x C [ - r ,  0 ] ~ R " ,  

is of class C 4, where lo c R 1 is an open interval containing 0 e R 1. Furthermore, we 
assume that, 

(1.3) F(~t, 0 )=0  for every ~~Io �9 

L(p), G(g, .) are the linear part and the higher order nonlinear part of F(p, .) 
respectively. It is known that the initial value problem, (1.1), (1.2) admits a unique 
smooth solution (see Hale [5]). 

The linear equation associated with (1.1) is: 

(1.4) I;'(t) = L(p) Y,. 
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As L(#) is a continuous linear mapping of C[-r,  0] into R", there is an n x n matrix 
function, q(O; #), - r < 0 < O, whose elements have bounded variation in 0 on [ -  r, 0], 
such that, 

L(p)q~= I ~ [dq(O;#)]�91 for q~eC[- r ,  0].  (1.5) 
, ) -  

When # =  0, we simply write, 

(1.6) q(0)=q(0; 0) for Oe[-r ,  0]. 

The domain of L(p) is naturally extended into C([-r,  0]; C") and (1.5) holds for 
c~ E C([-r,  0]; C"), where C" is the n-dimensional complex space. Hereafter, the 
notation, C[-r,  0], also denotes C([-r,  0]; C") as long as there is no confusion. 

Now we define the characteristic equation associated with (1.4): 

( 1 . 7 )  det(2I-f~176 

where I is  the n x n identity matrix. There are countably many roots of (1.7), each of 
them being at most finitely degenerated. It is known that the set of the roots of (1.7) 
coincides with the set of the eigenvalues of the linear system, (1.4) (see [5]). For 
example, let A(#) be the infinitesimal generator of the semigroup associated with 
(1.4); namely A(p) is de¡ as, 

J 

(1.8) A(#)~b-- d~ 
~(0), ~ r ~ O ~ O ~ 

for q~e~(A(#)), 
L(#)~b, 0 = 0 ,  

where ~(A(#)) denotes the domain of the operator A(#). Then the spectrum of A(#) 
consists only of eigenvalues, each of which is a root of (1.7) with corresponding 
multiplicity. In particular, the generalized eigenspace in C[-r,  0] subject to each 
eigenvalue of A(p) is finite dimensional. 

In terms of the above operator, the equation, (1.1), can be written as, 

d ~v(t) = A(#)v(t) + N(#, v(t)) w, f (tt, v(t)) , (1.9) 

where 
[v(t)](O)=X,(o), -r<_O<_O, 

{ 0 , - r < O < O ,  
(1.10) [N(#, 0)](0)= G(q~) ,  0=0  , 

By the definition, the equation (1.9) implies, 

d X(t+O)=I d X(t+O), 
dt [L(#)Xt + a(#, X,), 

for q~eC[-r ,  0].  

-r__<O<O, 

0 = 0 .  
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If X(t) is a solution to (1.I), then [v(t)](O)=X(t+O) is a solution to (1.9) for t>r. 

Here we assume the following two assumptions: 

(Al) A(p) has a pair of simple complex conjugate eigenvalues 2(~) and 2(~) such 
that 

and that 

2(/~) = ~(/~) + i~(/~), 

cr(0) = 0 ,  ~o(0) = % # 0 ,  

(1.11) Red2 da U~/0) = ~  t0)r 0; 

(A2) the remaining eigenvalues of A(0) have strictly negative real parts. 

Then the following Hopf  bifurcation theorem holds: 

THEOREM H. Let (Al), (A2) be true. Then the equation (1.1) has a family of  
periodic solutions: there is the positive constant, en, and there are the Cl-func - 
tions, I~(e), og(e), ti(e), 

~~ = ~(e) =/~2 e2 -~- O(e 3) 
(1.12) [(D=�8 for e~(O, en), 

{ t = t(e)= t~2~ 2 + o(e 3) 
da for e~(O, en), 

f1.13) t2  = - 2 U~ ( 0 ) m ,  

such that for each e E (0, en) and ~ = t~(e) there exists a periodic solution, p(t; e), with 
period 2Ÿ This periodic sotution, p(-; e), has Ftoquet exponents 0 and fl = ti(e). 
Except for the family of  periodic solutions, p(.;  e), e ~ (0, eu), there is no non-trivial 
periodic solution in a sufficiently small neighborhood of (0, O) ~ Io • C [ -  r, 0]. 

COROLLARY H. Assume the assumptions in Theorem H and t i2<0 in (1.13). 
Then there is a constant, eo, 0 < e o < e n, such that for each ~ ~ (0, eo) the bifurcating 
periodic solution, p(.;  e), to (1.1) is asymptotically stable (with asymptoflc phase). 

We omit the proof  of Theorem H (see [11]). For the sake of later arguments, 
however, we shall calculate the coefficients, ~z, ~~ appearing in (1.12). The 
calculation will be carried out in the next section. 

REMARK 1. In the above discussion the equation, (1.9), is regarded a s a  
differential equation on the Banach space C [ -  r, 0]. Actually it is more appropriate to 
consider the equation, (1.9), on a slightly wider space, C [ - r ,  0] = C [ - r ,  0] O)(, where 
)�91 for each 0 ~ [ - r ,  0], q~(0)=0, - r < 0 < 0 }  (see [4]). With this 
notation, the domain of the operator, A(/~), can naturally be extended so that, 

A(/~) : C l [ - r ,  O]--*C[-r, O] 
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be a well-defined closed operator. 
In this paper we shall simply use the notation C [ - r ,  0] to represent C [ - r ,  0] 

as long as there is no confusion. 

2. Construction of a Bifurcating Periodic Solution 

In this section we determine the coefficients of  lower order terms in the e- 
expansion of/~(e), 0)(0 and p(t; e) in Theorem H. The results will be used in the next 
section. 

Iooss and Joseph's work [9] gives a formal calculation of  the bifurcating periodic 
solution to (1.9). To show the validity of their calculation, however, we need to prove 
that the Fredholm alternative holds for the operator appearing in (1.9). (It is not 
trivial.) To  avoid a lengthy argument, we turn back to the equation (1.1) and discuss 
the bifurcation problem in (1.1) instead of its generalized version (1.9). Using the 
result in [5; Chap. 9] (Fredholm alternative), we can solve the bifurcation equation 
occurring in (1. l) and determine the coefficients of  lower order terms in e. One also 
sees that the equation (obtained in (2.37)) which determines the coefficients/g2 and 0) 2 
coincides with the one derived by the formal calculation in [9]. 

To simplify our notation for derivatives of F(/~, u) and f(/~, u), we write 

0 
F.(#) ~f~uu F(#, 0) (=L( t0) ,  

02 
F~,(tt) ~ ' r  F(tt, 0), 

0 2 
F..(t0(', ") ~f~ª 2 F(#, 0)(-, "), 

F...(#)(., ", ') ~'ef 0~~~ -3 F(#, 0)(', ", "), 

0 
f.(#) ~f �91252 0) (=  A(p)), 

02 
f""(~) ~~ O~Ou f(z' o), 

02 
f..(#)( ", ") ~f ~--ª 0)(', "), 

03 
f...(tt)( ", ", ") Oef ~ f ( # '  0)( ", ", "), 

and so forth. By the definition of  f, [f(/~, ~)](0)= F(g, ~) for ~b ~ C [ - r ,  0]; hence 
F.(#)~b = [f.(#)~b](0), F~.(g)~b = [f,.(t0~b](0), F..(#)(~b, q~) = [f..(tt)((~, (~)](0), . . .  for ~b 
C[-r, 0]. 

In order to study the bifurcation problem, we need to introduce the adjoint 
operator of A(0) with respect to the (formal) duality product defined by, 

(2.1) <~, ~//> ~-ef(~‰ ~/(0))-- lO r f‰ 
for ~ e C [ - r ,  0] and r r], 

where ~/(0) is as in (1.6), 'r denotes the transpose of the n-vector, r and (., .) stands 
for the Hermite inner product in C", i.e., 
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n 

- ' -  ~ a f i ,  a = ' ( a l ,  ", a,), b = ' ( b l ,  , b,)  (2.2) (a, b) ~f  ba = �9 . . . .  . 
i = 1  

The adjoint  operator ,  A*(0), of  A(0)=f , (0)  with respect to the produc t  (2.1) is given 
by, 

(2.3) [A*(0)~,](0) = - d---0 ' 0 < 0 < r ,  lo [ L*(0)~9 •f - ,  '[dr/(z)]~k( - ~), 0 = 0 ,  

for ~O~~3(A*(0))mC[0, r ] ,  

where ~3(A*(0))={q/IqJ~ C[0, r], A*(0)~~C[0 ,  t i} .  It is known that  the set of  all 
eigenvalues o f  A(0) coincides with that  o f  A*(0). Let ~1(0), - r < O < O ,  be an 
eigenfunction o f f , ( 0 ) =  A(0) corresponding to the simple eigenvalue, i~o o, that  is, 

(2.4) A(0)~I = iO9o~1, 

and let ~*(0), 0 <  0 <  r, be an eigenfunction of  f * ( 0 ) = A * ( 0 )  corresponding to t.he 
simple eigenvalue, - k%, 

(2.5) A*(0)r * = - ico o ~ Ÿ 

~1 and ~* are also written as 

(2.6) ~1(0)=~o ei~176176 ( - r < O < O ) ,  ~ ~'(0) = ~o*e i~'~176 ( O < O < r ) ,  

where ~o and ~£ are n-vectors satisfying 

(2.7a) ie)o - ei~~176176 o = 0 ,  
r 

(2.7b) 

respectively. 
It is shown in [5; Chapter  7] that  a function, ~b ~ C [ -  r, 0], belongs t o t h e  range of  

the operato?,  ico o - A(0), if and only if ~b satisfies (~b, ~*)  = 0. Thus  the space C [ -  r, 0]" 
is decomposed as, 

(2.8) C [ -  r, 0] = 9~(ito o -  A(0))G 9t(i~o o - A(0)) ,  

~I/(i(o o - A(0)) = {q~ [(/co o - A(0))q~ = 0},  

~N(ico o - A ( 0 ) ) =  {~b I <~b, ~~'> = 0 } .  

By normalizat ion,  we may assume, 

(2.9) <~1, ~Ÿ = 1 - 

And it is clear f rom (2 .8 ) tha t  
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m w 
(2 .10 )  �88 ~ ~ ) = ( f i l ,  ( ~ ) = 0  

holds. It is also checked that 

(2.11) ((1, ( * ) = ( M ( o ,  (~), 

lo M gr I - Oe ~~176176 = I - L(O)( �9 e~~~ 
--r 

Let ((p) be an eigenfunction of  A ( # ) = f , ( p )  corresponding to 2(p). 
Differentiating the equality, 

L(u)~(u)=~(u)((u) (2(0) = i~Oo, ((0) = ex), 

with respect to/~ and using (2.5) and (2.9), we get the relation, 

(2.12) dd~2g(0) = (fu,(0)~l, ~1'). 

By the definition o f f a n d  ( . ,  . ) ,  (2.12) implies, 

d2 
(2.13) ~ ( 0 )  = (Fu,(0)( ~, (*).  

Next  we define (2 and (2 �9 C [ - r ,  0] by 

1 0 (2.14a) (2i~Oo - A(0))(2 =~-fuu( )(~1, (1), 

(2.14b) - A(0)~2 = f,,(0)((1, (~). 

By the assumptions on the opera tor  A(0), both ~2 and C2 are uniquely determined by 
(2.14): specifically, (2 has the form, 

~2(0) = (2(O)e zi'~176176 ( -  r <_ 0 <- 0 ) ,  

1 
(2.15b) (2iO9oi - L(O)(e2'~176 = 2F, , (0) ( (1 ,  (1), 

and C2 is a constant  n-vector satisfying, 

(2.15c) - L(0)(2 = F,,(0)((1, (-~). 

N o w  we adopt  new variables, 

s = o9t, y(s)  = X(s/o9) = X ( t ) .  

Then the equations (1.1) and (1.9) are t ransformed into, 

d 
(2.16) ~ s Y ( S )  = F(I~, Ys. ~) , 

(2.15a) 

where ~2(0) satisfies, 
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(2.17) 

respectively, where 

Ys, o(O) ~efY(S + ojO), 

O~sU(S) = f (# ,  u(s)) , 

[u(s)](o) ~f [v(O](~J0), (-r<_O<_O) . 

By (2.7b) 

where 

(2.22) 

J ' z *  = J ' z *  = 0 ,  

- -  , is Z* ~-~ef (oe ((* is as in (2.7b)). 

Define the spaces, Pz~ and D(1)C D 1 2 n  ~2n~ a s  

(2.18a) Pz~ = {glg(s+2Ÿ =g(s), g e C([O, 2Ÿ C")}, 

--2Ÿ - -  g [ g e P2n, as 

P2~ and P~zl~ are Banach spaces with norms 

IIgll = sup Ig(s)l (g~P2.)  
O_<s_<2~ 

and 

IIIglll •fmax flgll, ~ (geP(zX~) 

respectively. In the following we seek a 2~-periodic solution to (2.16) in the space 
p~21~. 

Let us define an operator, J, acting in Pz~ as, 

d 
(2.19) Jy(s)~f~Oo~sY(S)-L(O)ys,,~ o for y ~ ~ ( J ) ,  

ys,~,o(O)~fy(s+~ooO), -r<_O<_O, 

where the domain, ~(J) ,  of J is -2~.~ From the definition it follows that the null- 
space, 0l(J), of J is spanned by the elements, 

(2.20) z ~'ef (oeiS ' ~ = ~0 e-  is , 

where (o is as in (2.7a). Let us introduce the formal adjoint operator, J*, of J, 

d 
(2.21) j , y ( s )~ f_OJo~sY(S)_L, (O)y  . . . .  for y6P~~)~, 

yS'~ O<-z<-r, 

(L ,(OW,,~o= f] ,[dq(O)3y . . . . .  (-o)= f] 'Cd~(O)Jy(s-~oO)). 
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Define the product in Pz~ as 

(2.23) (u, v)2, = (u(s), v(s))ds , u, v ~ P2~ . 

The linear operator, J, has the following property (Fredholm alternative) in the 
s p a c e  P2~" 

LEMMA F (Hale [5; Chapter  9]). Consider the equation, 

(2.24) Ju = h ,  h ~ P2..  

The equation (2.24) is solvable for u ~ ~ (  J)(= P~21)~) i f  and only i f  

(2.25) (h, z*)2. = (h, z*)z. = O . 

Furthermore, there is a continuous projection, PN" P z . ~ P 2 . ,  such that 9 t ( J )=  
( I -  P~)P2. and there is a continuous linear operator K: (I-- PN)P2~--* 
( I - - I I )Pz~m~(J ) ,  such that Kh is a solution of  (2 .24) fo r  each h e ( I - P N ) P 2 . ,  
where 9~( J) denotes the range o f  J and 1-1 is a eontinuous projection of  P2. onto 
~R(.I). If, in the equation (2.24), h is real valued then the condition (2.25) is equiva- 
lent to (h, Z*)z.=0. 

Now we seek a real valued 2rc-periodic solution to (2.16) in the form, 

[ y(s; g) = Y l  (S)�91 +y2(s)�91 z +)3(S; e)~ z , .13(S; O) = O,  

(2.26) ~ q = #(e) = l~2e z +/i(�91 2 , q = 0 ,  
/ 
[ (D = 69(�91 = (D O ql_ (D2 �91 + ff)(�91191 , (.~.)(0) = 0 ,  

under the condition 

(2.27) [Y~,~,o, z*~'~176 g f ~  (Y,,o~o, z* . . . .  ) d s = e ,  

where z* . . . .  (0) = ~£ "~ + ~o0) = (.(0)ei~, 0 < 0 < r. The condit ion (2.27) determines the 
solution uniquely for each �91 > 0. 

Inserting (2.26) into (2.16) and (2.27) yields the following equations f rom which 
we obtain the coefficients ya(s), y2(s) and 33(s; e) in (2.26) iteratively: 

(2.28) JYa = 0 ,  

1 0 (2.29) JY2 = -~F..(  )(Ya . . . .  o, Ya . . . . .  ) ,  

(2.30) J~ = R(�91 ¨ o3, ~) ,  

[Ya . . . .  o, z*~'~176 = 1 , 

[Y2 . . . .  o,Z* . . . .  ] = 0 ,  

z,S, o01 

where the remaining term, R(�91 q eh, .f), is C 1 in (~, q d~, ~) and R(e, f~, &, YO ~ 1'2. for 
y ~ r 2 ~  , ~  ,~~a~. it can be expressed in the form 
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(2.31) R(e, #, cb, 33Xs)=--L(0Xyl . . . .  ,o-yl,~,,,o) 

+ L(O)~y2,,,~<~~- Y2,,,~,o) + L(0X ~2, ~~,~- L , J  
1 

+-~- (F.,(0)(yl,s, ~r Yl . . . .  r - F,.(OXyl . . . .  o, Yl,s, o,o)) 

+ ~ #2 +/1)Fu.(O)Yl . . . .  (~1-(e) 2 + 03) dss yl(s) 

d 
- e(o~ z + ~b) -~s (Y2(S) + ~(s)) + F.,(OXyl,2, o,<,), Y2,2,,o~,~ + Y~,o,~o) 

+ 1F...(0)(Y~,~,,o,~,, Y 1,2,,o(o, YL 2,,~,,,)] + O(eZ) �9 

In what follows, yt(s) and y2(s) ate given as smooth functions in s. Hence we see that 
R(e, q 03, p) is C 1 in (e, q 03, p). 

Solving (2.28) and (2,29) in Yl, Y2 gives, 

(2.32) yl(s)=~oei~+~oe-i" (=z+z-) ,  

yl,~,o,o=(lei2 +~ le - i ' ,  

(2.33) 322(s) = ~2(0) �91 + ~2(0)e- 2i~ + ~2, 

Y2 . . . .  o :  (2e2iS @ ~2e- 2is + (2 , 

where ~o, (1 are as in (2.6), (2.7a) and (2, (2 are as defined in (2.14), (2.15). 
It remains to solve the equatŸ (2.30). As ~ ( J ) c P z ~  is spanned by the ele- 

ments z and ~, [a~.o~o, z*2"~176 for a eg l ( J )  ( a~0)  by (2.9). Hence, [332,,oo, z*~'~'~ = 0  
implies f;e(I-II)P~2~~, where/7  is the projection in Lemma F. Using the operators, 
K and P:v, in Lemma F, we obtain the following equations which are equivalent to 
(2.30): 

(2.34a) f~=K(I-PN)R(e, /1 ,  &,f:) (fi~P~21~), 

(2.34b) PNR(e, /1, &, )3)=0. 

By the Implicit Function Theorem, the equation, (2.34a), is solvable, that is, there 
exists a Ct-function 33 =33(~,/1, 03) (e  p~2~2) in (e,/1, 03) satisfying (2.34a) and 

~ ( 0 , . ,  ., , �9 )= (0, . )= ( 0 , . . 1 = 0 .  

(Note that R(0, , , . ,  .) = 0 uniformly in q 03, p.) Thus, (2.34a) and (2.34b) are reduced 
to the equation, 

e,,R(~, ~, 03, ti(e, ~, 03))=0, 
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or equivalently, (R(~,/], o3, f(a,/~, o5)), z*)2~=0. Put 

H(e, ~, ~ ) ~ ~  (R(~, ~, & ;(~, A ~)), z*h~=0. (2.35) 

We solve (2.35). 

H(0, 0, 0)= 0 

holds if and only if, 

0 = - io~2(~ o, ~*) + ioh(L(O)(" e ''~176 ~o), ~*) 

+ q 2 (Fu.(O)~ , , ~*) + (F..(0)(~a, (2), ~*) 

+(F.u(0)(~x, ~2), ~ ~ ) + 1  (F...(0)(~~, ~,, ~1), ~~), 

which implies, 

(2.36) d,~ - i~2 + m ~  (o)+ (F~ ~2), r 

, 1 
+ (Fuu(0)(~l, ~2), ~o)+~-(Fu~u(0)(~,, ~,, ~,), ~*)=0, 

(by (2.11) and (2.13)). The coefficients, /~2 and o h ,  are determined by the relation 
(2.36). Differentiating (2.35) yields, 

a~- (0, 0, 0)=(F,u(0)r ~~')= (0) (from (2.11)), 

#H 
~---~ (0, O, O) = - i(r ~*) + i(L(O)(, ei'~176162 ~*) 

= - i  (from (2.13)). 

This implies that one can apply the Implicit Function Theorem to obtain 13, ~, as 
functions of e. Hence, 3~ =))(e, q ~(0)  as a function of ~. (Note (1.11).) 

Thus, we get a periodic solution to (2.16) having the forro (2.26). 
Finally we note that by the definition off(/~, u) in (1.9) the equation, (2.36), can 

be written as, 

d2 
(2.37) - ion2 + U2d-~(p 0) + (f,,(0)(~l, ~2), ~*) 

1 0 + (L.(0)G, ~~), ~]'> + y ( L d  )G, ~1, C,), ~,'7 ~-0, 

where ~ * is as in (2.5) (and (2.6)). The above equation coincides with the one obtained 
by the formal calculation in Iooss and Joseph's work [9]. 
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3. Destabilization of Spatially Homogeneous Periodic Solutions 

Let us introduce some function spaces. We denote by W2'P(f�91 the Sobolev space 
of all real valued LP(O) functions whose derivatives up to order 2 belong to LP(O), 
where f2 is a bounded domain in R N with a smooth boundary •f2. 

Given a Banach space, X, let C([-r, 0]; X) be a Banach space of X-valued 
continuous function defined on the interval [ - r ,  0]. For simplicity, as in the 
preceding section, C[-r, 0] stands for C([-r, 0]; R") (or C([-r, 0]; C")). (X)" stands 
for the n-th product of X. 

Let us put, 

W2'p(f2)= {u~ W•'P(f2); Ou/�91 on �91 

where O/On denotes the outer normal derivative to c~f2. In what follows we shall 
understand that p is sufficiently large, for instance p > NI2 so that the correspondence, 

defines a mapping, 

(~, ,I,) ~-,F(u, ~),  

F: Io • ( W2'P(f2))"~(W2'p(f2))" , 

of C 4 class, where F(/~, .) is as in (1.1) (satisfying (1.3), (Al), (A2)), and lo is an 
interval containing 0 ~ R a. 

Now we shall consider the following equation: 

~tV(t, x)=DAV(t, x)+F(l~, V,(',x)), (t,x)6(O, oo)• O, 

(3.1) ~ n  V t ' x ) = O '  (t,x)~(O, oo) x al2, 

V(O, x)= [qbo(0)](x), (0, x)6 I - r ,  0] x f2, 

4o e c ( [ -  r, 03; (w~'~(~2))"), 

where 

Vt(O,x)=V(t+O,x), -r<O<O, 
N 02 

A=,~I  & Ÿ ' 

(‰ 0) 
D -  " d, 

di>=O(i=l, "",n), d a + ' " + d , > 0 .  

To avoid a lengthy argument on the well-posedness of (3.1), which is not the 
subject of the present paper, we assume that for any ~ o e C ( [ - r ,  0]; (W~'P(O)) ") 
there exists a unique solution V(t, . ) e C ( [ - r ,  0]; (W~'P(O)) ") to (3.1) such that 
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(O/c3t) V(t, ")e C([0, oo); (LP(O))"). See [12] for such existence theorems. 
Let AN(f2) b e ' a  closed operator in LP(g), with dense domain ~(Ar~(f2))= 

w�9 defined by AN(f2)v=Av for v e~(AN(f2)). For simplicity AN denotes 
A~(~2) hereafter. 

Put 

[(U(t))](x)= V(t, x ) ,  (t, x ) e [ - r ,  oo) x f2. 

The equation (3.1) is written as, 

(3.2) d U(t) = DA N U(t) + F(la, Uf( ' ) ) ,  t > O, 

U(t) = ~o(t),  - r < t < O. 

For any matrix, D, and any domain, f2, it is clear from Theorem H that for each 
e e (0, en) the equation (3.2) has a spatially homogeneous periodic solution, U(t)= 
p(t; e), with period 2rt/co(e) occurring for /~=/~(e), where q to(e), eH are as in 
Theorem H. Here we understand that y(s; e) =p(s/co(e); e) satisfies the condition (2.27) 
so that the coefficients in (1.12), (1.13) are uniquely determined. If, in addition, the 
conditions in Corollary H are satisfied, then p(t; e) is stable with respect to spatially 
homogeneous perturbation. Note that the stability in the above sense does not 
necessarily imply the stability required in this section. Since our problem in this 
section involves space variables, we have to consider the stability with respect to all 
possible perturbations (either spatially homogeneous or inhomogeneous). 

As mentioned in the Introduction, Yoshida [7] has shown for some specific 
equation that the spatially homogeneous periodic solution p(. ; e) is stable in the right 
above sense near the bifurcation point. That is, the stability region for p(. ; ~) (the set 
of all e for which p(.; e) is stable) is not empty for any diffusion coefficient and any 
domain t2 (in the case of n = 1). 

It is clear that the spatially homogeneous periodic solution, p(. ;e), to (3.1) is 
virtually independent of the matrix, D, and the domain Q; hence, it is defined on some 
fixed e-interval that does not depend on D and I2. However, the stability region for 
p(.;  e) as mentioned above may vary according to D and f2, even if it continues to be 
non-empty. This fact suggests the possibility of the occurrence of destabilization that 
might be observed when we vary D or f2. More precisely, it will be shown that the 
stability region shrinks when the diffusion coefficients, d i ( i= 1, �9 �9 n), become very 
small or when the shape of f2 becomes far from being convex; hence, the bifurcating 
periodic solution loses its stability very near the bifurcation point. We shall discuss 
this in the present and next sections. 

Hereafter we shall always assume the conditions in CoroUary H to be true. To 
see how the destabilization of the spatially homogeneous periodic solution occurs, let 
us consider the following linearized equation of (3.2) around the periodic solution, 
p(t; e): 
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d D , . (3.3) ~ z ( t )  = Auz(t) + Fu(Ir(e), p,('" e))z, 

For any e~(0, eo) , (3.3) is a periodic system with period T(e)=2r~/~(e) ,  where ~o is 
given in Corollary H. 

We assume that T =  T(e)>r for 0 < e < % .  Then a Floquet exponent of  (3.3) is 
defined as follows: 

For each initial function ~ o ~ C ( [ - r ,  0]; (W¨ let z(t; q~o) ( t > - r )  be a 
solution satisfying z(  t; ebo) = CPo( t), - r < t <- O. The correspondence, 

q~o F--+zŸ q~o) (zr(0; Cbo)=z(T+O; Cbo), - r < O < O ) ,  

defines a completely continuous linear operator from C ( [ - r ,  0]; (W 2' P)") into itself 
(see [12]). We call a complex number, ?, a Floquet exponent of (3.3) if v = e  ~~ is an 
eigenvalue of the above operator. 

Using arguments analogous to those found in [5; Chapter 8], we see that 
determining the Floquet exponent, ?, of  (3.3) is reduced to seeking a solution to (3.3) 
in the forro, 

(3.4) z(t)  = er ' z ( t ) ,  Z(t + T )  = Z(t) (Z(t) ~ 0 ) ,  

Z(t)~(WZN'P)" for each t > - r .  

One can easily verify that if (3.3) has a Floquet exponent with strictly positive real 
part, then the periodic solution is unstable. 

Now we adopt the new variables, 

s = og(e)t, w(s) = z(s/co(~)) = z (O .  

Then (3.3) is transformed into, 

d 
o~(e~ds W(S) = D ANw(s) + F,(#(e), Ys, o,~~)( "; e))ws, o~~~) , (3.5) 

where 

y(s; ~)=p(s/~o(~); e) , 

ws,,o(e)(O) ~ f  w(s + 09@)0) ( - -  r <_ 0 <_ 0) .  

Let 2,. be the m-th eigenvalue of  the operator -AN, and ~m be the eigenfunction 
corresponding to 2m, i.e., 

(3.6) Au~b,. = - 2 , , ~ 0 " ,  m = l ,  2, 3," - �9 , (0=21 <~.2 M~~Ÿ "" "). 

Considering that W2'p(f2) is spanned by {~k"}m=~,2,3,..., we see that 7 is a Floquet 
exponent of the linear 2n-periodic system (3.5) if and only if there exists a function, 
q(s) ~ O, in P2, and a positive integer, m, such that, 

(3.7) [w(s)](x) = e~S/~'~~)q(s)~k"(x) 
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satisfies the equation (3.5), where P2. is defined by (2.18). Thus, calculating the 
Floquet exponents is reduced to finding solutions, y(s), to (3.5) in the form (3.7). 

Substituting (3.7) into (3.5), and comparing the coefficients of ~k,, on the both 
sides of (3.5), we obtain, 

(3.8) m(e@s q(S) = - (7 + 2,,D)q(s) + F,(l~(e), Ys,,o(t)("; e))(qs, ~,~~~(')eY'), q �9 P2n. 

The equation (3.8) is independent of  the spatial variable x. 
When m = 1, the equation (3.8) coincides with the one induced from the linear- 

ized equation of the diffusion-free equation (2.16), that is, 

(3.9) co(e@sq(S) = - 7q(s) + F,(p(e), ys,~,~~)( "; e))(q~, ~~~)(" )eY') . 

The equation (3.9) has Floquet exponents 0 and ti(e)< 0 for e �9 (0, ev), where ti(e) is 
defined by (1.13). Moreover, we see from the stability assumption that all the re- 
maining Floquet exponents have strictly negative real parts. 

Next we consider the case rn ~ 1 in (3.8). Take any positive integer m, greater 
than 1 and fix it. Let 

E =  2,,D. 

Then the equation (3.8) is written as, 

(3.10) o~(e@sq(S)= - ( 7 +  E)q(s) + F,(~e), Y~,,o(~j('; 0)(q~,o~(~)(')e~), q�9  P2~- 

We can regard the equation (3.10) a s a  perturbed equation of (3.9) with perturba- 
tion term, - Eq. 

In the rest of this section we shall show that if E is a sufticiently small 
perturbation matrix then we can find a pair of Floquet exponents of (3.10) (explicitly 
in terms of  e) corresponding to the Floquet exponents 0, ti(t) of the unperturbed 
equation (3.9). The results will be used in the next section for the stability analysis. 

Let us parametrize the deformation of a domain and diffusion coefficients in 
terms of the same parameter, e, as above. Then D and 2 m (and hence E-2reD ) become 
functions of e. In what follows we assume the parametrization is taken in such a way 
that, 

(3.11) E=-e2E2 

for some matrix E•. (e will not be a bifurcation parameter.) Actually, if E2 is 
sufficiently small in a certain sense (to be clari¡ later), then the perturbed Floquet 
Exponents, 7, corresponding to ti(e) and 0 are real numbers of order O(~2). 

Thus, in the equation (3.10), we are to find a pair of a real valued function, 
q �9 P2~, a n d a  real number, 7, in the form, 



Destabilization of Periodic Solutions in Delay-Diffusion Systems 55 

7 = ~2 ~2 + ,2(e)d ,  ~(0) = 0 ,  

(3.12) q(s; e) = qo(s; e)+ql(s; e)e+0(s; e)e, 

q, qi s p " )  ( i=0,  1) qo(s;0)~0, q~(s;0)~0, 0 ( s ; 0 ) -0  

(3.13) [q,, ~,o, z* . . . .  ] = c + q ( e ) ,  r/(0)=0, 

under the condition E = E2e 2, where [., -] and z* are defined in (2.27) and (2.22). We 
substitute (3.11) and (3.12) into (3.10) and (3.13). Then we get the following 
equations that determine qo, q~, q: 

(3.14) Jqo = O, 

(3.15) Jq~ = F,,(O)(y~ . . . .  o, qo . . . . .  ) ,  

(3.16a) JO=r(~, ~/, 17, 0) ,  

(3.16b) r(e, ~, r/, ~ )= r , (e ,  ~, r/, ~)+~r2(e , ~, r/, �91 

[qo .. . . . .  z* . . . .  ] = c + t/, 

[ql,,, ~o, z* . . . .  ] = 0,  

[0,.too, z *  . . . . .  ] = 0  (Oep"~~ ~ 2 n l  

( r ( 0 , . , . ,  . ) = 0 ) ,  

F zd  
t'l(~, ~, /1, t~)(S) = L(O)(qs ' to(r)-- qs, too ) "[- ~'L --  (9 ~ q o ( s )  

L f d +O)2 (O)~ "~s qo . . . . .  ( " J - - ( 7 2  + 7 +  E2)qo(s)+ p2Fu,(O, qo . . . . .  , 

+ (72 + ~)L(0)( "qo . . . .  o(')) + F.,,(0)(y, ...... , q, . . . .  o + gts,,o(j 

, ] +Fu,(0)(y2 .... . .  qo . . . .  o)+~-F,.,(0)(Y, . . . . .  , Y, . . . . .  , qo . . . . .  ) , 

r2(0, ", ", ")(s)- 0 , 

where J is defined by (2.19) and Yl, Yz areas  in (2.32), (2.33). 
Considering that qo and ql are real valued, we obtain the solutions to (3.14) and 

(3.15) in the form, 

(3.17) qo=(C+t l ) z+(c+f l )  i , qo . . . . .  =(c+q)(~eis+(?+O)~te- i s ,  

(3.18) q~(s)=2(c+q)~2(O)e2iS+2(O+;1)~2(O)e-ZiS+(c+?+tl+;1)Cz, 

ql . . . . .  = 2(C + rl)~2e2is + 2(c + ~l)(ze- 2i~ + (c + ( + rl + O)(2 , 

respectively, where ~2 and (2 are as defined in (2.14). (Compare (3.14) and (3.15) with 
(2.28) and (2.29).) 

We solve the equation (3.16). Using operators K and Pu, defined in Lemma F 
in w 2, we get the following equations which are equivalent to (3.16): 

(3.19a) g l = K ( I - P u ) r (  e, ) ,  q, q) (gleP~l~), 

(3.19b) PNr(~, ~, rl, 4 ) = 0 .  
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(3.19a) is solved by the Implicit Function Theorem; we get a CLfunction 4 =  
dl(e, ~, q)(~uo~~_2~j of (e, ~, q) satisfying (3.19a) and 

a0 .)= o, - )=o.  ,~(o, -, -)= a=(~ o, . ,  -, 

Thus, the equations (3.19a) and (3.19b) are redueed to, 

PNr(e, ~3, q, ~(e, ~, q))= 0,  

which is equivalent to (r(e, ~, r/, ~(e, ~, r/)), z*)2, = 0. Let 

(3.20) W(e, 4, q ) ~ _ l  (r(e, ~, q, O(e, 7, rl), z*)2,=0.  

We solve the equation (3.20) around (e, ~, r/)=(0, 0, 0). 
After a slightly lengthy but simple calculation similar to that employed in getting 

(2.36), we obtain, 

W(0, 0, 0 ) = ( - 0 ) 2 i - 7 2 - ( E 2 ( 0 ,  ~~)"~ 122d~~ 0))c 
+(2c+t~(Fuu(0)((a, (2), (*)+(2e+O(F,u(0)((1, (2), (£ 

+ c + ~ -  F.~~(0X(1, ~x, (,), ~*), (by (2.11), (2.13)). 

Hence W(0, 0, 0)= 0 implies 

(3.21) -(~2 +(E2~o, ~ * ) - B I ) c + B l e = O  ( c r  

(3.22) B~ ge (F,u(0)((l, ~2), ~o*)+ (F,,(0)((a, ~2), ~~) 

1 
+ 2---(F...(0)((,, �91 ~1), (~) 

= ~02i - ~2 d~-(20) (see (2.36)). 

(3.21) holds for some e4:0 if and only if 

(3.23) 722 + 2Re((E2( o, ~ ~ ) -  B1)y 2 + t (E2~o, ~~) j 2  _ 2Re(~x(E2(o, ~,)) = 0.  

(3.23) determines the coeflicient 72. If (3.23) has distinct roots, then (3.20) can be 
solved for c and ~2 satisfying (3.21). The detail is left to the Appendix. 

Combining the observations above, we obtain 

LEMMA A. Consider the linearized equation (3.3) of  (3.2) (of (3.1)) around the 
spatially homogeneous periodic solution, p(.; e), construeted in w 2. I f  the matrix, E = 
2reD, is scaled sueh as E=E222 and / f  (3,23) has real distinet roots, then there exists a 
positive constant, ep, sueh that for  each e ~ (0, ev) the linear periodie system, (3.3), has a 
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Floquet exponent, 7=7(5), having the forro in (3.12), where 2m is defined by (3.6) and 
~2 is one of  the roots o f  (3.23). 

4. Main Theorems 

Let us consider the equation (3.1) (or (3.2)) and discuss the stability of the 
spatially homogeneous periodic solution by using Lemma A. Recall that the matrix, 
E, in (3.10) has the form, 

(4.1) E=2mD,  

where 2" (m > 1) is the m-th eigenvalue of the operator - AN(f2 ). The matrix E 2 is 
defined as, 

(4.2) E =  E2 ~2 . 

We assume the hypotheses in Corollary H on the diffusion-free equation (1.1) (or 
(1.9)). It therefore holds that the spatially homogeneous periodic solution, p( .", e), to 
(3.1) is stable with respect to spatially homogeneous perturbation in an e-interval 
independent of the matrix, D, and the domain, s 

First we consider the case where the diffusion coefficients vary while the domain 
is ¡ Let % be as in Lemma A and let e e (0, %) be fixed. Let 

(4.3) D = D2e 2 . 

In order to study the destabilization caused by change of diffusion coefficients, we 
shall let D 2 vary. The matrix, Ez, in (4.2) is, in this case, expressed as, 

(4.4) E2 =2mD2 . 

By Lemma A, the existence of a positive root 72 of the equation (3.23) implies the 
instability of the spatially homogeneous periodic solution to (3.1) (or (3.2)) for ~ = 
~(~) and D = D2 e2 with E sufficiently small. Thus we obtain the following theorem: 

THEOREM B. Consider the equation (3.1) (or (3.2)) under the assumptions in 
Corollary H. Let D 2 be an n x n matrix and let E 2 be defined by (4.4). I f  (3.23) has a 
positive root, 72, then there exists a constant, g> O, such that the spatially hothogeneous 
periodic solution, p(-; e), is unstable (with respect to some spatially inhomogeneous 
perturbation) for each e ~ (0, g) and D = 1)2 ~2, p = ~(~), where ~(~), p( ' ;  ~) are as in 

Theorem H. 

Next, let the matrix, D, be fixed and let us vary the domain, ~2; in this case, the 
eigenvalues, 2,. (m = 2, 3, �9 �9 .), of the operator, AN(f2), vary accordingly. It suffices to 
consider the case where the space dimension is N >  2, since, in the case N =  1, varying 
the domain, f2, can be reduced to varying the diffusion coefficients after a suitable 
change of the space variable. 

Let us considera one-parameter family of bounded domains, f2~ (r >0), with 
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smooth boundaries, such that ~.2(Or)'*0 as z~0.  
Examples of such a family of domains are well-known. For instance, let f2, = 

R 1 ~ R~ w R~ (z > 0 ) ~  R 2 be dumbell-shaped (Fig. A) and suppose f2~ approaches a 
set O o (Fig. B) consisting of two connected components R a and R 2 as z tends to 0. In 
this example, one easily sees that 22(O~)---,0 as z---,0. (Hale and Vegas [17] has further 
shown that, under suitable assumptions, Ÿ is bounded away from zero by a 
positive constant as z---,0.) 

~o 

(Fig. A) (Fig. B) 

In what follows we shall simply write as 22(z) instead of )~2(~r), where O, is a 
family of domains such that 22(z)-~0 as z~0.  

Let 2 be a positive number and let D be fixed. We now give the matrix, E2, in 
(4.2) by, 

(4.5) E2 = 2D . 

Then, by virtue of Lemma A, we have the following theorem: 

THEOREM C. Consider the equation (3.1) (or (3.2)) under the assumptions in 
Corollary H. Suppose that the space dimension is N>=2, and let the family of  domains 
f2, (z>0) be as above. Let the matrix E 2 be defined by (4.5), and assume that 
the equation (3.23) has a positive root ~2. Then there exists an g> 0 such that for each 
e ~ (0, g), # = #(~) and sufficiently smatl r > 0 (i.e., 2(z) < )~e 2) the spatially homogeneous 
periodic solution, p(.;  e), is unstable (with respect to some spatially inhomogeneous 
perturbation). 

REMARK 2. As mentioned in w 3, it is often the case that the bifurcating 
solution, p(.;e), is stable (with respect to either spatially homogeneous or in- 
homogeneous perturbation) at least near the bifurcation point. However, even in 
such a case, we see from Theorems B and C that if we fix ~ and change D and f2 
appropriately then the spatially homogeneous periodic solution, p(.;  e), may even- 
tually lose its stability. This shows that the stability region of p (for which p(.;  5) is 
stable) may become smaller and smaller when D and f2 are changed in a certain 
manner. 

In the next section, we shall give an example in which the condition in Theorems 
B and C (that is, the positivity of ~2) is satisfied. One easily sees that this condition is 
satisfied in various equations. 
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5. Applications 

In this section we shall apply the results obtained in the preceding section to 
some specific equations. 

Example A. 
Let us consider the following scalar-valued equation: 

Ov(t, 
Of X)=dAv(t' x ) - ( 2 +  # ) 1  +v(t, x))v(t-1, x), (t, x)e(O, ~ ) x O  

Ov (5.1) ~=o, (t, x)z(O, ~ ) •  ~ 0 ,  

v(O, x) = [4'o(O)](x), (0, x) ~ [ -  1, O] x O ,  

�9 o ~ C ( E -  1, 03 ; w~,p(o)), 

Y2 denotes a bounded domain in R N with a smooth boundary 8Y2. As where 
mentioned in the Introduction, for any fixed positive diffusion constant, d, and any 
domain, t2, a spatially homogeneous periodic solution, p(-; e), bifurcates at p = 0  
from the steady state, v(t, x) =0; and Yoshida has shown in [7] that the bifurcating 
solution is stable near the bifurcation point. By applying Theorems B and ,(2, 
however, we shall see that the destabilization of the periodic solution occurs in the 
sense of Remark 2. 

To check that Theorems B and C apply to the present case, let us calculate the 
roots, 72, of the equation (3.23). The operators, A(#) and G(~, -), in (1.8) and (1.1) 
are, in the present case, written as 

[ ~o~(o) -1__<0<0 
(5.2) [A(y)$](0) = for ~b e ~)(A(p)) c C E-  1, 03, 

-- ( ~ -  + ,tt)q~( -- 1), 0 = 0  

G(p ,~b)=-  + #  qS(0)q~(-1), for ~ b e C [ - 1 ,  Q]. 

It is easily seen that A(0) has a pair of conjugate eigenvalues, + (~q and that the 
eigenfunction, ~~, corresponding to eigenvalue (Ÿ161 is given by, 

(5.3) ~,(O)=e '~~ , -- 1 < 0 < 0  (~o = ( , ( 0 ) =  1). 

The formal product, (2.1), and the adjoint operator, A*(0), of  A(0) with respect to 
this product are expressed as, 
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(5.4) (r  ~b)=~k(0)~b(0)- 2 f~l  ~b(~+ 1)q~(0d~ 

(5.5) A*(0)r 
-~(‰ 0), 0 < 0 ~ 1  

Ÿ 

- T O 0 ) ,  o=o  

for r  O], ~beC[O, 1], 

for ~e~(A*(O)) (cC[O, 1]), 

respectively. Due to the normalizing condition, (2.9), the eigenfunction, (*, of A*(0) 
corresponding to eigenvalue, -(~/2)i, takes the form, 

(5.6) ~*(0) = xe ~~~ , 0 < 0 < 1 ((~ = (*(0) = x), 

1 
K =  

7~ 
1 - ~ - i  

Moreover, ~2 and (2 defined in (2.14) are easily calculated as, 

I ( 2 ( 0 ) = 1 ( 2 - - i ) e  i~~ , 
(5.7) [ ~2(0)= 0,  - 1 __< 0___< 0. 

We scale 22d in terms of e such as, 

(5.8) 22d=d2 e2 . 

In this case the matrix, E 2, in (3.11) is the 1 • 1 matrix (d2). From (5.3), (5.6), (5.7) and 
(5.8) it follows that, 

(E2~~ (~ B1 =~d- (1-  3i)K. 

Thus the equation (3.23) is written as, 
2 

(5.9, (1 + ( ~ _ ) ) 7 ~  +2[d~ 2 _ ~ 6  +~6_)72 + d Ÿ  3n2"~ _ 5 d 2  =0  

The equation (5.9) has a positive root, ~2, for 0 <d2 < re/5, which ensures the occur- 
rence of destabilization of the spatially homogeneous periodic solution in the sense 
of Remark 2. 

In Fig. C we illustrate the stability and instability regions in the (#, 22d )- 
parameter space. (Note that this figure is valid only in a sufficiently small neigh- 
borhood of (~, 22d) = (0, 0).) Since ~ = p(e) is expanded as, 

3 n - 2  = ~(~) = ~2 + O(~S) ,  
10 
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the curve, l, in Fig. C has slope 2n/(3rE-2) at the origin. 

22d 

61 

stable / ~ # l  

_-# 

(Fig. C) 

REMARK 3. Let d and 2 z (resp. p) be fixed. When the parameter p (resp. 22d ) 
passes across the curve, l, a secondary bifurcation will occur from the spatially 
homogeneous periodic solution. In this paper, however, we shall not discuss this 
problem. 

Example B. 
Our method can be applied to reaction-diffusion system without time delayb 

Consider the equation, 

(5.10) 

where 

U(t, x)=DAU(t, x)+f(#, U(t, x)) (t, x) ~ (0, oo) x I2, 

(~ 0) 
D= " " d, di>=O (i=1, " " ,  n), d l +  " "  + d , > 0 ,  

U ='(ul, -" ", u.). 

f" Io• 

is of class C* and f (p ,  0) = 0 for p ~ Io, (Io is an interval containing 0 ~ R1). We assume 
that (Of/~3U) (0, 0) has simple eigenvalues + i~o o anda  spatially homogeneous periodic 
solution bifurcates from the zero solution at p=0 .  Moreover, assume that this 
bifurcating periodic solution is stable with respect to homogeneous perturbation. By 
using similar arguments, we can obtain destabilization results analogous to that in 
Example A. However, as it is easily seen, such destabilization does not occur if d 1 = 
d 2 . . . . .  ac,; so we must exclude this case. More detailed discussion together with 
interesting examples will be given in the forthcoming paper [16]; in this case, the 

~ - = 0 ,  (t, x)e(O, oo) • ~0 
8n 

u(o, x )=  ~o(X), x ~ o ,  'I'o ~ (w�9 ~(o))", 
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equation corresponding to (3.23) is obtained, provided that we replace ~o and ~~ by 
the eigenvectors of (8/8 U ) f ( O ,  0) and '((8/8 U ) f ( O ,  0)) respectively and determine B 1 
by 

82 
B1 = i~2-~z~- f i (0 ) ,  

where ~2 and ~2 are coefficients of e 2 in ~o(e) and p(e). 

E x a m p l e  C. 

We shall consider the following time-lag equation with an integral kernel: 

d v(t)=a(1-f~o~ k(t-s)v(s)ds)v(t) (a>0).  (5al) d i  

For simplicity, we consider the case, 

b c  
k(t) = v(e -b, _ e - " ) ,  v = 

c - - b  ~ 

where b and c are positive constants. Note that k( t )  satisfies S ~ k ( t ) d t = l .  The 
equation (5.11) is transformed into, 

d 
ul( t)  = - a(1 + ul( t ) )u3(t ) ,  

d 
(5.12) ~ u2(t ) = c(ul ( t  ) - u2(t)) , 

d 
u3(t) = b(u2(t ) - u3(t)) , 

by the following transformation: 

(5.13) 

ul( t)  = v ( t ) -  1 ,  

f U2(t ) = C e -  ct, - %(s)ds  - 1 ,  

u3(t) = f ~  ~ k( t  - s)v(s)ds - 1 . 

Let a be a bifurcation parameter. It is easily verified that the Hopf  bifurcation occurs 
at a- -b  + c and that the bifurcating periodic solution is stable. 

Now we couple the equation (5.11) with a diffusion term and study this time- 
lag diffusion equation. Again by the transformation (5.13), this time-lag diffusion 
equation is converted into a diffusion system without time lag. In this case, the 
matrix, D, that determines the diffusion coefficients is written as, 
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D =  0 , d > 0 .  

0 

As described in Example B, our arguments can apply to this equation (without time 
lag). After a little tedious calculation, one can check that, in the present case, the 
destabilization of the spatially homogeneous periodic solution occurs as in Example 
A. 

Appendix 

We shall solve the equation (3.20) for ~2 and c satisfying (3.21), under the 
assumption that (3.23) has distinct roots. It is easily checked that (3.20) is reduced to 
the equation, 

(/~1) W(~, :, q ) = - ( ? 2 + ( G G  ~ ~ ) - B 1 ) q + B , q - : ( c + ' ) + O ( ~ )  = 0 .  

(Use (3.17) and (3.18).) We define a vector function, 

(f12) ff'(e, :, q~, q2)='(Re W(e, f,, rh +ir/2), Im W(e, ~, rh+iq2))  

where ql = Re q, �88 = Ira r/. It is c�94 that, 

ff/(0, 0, 0, 0 )=0 ,  

and 

(q 

(,84) 9r/, 

~W 
(/~5) 

9q2 

- -  (0, 0, 0, 0) = ' (  - R e  c, - I m  c ) ,  

- -  (0, 0, 0, 0) = '( - 72 - R e  (E2~o,  10) + 2 R e  B x, - I m  ( E 2 ~  o, ~~) + 2 I m  B 1 ) ,  

- -  (0, 0, 0, 0)= '(Im (E2~o, ~~), - 7 2  - Re(Ez~o, ~~)). 

First we suppose that Im (Ez~ o, ~*)=0.  Then the equation (3.23) is written as, 

which implies 

7 2 + 2 ( e -  b 0 ? 2  + e  2 - 2ble = 0 , 

72 = - -  e or ~)2 = - e + 2bl , 

where e=(E2(o, ~~'), bl = R e  B x 4:0. (Note that (1.13) and (3.21) imply 2Re B1 = t i 2 " )  

From the equation (3.21) it follows that, 

~(Tz + e)c = 2b c 
(ti6) ((Yz + e)c~ = 2 b : 1 ,  
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cl = Re c,  c 2 = I m  c ,  b 2 = Im B 1 . 

In the case, ~2 = - e ,  we have c1 = 0 and c 2 5 0. Thus, 

(~ er 0, 0, 
~ ~~~~ (~ ~ det 2b2)=  b l c 2 5 0 .  

By the Implicit Function Theorem we obtain a pair of  Cl-functions, (i(e, t12), 
r/l(e, r/2)), satisfying ff'(e, i(e, r/2), r/~(e, r/2), r/E) = 0  in a sutticiently small neigh- 
borhood of  (e, ~2)=(0, 0), and i(0, 0)=th(0,  0)=0.  

Next, in the case Y2 = - e l  +2b~, it follows from (fi6) that, c2 =b2cl/bl ,  cl 50 .  By 
(fi3) and (fi5) we obtain, 

(0~(o,0_,o,o)~_( c, , 0 ) = - 2 c ~ b , 5 o  
det \ O(~,r/2) ] - k b 2 c a / b l  ' - 7 2 - e 1  

This shows that we can apply the Implicit Function Theorem to obtain a pair of  C l- 
functions (i(e, rh), t/2(e, r/i)) satisfying, ff'(~, i(e, r/l), r/i, r/2(e, qa)) = 0  in a neigh- 
borhood of  (i, qa)=(  0, 0), and i(0, 0)=r/2(0, 0)=0.  Thus, in either case, we have 
solved the equation, (fil), under the assumption Im (Ez~ o, ( * ) = 0 .  

Next we assume Im (E~~ o, ~*)50.  Let e a = R e  (E2~ o, ~~), e2=Im (Ez~ 1, ~*). 
The equation (3.21) is reduced to, 

~(~2 + e l ) c l  - -  c2e2 =2blc l  
(fi7) [ (~2 + e l ) c2  + c l e 2  =262cl �9 

9 

(fi3), (ti5) and (ti7) imply, 

(~ ff(o, 0, o, 
(fi8) d e t \ - f f ( ~ , ~ ~ O ) ) = ( - _ ~ 1 2 , _ T : Ÿ  

= 2(bac 1 + c2e2) .  

If c~ =0,  the right hand side of (fiS) is nonzero, thus, showing that (fil) is solvable. 
Now consider the case c 1 50 .  We may assume c 1 = 1 without loss of generality. 

Then (fi7) is written as, 

(fi9) 

It follows from (ti9) that, 

(fil0) 

Under the condition (fil0), 

holds if and only if 

{(72 + e l ) -  c2e2 = 2bl 9 

(72 + e l ) c 2  + e2 = 2b2 �9 

(c2e2 + 2bl)C2 + e 2 = 2 b  2 . 

b 1 c 1 + c2e 2 = 0 

e22- 2 b 2 e 2 - b Ÿ  =O . 
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In view of this and (ti8), we see that except for the case e 2 =b2 + x / ~ w e  can solve 
the equation, (fil), by the Implicit Function Theorem, to obtain the solution pair, 
~(e, qi), r/2(e, q0. The case of e 2 =b2 + x / ~  means that the equation (3.23) has a 
double root. By the assumption we have excluded this case. 

Thus, the equation, (fil), is solvable and the solution is given by the form 
(~(e, ~h), r/2(e, ql)) or (~(e, q2), ql( e, q2)) in a sufficiently small neighborhood of (0, 0). 
If the solution is given by the form (~(e, qi), q2(e, r/l)) (resp. (~(e, r/2), rh(e, q2))), then 
we put ql =0  (resp. r/z=0) and set ~(e)=~(e, 0), q(O=tl2(e, O) (resp. ~(e)=~(e, 0), 
q(e)=rh(e, 0)). This gives a solution to (3.10) having the forro (3.12). Hence, the 
completion of the proof. 
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