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The solution of the initial value problem for the compressible Euler equation tends to the solution
of the corresponding incompressible Euler equation with the corresponding initial data, as the
Mach number (which is proportional to a parameter 1/4) tends to zero. Under suitable conditions,
we also obtain the asymptotic expansion theorem for those solutions, when 4 is large.
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1. Introduction

This is a completion of the work made by Klainerman and Majda [10], [11].
Consider the initial value problem of the compressible or incompressible Euler
equation (C.E.Eq. or .LE.Eq.) which describes the state of flow of the compressible or
incompressible ideal fluid, respectively:

0
gt—p+v-Vp+vpV-v=O, t>0, xeR3,

(1.1)
4 +0V AZV =0
atv v v+p p=4y,
(1.1)o (P, 0) | =0 =(Po(x), vo(x)),
0 1
—v+0 Vo+--Vg©=0, t>0, xeR3,
(12) ot p
V-v=0,
(1.2) v|,—o=0p(x) (and V-v,(x)=0, usually).

Here p(t, x), v(2, x) and p(¢, x) denote the pressure, velocity and density of the fluid at
time 2> 0 and point x € R3. The notation - or { , ) (resp. x ) means the scalar product
in R3 (resp. the vector product in R3), or sometimes in R". The parameter y>1 is
constant and 4 varies in [1, c0). The density p is calculated by means of the ideal gas
condition

(1.3) p=yp’s,
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where s is the entropy of the fluid and assumed to be constant, s(z, x)=35>0 on the
whole space. The fluid is assumed to be isentropic.

The sound speed calculated from (1.1) is A(yp/p)'>=0. Hence roughly
speaking, A is (proportional to) the reciprocal of the Mach number M =|v,|/0,,=

|0 |27 (9Pl ) 2

Besides the existence theorem and others, Agemi [1], Ebin [7] and Klainerman-
Majda [10], {11] proved (under some restrictive conditions on the initial data
(po» Vo)) that the solution (p*, v*) of the equation (1.1)~(1.1), approaches the solution
(p®, v™) of (1.2)~(1.2),, as 4 tends to co. The aim of this paper is to weaken the
assumptions, especially to remove the condition V- v,=0. Hence the initial layer, i.e.,
the discontinuity of v*(z, x) at A= o0 (or at £=0) may appear in our limiting process.
Our main results are the following (see (1.22)~(1.26) for the definition of function
spaces):

THEOREM l.1.  Assume that the initial data (p,, v,) satisfies
(1.4), Po=Do(A, x)=p(1+171g,(x)),  p=constant>0,
(1.5) Q) (o, vo)=upcH'  with 1=3,
(i) |uyl,<a  for a sufficiently small constant ae(0,1/5].

Then: (i) there exists a solution (p(A,t, x), v(4, t, x)) of the C.E.Eq. (1.1)-(1.1),
satisfying the following properties in a time interval [0, T

(1.4) p(A, 1, x)=p(1+ 17 1q(4, t, X)),
(1.5) (i) (g, v)eMi([l, 0w0), B0, T, H'7Y), 0<j<l,
(i) (g, v)x<2a for (A, Dell, 0)x[0, T].

Here T>0 depends only on |uy |5, p, 5 and a, but not on Ae(l, o). The solution (q, v) is
unique in B°([0, T); H?), and depends continuously on the initial data (q,, v,) as the
mapping from H' to M([1, c); B0, T1, A7), 0<j<l.

(i) The solution (q, v} also satisfies the following
(1.6) (i) (g,v)eB°(1, 0]x [0, T]\(c0, 0); B'=2%9), 0<é<1)2,
Q) 190ty Myzes+ IV 0(A £y Mi345m0  as Ao (130),
(i) (q(4, ¢, ), o(A, t, *))—(0, v(c0, t, ) weakly in H (A->w0),
where the convergence is uniform on [t,, T for any t,>0.

(iii) There exists a unique solution (¢*(t, x), v™(t, x)) of the LE.Eq. (1.2),
satisfying on [0, T]

(1.7) v*(0, x) = Poo(x) ,
(1.8) (@®, v°)e B0, T, A Ix H'™Y),  0<j<i-1,
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(1.9 v°(t, x)=v(c0, t, X), (1,x)e(0, T}x R®.
Here P denotes the projection of L*(R3)® into the divergence free subspace.

THEOREM 1.2. In addition to the condition of Theorem 1.1 we assume further
Uy =(qo, vo) € H*2, 1<k <I1—2. Then we have the asymptotic expansion in A&[4, <o)

k
g4t )=q°(L )+2A" g0+ ¥ A4 D),
i=1

(1.10) i
od 1, )=04 v+ 3, A4, 0,

i=1

where (q', v%), 0 <i<k, satisfy

a 0 s 0
E g+ 2ypV 0" =0,
(1.11)

a 0 = 0
Fr +A/pVg° =0,
(L.11),  ‘(@°% ®)|ico=P1'(go, 1)  (for the definition of P, see (3.13)).
0
57 @ +a)+E+07) Vg7 +¢Y) +yp, V0!

+70(g% +q" )WV 0’ + 0" Vg = — Appg°V - v° — A° +v*)-Vg°,

1yt a
a—tv1 +(@°+0%) Vo' + 4/p, Vg + 1/(yp)g™ + g )Vg° + v' - V(1° + v*)
= — % V(O +v*)— 0™ - V() + 1/(y0,)Ag°Vq®
(1.12)4 (g°+g', v")},20=0,
(1.13)! () pi=p4 6, x)=p(1+17'¢%,
i) py=pi(4 ¢ x)=p{1-1/(Ar)°} ,
2, | .
—a-t—qf-{-(v +0%°)- Vg +Aypp, V-0’
(1 ].2)J +y§qjv.vo+vj.vq0:gj{(q’ vj~1 ’ V(q: v)j—l):

J . ) .
P v/ + (@ +v7)- Vol + A/p, Vg’

—1/39)g7Vg° + 07 V(e +v) = (g, v);- 1 , V(g, D))
(1.12)§ @, v)h—0=0.  2<j<k,
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. j_l n .
(1.13)Y () pj=p](/1,t,x)=15{1+/1_1q°+/1_2q°°+z l_'_lq‘},

i=1

(i) p;=the sum of the terms up to order A~J whivh appear in the expansion

j—1 . DR
ofp={1+l_1q°°+ l_‘_lq‘} (see (1.21)),
i=0
6 k k k -1
(7—tq +v-Vg*+ AypV-v =gA7 (g -1
(1.12)
0 _
S Dt o Vot A/pVgt — Y(yP)ad"Va=h(A"1, (g, vh-1) ,
(1.12)§ (4", Uk)|z=o=0’

(L.13Y () (p,v), p=p(1+471q), is the solution of (1.1)~(1.2),
(ii) p is the density calculated by (1.3),

(1.13)) (i) g; and h;, 2<j<k, are bilinear functions of (q,v);-=
g% q°, -, ¢ L0 0, -, 00 and  its  first  derivatives
V(g, v);-=(Vq°, - -, VoI 1), The coefficients appearing in g, and h;
depend smoothly on A1 €[0, 1].

(1.14)° (¢°, 1°) e B([1, 0); B0, T]; HY)

N BY([1, 0] x [0, T]\(c0, 0); B'2%%),  0<d<1/2,
(1.15)° 1(g° ) e < Co(l+40) " thg li+2,2 »
(1.14)! (¢*+4", v")e C°((1, o), B[O, T]; H'™)),
(1.15)! (g™ +4", v") -1 < Cy log(t+ Dl tg k2,2 5
(1.14)7 (¢’, v)e CO([4;, co); B0, T), H' WYy,  1<j<k,
(1.15)7 1(g”, v) ;< C; {log(I+ DY [ tg 2,2, 1 <<k,

where 1=14, <+ <A, <o0. In particular we have

(1.16) [(g(4, =44, 1), v(%, )—0°(L, ) —v™(D)) s -,
<Ci 'log 1+l leva2,  0<t<T.

REMARK. Ukai [15] proved the main part of Theorem 1.1 simultaneously with
(exactly a week ahead of) the author. However, his method is different from ours
except the use of the evolution operator for the linear C.E.Eq. with constant
coefficients. Klainerman-Majda [11] showed the corresponding results of Theorem
1.2 under the condition
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(1.17) Po(4, x)=p+272q5(x) ,
vo(4, X)=vp(x)+ 2" "vp(x),  V-03(x)=0,
(q(l)’ U(l)) € Hl N

In our study the assumption on the initial data are weakened extensively. We note the
similarity of the asymptotic expansion (1.10) with the one given in [4]. We also note
that our method can be applied to the study of the relation between the compressible
and incompressible Navier-Stokes equations. This theme will be discussed in the
forthcoming paper which will succeed [3].

Using the description of Klainerman-Majda (i.e., that of Theorem 1.1) we write
the variable p as in (1.4). Then the C.E.Eq. (1.1) reduces to

0
—q+v-Vg+AypV-v=0,

ot
(1.18) 2
Et—v+v'Vv+/1/qu=0,
(1.18), (4, U)|z=o=(‘10- Y%) 5
with the conditions
(1.19) p(A, t, x)=p{1+A"Yq(A, t, x)}, p>0,
(1.20) p(A, 6, x)={p(1+1""q(4, 1, x))/s}'"",  §>0.

If g is sufficiently small, | g | <a for some ae (0, 1/5] as in Theorem 1.1, we can rewrite
(1.20) as below:

(121) Q) p=p{l+¥o(A '},  p=(p/5V">0,
.

1
Yolz)={1+z}'"—1= Z az’+2(z),
=t

Vi€ C*([—2a,2a]), ¥o(0)=0, O0<y(<5/4 and
[¥ol<1/2  on [—2a,2d].

(1) {1+¢o(2)}”1—1=¢o(2)=i ajz’+2*¢z),  ¢;€C>([~2a,2a]).
=1

Under the assumption (1.5) (ii) the equation (1.18) is Friedrichs’ symmetric
hyperbolic system ([8], [13]), and the well-established theory can be applied to solve
(1.18) ([9)). This is the method of Klainerman-Majda [10], [11]. We proceed in the
same way.

We introduce the function spaces H', ' and Hj, of scalar or vector valued
measurable functions for /e R and fe R:
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(1.22)  H'sf(x)=(1+| &[22 f(&)e LA(R?), where
1 =(2n)‘3/2Je"*'7(x)dx =(Ff)&).

The norm | f|, is defined by !f|,2=J(1+|f|2)1|f(f)|2d€-

(123) H'= () H'"° is a complete metric space,
>0
(1.24)  Hyaf(x)<=(1+|x1)?Vif(x)e L*(R)=H° for 0<j</. Here />0 is an
integer. The norm | f|, ; is defined by

1f12= 2 J(Hlxlz)”lV"f(X)lzdx.
j=0

Only once or twice we use Hy= n Hy % and A'={fe B°(R®); Ve H'"'}.

For a (closed) domain Q< R" and a Banach space (more generally, a linear
topological space) Y we denote by C*®; Y) the space of Y-valued continuous
functions which are k times continuously differentiable on @ in the topology of Y. By
BYQ; Y) (resp. B*"%Q; Y), 0<0<1) we denote the subspace of f(x)e CK&; Y)
whose derivatives (6/0x)* f(x), |« | <k, are bounded on Q (resp. bounded and Hoélder
continous with exponent 6). If Y is a Banach space with the norm | |y, B**%(Q; Y),
0<6<1, is a Banach space with the norm || f|ly ; +¢:

125) @ Iflye=Ifl= X sup [(8/0x)f(x)ly,

lal<k x€£2

@) Iy xso=1 Neve= I ko1 +1IVESlg, 0<0<1,
lglle= Hglfo+51ip lg(x)—g(y)y/| x—yl°.

Similarly by M*Q; Y) we denote the space of Y-valued strongly measurable
functions f(x) on 2 whose derivatives (0/0x)* f(x) (in the distribution sense), || <k,
are essentially bounded on Q. M¥Q; Y) is also a Banach space with the norm defined
by (1.25) (i), if Y is a Banach space. We use the notation C*= C*(R3; C") and B*"’=
B*TO9(R3; CN).

For a function f(¢, x)e B([0, T}; H) or M°([0, TT; H") (i=1, 2) we put

lflz,T=0s<ltlgT L f@t, ), (or =sup B INE

The diagonal set of [0, T]* is denoted by 4, 4A={(z, £); t[0, T]}.

We use b; for the constant associated with the Sobolev inequality, b(/) (and K, L
in section 4) associated with the equation and C or C(M) in general. C(M) means that
the constant C(M) depends (mainly) on the quantity M. With a Banach space Y,
B(Y) denotes the space of the bounded linear operators in Y.



Incompressible Limit of Compressible Euler Equation 461

2. The Linear C.E.Eq. (I)

We consider the initial value problem of the linearized C.E.Eq. corresponding to
(1.18):

0
——q+0-Vg+ AypV-v=g,

ot
(2.1) P
—v+0-Vo+(1/p)Vg=h,
ot
(2.1), (4, 9)|i=5=40. 05) ,
PG, 6, x)=p{1+47"¢(4, t, )},
2.2)

PR, 1, x)=p{l+Yo(A™' P} =p{1+A7'qY, (A 7"§)} .

To solve the above equation we assume
[A.0}, () (go, )=, H' with an integer />3,
(i1) |uy],<a with a constant @ of Theorem 1.1,
[All @ a=(G HeMi(l, co) BYO, TT; H'™9), 123,0<<],
Q) @e MI(L, 00); MO0, T1; H' ) BA(L, o0); B0, T1; A' ).
(i) |d],<8|uyl, for (4, ne[l, o) x][0, T,
(i) @A) NGIE+pITI;<M] (j=3), <M? (4<j<),

d
@iv) (4p)~! <6—t+ﬁ-V>(j
(Note that (1) follows from (i).)
[A.2]; f=(g, hye Mi([1, w0); M°([0, T]; H* %), 0<j<k.

1
+7 IVGllo <bo{(1+A M)+ 1/2}M;<M,,
0

To estimate the solution u=(g, v) of (2.1)—(2.1),, we define an equivalent norm
|ul; of H’ by

e wi=3 (on (5o (o) 2, () ()

where (, ) denotes the usual inner product in L*(R?). If we put
(2.4) L= L(ﬁ)=a— R

and take a real valued function ¢(¢, x), an easy calculation proves
(2.5 % (¢w, wy=((LdIw, w)+(&(V - 5)w, w)+ 2Re(pLw, w).

Using (2.5), [A.1]; (ii)—(iv) and the equation (2.1), we obtain
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(S SO CRN e

+((vp)”'(V-0)g, @+ (A(V - D)v, v} + 2Re(g, q) +2Re(h, v) , ie.,

d
@6y IE'“I," <Molulo+1f1o.
This gives
2.7) lulo<eMl™*I(uy o+ t=s1 flo,7) -

Using (2.5) and (2.7) to estimate w=((d/0x)"q, (0/6x)*v), we have the following

LEMMA 2.1. Assume [A.0], [A.1], and [A.2), with I=3. Then:
(i) the linear C.E.Eq. (2.1)~(2.1), has a unique solution u=(q, v) satisfying [A.1],
(1)’ and the estimates

(2.8) () |ulj<e T POMug 4| t—s b ajduli s el S150}, 0<i<I,
(i) July<el T IOM Ay st £,

where |ulj_;,=0 for 0<j<3. The solution is unique in B°([0, T]; H")
B'([0, T}; H).
(ii) Assume further f=0 and

2.9) |ug |5 < My/m with some m>4.
Choose Te(0, T) so that there holds
(2.10) (i) M3=4e™OM|y |5,

(i) e™M2<2./2 .

Then the solution u=(q, v) of (2.1)~(2.1), satisfies the conditions [A.1], (ii)~(iv) with the
same M, and with T and M replaced by T and M=C(M, |u,|;).
(iii) If we assume further (except (2.9))

[A.3], @=(§, B)e MI(1, «]; B0, T]; B'*Y)),
then u=(q, v) satisfies the condition [A.1]; (i).

As the proof is quite standard, we omit it except a brief comment on the
condition [A.1] (iv). (For example, see Kato [9], Klainerman-Majda [11] or Mizohata
[13].) If (g, v) satisfies (2.1) (with f=0), it follows

0
(2.11) <a—t+v'V>q=—Ayﬁ(1+l‘1cj)V'v+(v—ﬁ)'Vv.
Combining (2.11), [A.1], (i) and (2.8) (ii), we can show that [A.1], (iv) holds for (g, v)

under the condition (2.10). (Note b, <b(/).) We also note that under the condition
[A.1], (i) and (2.10) there hold



Incompressible Limit of Compressible Euler Equation 463

pR2<p=p(1+2""q)<3p/2,
PI2<p=p{1+y(A7 P} <3p/2,
(2.13) Igllo<1ql2/4<]ul,/4<(2P) "% ul3/4
<)oV 2 2|21, <2a.
Now we give an improved version of Lemma 2.1.

LEMMA 2.2. Assume [A.0], [A.1], and [A.2), with [=3 and 0 <k <l Then the
solution u=(q, v) of (2.1)2.1), satisfies the condition [A.1], (i). In particular, the
claims (1) and (iii) of Lemma 2.1 hold with the same constants T and M of Lemma 2.1
without assuming [A.3],.

(2.12)

Proof. First we consider the case f/=0. By Lemma 2.1 u=(g, v) belongs to
MO0, TP HY) ~ B°([0, TP; H'™'), and then by the interpolation theorem to
B([0, TF; H'™'*%), 0 <@ <1. By the interpolation, we can define ||, , for 0<f<1
and 0<j</~—1. Then (2.8) (ii) implies

(2.14) )iy o< ™M u®) -1 16, 7, 2e]0, T1,

where the constant ¢ is independent of 6 (0, 1). Since |u|,_;., iS continuous in
0€[0, 1] for ue H' and |u|,_, 1, is uniformly equivalent with |u|;_, ., for 8€[0, 1],
|#]{_ 14 is continuous in O &[0, 1] for ue H'. Since u(r’) and u(¢) belong to H', (2.14)
gives

(2.15) lu(t) ;<" T u(yf;, 1, rel0, T].

This implies | «(¢) |; is continuous in [0, 7. Since u() is weakly continuous in H', u(f)
is strongly continuous in the topology of H'. If uye H’, 0<j<I, u(f) is strongly
continuous in z&[0, 7] in the topology of H’. The strong continuity in the variable s

is proved similarly.
Denote the solution w(f)=u(t, s) of (2.1)+2.1), with /=0 as

(2.16) u(®)=U(t, 5; Duy=U(t, 53 4, @)uy, ,

and define by (2.16) the evolution operator U(z, s; 4, @) associated with the initial
value problem (2.1)-(2.1),. Then the solution u(#) of (2.1)—(2.1), with f satisfying
[A.2], is described as

(2.17) u(4, t, 5)=U(t, s; 4, Buy + Jt Utt,r; 4, @)f(r)dr .

N

This gives the conclusion.
REMARK. Define differential operators A(3, Ap, A/p, V) and B(ip, /3, V) by
(2.18) A, Ap, 4/p, V)=0-V+B(p, 4/p, V) ,
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. 0  Ayp'V .

(2.19) B(4p, 4/p, V)=< . )EB& L A/P) V.
WAV 0 (4p, A/D)
The followings are trivial properties of U(t, s; 4, §, 0)=U(t, 5; A, #):
(2.20) Ut r; , YU(r, s; 4, dy=U(t, s; 4, i),
d O

(221) ‘E U(tv S5 A’a lI): ——A(l), A'pa 'l/p’ V)U(t’ S, is II) s

d Y oam o
(2.22) e Ult,s; A, W)=Ult, s; 4, ) A(D, Ap, A/p, V).

Here p and § are calculated by the formula (1.19)—<(1.20) from 4.
Finally we state the continuous dependence of U(s, s; A, &) on d@=(q, #).

LEMMA 2.3. Let i=(§, ?) and ii, =(§,, 0,) satisfy [A.1], and uye H*, 3<k <l
Then we have

(2.23) | UL, s 4, @)ug— U(t, 55 A, g |y -
<Clt—s|el sPOCOD) G 3 Loy 7l it e -

Proof. Using (2.21) and (2.22), we obtain
d
(2.24) A Ut r; 4, a)U(r, s; 4, i)

=Ul(t,r; 4, 'Z){(ﬁx _@'V*'B«él —4)&1(1_ I‘ip A0 l‘i)
+(q, —5)51(1_141, ’1_1‘1), V)} Ulr, s; A, 1y) ,

where V,, ¢, € C*([—2a, 2a]*). Integrating (2.24) and using (2.8), we obtain the
desired result (2.23).

The following Lemma 2.4 is a version of Lemma 2.2 and needed to solve the
linear C.E.Eq. (1.12)"~(1.12)}, 1 <j<k. The proof is similar to that of Lemma 2.2.

LEMMA 2.4. Let (g, fi, D)4, t, x) satisfy the condition
A1), @ @G i 0)eB(4, o) B0, T} H')
N CO(4, co); B\([0, T}, H'™Y), (=3
(i) [1(6/0t+0-V)G/P, BP0, 1 <boh

Consider the initial value problem of the linear C.E.Eq. (2.1)~(2.1), with the initial data
Uy ="(qo, vo) € H', the non-homogeneous term (g, h) =0 and the coefficients defined by

ﬁ()" Z X)=]5(1 +’{_1q) ’

(2.25)
AU, x)=p(1+ A7 D)™,
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Then there exists a unique solution u(2, t, x)=(q, v) of the above equation ((2.1)~«2.1),
with (g, h)=(0, 0)) satisfying [A.1'], , with some A= A. Moreover u satisfies the same
estimates stated in Lemma 2.1 for Lle[A, w0).

REMARK. We describe the above solution u as u= U(4, t, s; §, fi, 0)u,. This is
the definition of the evolution operator U(4, ¢, s,; §, fi, U) associated with the above
linear C.E.Eq. Then U(4, ¢t,s; §, &, 0)— U(4A, 1, s; §,, fi;, §;) satisfies the similar es-
timate as (2.23) for Ae[A, o), where both of (¢, 4, 0) and (§,, f,, §;) are assumed to
satisfy [A.17, 4.

3. The Linear C.E.Eq. (IT)

We study the evolution operator U(t, s; 4, 4, 0) in detail. First we consider the
linear C.E.Eq. corresponding to the case (4, #)=(0, 0):

0
——q+AypV-v=0,

ot
3.D ;
(3.1), (9> V)] i=s= (0> Vo) -

Putting u="%(¢q, v), we rewrite the above equation as below:

(3.2) = —B(ip, A/p, Vu=—AB(p, 1/p, V)u ,

E“u
(3.2)0 ul,=s=uo="(qo, o) -
The symbol B(¢)=B(@p, 1/p, &) of B(p, 1/p, V) is expressed as

0 /7S TSR 1

&\/p 0 0 0
(3.3) B(©)=

&l 0 0 0

G 0 0 0
We put

p=(p/p)'? and v=(pp)'?,
G4 e:(D="(£v,'), E=¢/él=e(0),
es(H="(x1,v')

(3.5) P& =2v) 1)< et (Ees(O) =2 P + (D),
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I P
=+
<
I+
<
[ )
I+
<
W

A
2/" 6.‘ j
3V

(3.6) Po(O)=1-Py(J).
Then P,(¢) and P,(&) are projections in C* and satisfy

B(é)Pl, 1(5): +4 ¢ |P1,¢(é) s
B(&)Py($)=0.

b
DO | =
+ I+
()] Ay

]

I+

3.7

If we take an orthonormal set {e,(&)=¢&/| |, e,(£), e5(¢)} of R3, we have

3
(3.8) Py(&)= _;2 Caeo (E0eo 8, eo, (9)="(0, "e;(2)).

We define the Fourier transform (&)= Fu(£) by
39 W)= (Fuy&)=2mn)~* 2fe“""éu(X)dx -

Noting that iB(&) generates a unitary group in C*
(3.10) e By e imlElP (&) + Po(d),
we define an evolution operator Uy(f) acting in H' by
(3.11) Uy()=F e #BOF
=e~BP VBN = U(t; p, p) .
Clearly we have
(3.12) | Ug(Huy |, <a(v)|uy |, for u,e H',
and the unique solution u(4, f) of (3.1)~(3.1), is described by
u(A, )= Ux(A{t — ), .
We define projections P, and P, by (3.13). Then they have the property (3.14):
(3.13) P,=F'P(OF, j=0,1,
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(3.14) (i) |Pul;<a(v)lul,, j=0,1, Py+P =1,
(i1) Piu=0=Piu=u=sVxv=0,
(1i1) Pu=0<Pu=u<sqg=0 and V-v=0.
() U()Py=PUy()=F,,
) UOP =P Uy(0)=F ' (Fe*™*P, L (O)F.
The following Lemma 3.1 will be proved in the Appendix (I).
LEMMA 3.1. Let ueHj, B>1, or ue H' (I>2). Then there hold
(3.15) I Uo(OP gl -2 < CA+[21)" Y ttg |1, »
(3.16) NUo(O)P 5 4 50 as t—>+ow, O0<o<l1/2.
Second we consider the linear C.E.Eq. corresponding to the case A=0, i.e., the

linear transport equation with a vector field 7= o(¢):

0
(3.17) a—tw—i—ﬁ(t)'Vw-——O,

(3.17), Wli—s=wo .
The (backward) characteristic equation associated with the equation (3.17)—(3.17), is

described as below and easily solved:

d
(3.18) —rX=—0X), X|,_,=xeR’.

We denote the solution X(¢, s) of (3.18) by
(3.19) X(t, 5)=X(t, s, x; 0)= X(¢, s5; D)(x) .

The mapping X(¢, s; #) is a C' *-diffeomorphism in R® and has the following
property.

LEMMA 3.2. (i) If (4, tye Bi([1, c0); B°([0, T1; H'~%)) with 1=3 and 0<j<I,
then X(t, s, x; %) e C([1, o0); C°([0, TT; C'~279)), 0<j<i—2.

(i) If we assume further ©eB°(1, 00]x[0, T]\(c0, s); B'7274)), then
X, s, x; 5) e CO([1, 0] x [0, TP; C'~279), 0<j<i—2.

Proof. We prove the latter part. First we note
(3.20) FX(L, 5, % 0) = x| < ||Bllo, ¢l £ =8| <by| Dy, ¢l £—5] .

Then, by a simple calculation we obtain
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(3.21) | X(t, s, x; D(A) — X(2, 5, x; H(p)) |
<|X(s+e 5, x5 0A)— X(s+¢, s, x; 0(w)|

+ Jr [v(4, r, X(r, s, x; HA))— D, r, X(r, s, x; 5(A)) | dr

t
+L f | X(r, 5, x; 5(A) — X(r, s, x; {p)) | dr,
ste
L>b, sup | 5(A)] 5.2 sup NIy 7= IVEA o, 7 -

If we take 4 and u so large that the first integrand is majorized by #, then it follows
from the Gronwall inequality

(3.22) | X(t, 5, x; 5(A)) — X(¢, s, x; 6(p)|
<et!'=*W2b, sup | ], 7&+ T} .
A

This shows that {X(z,s x;5())} is uniformly convergent as Ai—oco, if
(4,5, x)e[0, TP x R>. Thus X(t,s, x; 5(A)e C(1, o] x [0, T; C°(R3). Differ-
entiating (3.18) by x, we obtain the desired results.

The solution w(f, x)=w(t, s, x) of (3.17)~(3.17), is uniquely determined and
described by

(3.23) w(t, s, x)=wo(X(t, 5, x; D) =T(1, s5; T)w, ,

which is the definition of the transport operator (¢, s; 7). In a similar way used to
prove Lemmas 2.1 and 2.2, we can show

LEMMA 33. (i) Ler 5eB°([0,T), HY) with 1>3 and wyeH’ for some
J,0<j<!I. Then there exists a unique solution we B'([0, T1; H%) of (3.17)~(3.17),
described by (3.23). w=T(1, s; 0)w, satisfies

(3.24) | T, 53 B)wg | < el 1= bDIThr) gy | t,selo, T].

(i) If oA, 5ye MU([1, c0); B[O, T); H'7J)) with >3 and 0<j<l, then
w(d, t, s, x)y=T1(¢, s; D(A))w, enjoys the same property as ©.

(i) If 5eB°(1, wo}x[0, T1\(c0, s); B'~2) in addition to the assumption of
(i) and wye H*, then T(1,s;)wye B(1, 0)x[0, TP; H*) for 0<k<I-2, and
eB([1, o] x [0, TP A% for I-1<k<lI.

(iv) Let wye HY. Then T(t,s; d)wye MI([1, oo); B([0, T, HYy ™Yy with 0<j <!
(resp. B%([1, 0]1x [0, T; HY)) under the assumption of (ii) (resp. (iii)). The cor-
responding estimate of (3.24) holds with | |; replaced by | |, ;.

(v) If ¥ and 0, satisfy the assumption of (i) (or (ii)), then there holds for 1 <k <l
with m(k)=2, 1<k <2, and m(k)=k, 3<k<l:
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(325 |T(ts;0)we— Tt S 5)Wo -,
t
Sce“*ﬂb(l)('l;h.r*'wl |l,1)| Wo Im(k)f I D— i;l Ik— L dr , 1 _<.k£l .

The same estimate also holds with | 5(r)—0,(r) |, -, replaced by |5(r)—0,(")|x—, -
Proof. The claims (i)(iv) are easy consequences of Lemma 3.2 and the
interpolation theorem. The claim‘(v) follows from (3.24) and an equality
(3.26) 5; T(t, r; )T (r,s; 6,)=T(t, r; 0){0, ' V—0-V}T(r, s;7,) , i.e.,
t

T(t, s;0)~T(t, s 0,)= —f T, r0){0,-V—0-V}T(r,s; 5,)dr.

s

Third we define an operator V{(¢, s; 4, 0)=V(¢, 5. A, p, p, 0) which approximates
U(t, s; 4, 4, D)y when A— o0:

(3.27) Ve, 534, 0)=Up(Xt—s); . PP+ PoT (1, 5, 0) .
Remembering (2.22) and noting the equality (which follows from (3.14) (iii))
(3.28) B(p, 2/p, V)Py=0,
we have the following equality (on H')
(3.29) U6,V (5, )
r
=U(t,r; 4, 4, ){0-V+B(G, py, VI}Up(Ar—s) P,
+U(t,r; A, G, D){0-VPy—Py(5-V)}T(r, 5; D) ,
I :’{/ﬁ*i/ﬁ=‘7¢1(l_lq)/ﬁ >

where the function ¢, € C*([—2a, 2a]) is defined in (1.21) (ii) with k=1, 0 < ¢, <5/3.
From (3.29) it follows

(330) U(ta AN ia Cj, i})— V(t’ 5, 2, l;)

= —j Ult, r; 4,4, D)A(5, g, py, VIUo(Alr —s))Py dr

t
+J‘ Ut,r; 4 G, 0){Po(0-V)—3-VP} T(r, s; D) dr .
Putting

(3.31) Q(r, 53 8)={Po(i(r) V)= (5(r) V) Py} T(r, 5: )

we set the following Volterra equation for S(¢, r; 7):
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(3.32) S(t, s; 0)— J' Q(t, r; D)S(r, s; D)dr=20(t, 5; 9) -

To solve the equation (3.32) we need the following Lemmas 3.4 and 3.5. Lemma 3.4 is
proved by using Lemmas 3.3 and 6.1 (Appendix (II)).

LEMMA 3.4. () Let 5eB[0, TT; H) with 1=3 and w,e H* for some k,
0<k <l Then Q(t, s; B)wy e B0, T?; H*) and satisfies

(3.33) | Q(1, 55 B)wol ;< d(DIB(2) |,€" > POPET wy | ;.

(i) If &4, e Mi([1, 0); B°([0, T, H' %) for 0<j<l! and wyec H*, then
Q(t, s, BH(ANw, enjoys the same property as ¢ with [0, T and [ replaced by [0, T} and k
O <k<l).

(i) If e B°([1, o] x [0, T1\(co, 5); B'~2*%) with 6>0 in addition to the as-
sumption of (ii), then Q(t, s; 5(2))wy € B([1, 0] x [0, T]*\(co, A); H*) for 0<k <I-2.
The same holds for |—1 <k <[ with H* replaced by H*.

(iv) If woe Hy (1 <B<3/2), then the above claims (i)—(iii) hold with H* (resp.
H") replaced by HY (resp. HY).

(v) If ¥ and ¥, satisfy the assumption of (i) (or (ii)), then we have

(3.34) | Ot, 55 D)wo — Q(t, 55 U)W | — 4

<Ct—=sl(tol,2+19; [, 2 M wo lmmJ [8(r)—0,(r) - dr

with m(k) defined in Lemma 3.3 (v). The same estimate holds with |6 —70, |,_, replaced
by 10=7, k-1

LEMMA 3.5. Let §e M1, wo); B0, T); H' ) with (>3 and for 0<j<l.
Then, the equation (3.32) has a unique solution S(t, s; ) enjoying the same properties
(i1)—(v) stated in Lemma 3.4 for Q(t, s; 7).

Proof.  Associating with the operator Q(z, r; #) in H*, we define an operator Q
acting in B°([0, T]; H*) (0<k <!) by
(3.35) Q.S )(Z)ZJ Q(t, 73 0)f(rydr .

Clearly Q, e B%([0, T1; B(B°([0, T]; H"))) and satisfies
(3.36) | QS (D) [ <[t =s]eD] D], 7" POt [y 1) 0<k <],
An easy calculation shows

t—s|" s
(3.37) |Qs"f(t)|ksﬁ{c(l)ll7|z.1‘}"e't_slb(mul”|f|k,i‘-
Thus we can obtain the solution S(z, s; §) by means of the convergent Neumann
series:
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(3.38) S(t, s;0)=Q(t, 5 0)+ Jt Ot 1; 9X1— Q) ™' Q(, 53 D)r)dr

=0(t, s, 0)+S,(t,s; D).

S(t, 5; )w, (resp. S, (2, s; ©)) is continuous in (¢, s)e[0, T in H* for wye H* (resp. in
B(HY)), 0<k </, and satisfies

(3.39) [S(t, s; D)W |, < Cel'=51C10hr Wy |, 0<k<!.
The properties of S(t, s; §) are proved by using the expression (3.38) and Lemma 3.4.
From (3.30) and (3.32) it follows

t

(3.40) Ult, s; A, g, 0)=V(t, s; 2, D)+ J V(t, r; A, D)S(r, s; D)dr

+ Wit s; 1) +J Wit, r; )S(r, s; Ddr ,

t

(3.41) Wi, s, )= —f Ut, r; 2, WA(G, g, pr, VIUo(A(r—s))Pdr .
Noting that A(7, 4, p,, V) is a differential operator of 1st order with coefficients
(@, §, p) e MI([1, o0); BY([0, T); H'9) for 0 <</, we apply Lemmas 2.2 and 3.1 to
investigate the operator W(t, s; 4). Then we have

LEMMA 3.6. Let ii=(§, ©) satisfy [A.1], and uy=(qy, v,) € H'. Then:
() W, s; 4, @(A))u, enjoys the same property as (4, t) with | and [0, T] replaced
by I—1 and [0, TP. Moreover we have

(3.42) () W, s 4, @A) li—y <CM) [y,
() | W, 85 A WAy |-, —5—0 uniformly in (t,5)€l0, T]* (6>0), as

A—00.
(1) If uye Hy for some k, 3<k<l, and p, 1 <B<3/2, then there holds
(3.43) | W(t, 53 2, W(A)g x—3 < C(M)) 1y |y 2~ " log(1 + A 1—51) .

Proof. We have only to prove the claims (3.42) (ii) and (3.43). Lemma 3.1
(3.16) implies |A(F, G, p;; VIUp(A(r—s))Piuy |30 as A—-o0 uniformly in
(r, s)e[0, TP if [r—s|=e>0. Since U(t, r; A, §, ) is uniformly bounded in H'~3, the
same holds for U(t, r; A, §, 0)A(- - - YUp(A(r—s))P,us. Hence | W(t, s; Auy ;30
uniformly in (¢, s)[0, T]* as A—co. By using the interpolation theorem, we obtain
the desired result. (3.43) follows from Lemma 2.2, Lemmas 3.1 (3.15) and the defini-
tion (3.41) of W(t, s; 4, #(1)).

Combining Lemmas 3.1 and 3.3-3.6, we obtain

LEMMA 3.7. Assume that i=(q, ) satisfies [A.1], and uy e H' with [>3. Assume
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further that iie B([1, 0] x [0, T1\(c0, s); B'72*%) for 0<6<1/2. Then U(t, s, 4; ii)u,
satisfies [A.1], (i) and belongs to B°([1, 0] x [0, T1*\(c0, 4); B'"2*?) for 0<5<1/2.
Moreover u(4, )= U(t, s; A, il(A))u, converges to u(oo, t)=(q(0), v(c0)) weakly in H'
uniformly in (t,s), if |t —s|=¢€>0. u(c0)=(g(o0), v(0)) satisfies

3.44) ¢q(o0,)=0 and V- v(cc,)=0 for txs,
00 [0t +B(00) V(o) + P'S(¢, 5; v(00))uy =0, txs.
Here P’ denotes the projection into the rotation free subspace, Pyu=(0, P'v).
Proof. From (3.27), Lemmas 3.1, 3.3 (v), 3.4 (v) and 3.5 it follows
(3.45) ¥ (t, 55 A, DAy — Py T(t, 5; 5(00)) t4y];_ 30,

jt Vit r; A, H(A)S(r, s; (A))uydr

s

-0

-3

— f P, T(t, r; f{c0)S(r, s; D{co)updr

uniformly in (r, s) as A— 00, if |t —s|>¢>0. From Lemma 3.5 (the strong continuity
of S(r, s; 5(4))u,) and (3.42) (i) it follows

(3.46) W, s; 4 dW(Augli—,-5—0, >0,

-0, as A—-ow0,
i-1-8

jt Wz, r; A, d(A)S(r, s; H(ANuodr

uniformly in (¢, s) € [0, T]?. Hence by (3.40) u(4, 1)= U(t, s; A, @(4))u, converges to the
limit u(co, 1) in B!~ as A— o0. Since u(4, ) is bounded in B°([0, TP; H')< B°([0, TP;
B'732) for le]l, o), we see that u(A, f) tends to u(co, ?) in B' 7?7 0<d<1/2, as
J— o0, by virtue of the interpolation theorem. The convergence is uniform, if
|t—s|=e>0. Clearly u(4, t) converges to u(co, ) weakly in H' uniformly in (1, s), if
|t—s|=¢>0. The expression (3.40) gives

(3.47) u(oo, t)=P,T(t, s; T(00))u,

+ f! P, T(t, r; 5(c0))S(r, s; t{00))udr .

This proves P,u(oo, ) =0, which implies the first part of (3.44). Differentiating (3.47)
and using (3.32), we obtain the second equality of (3.44), that is,

(3.48)  0u(c0)/dt + 5(00)- V(o) + (1 — P)S(t, s; H(oo)uy =0,  1%5.

REMARK. We have used the operator V(1, 5;.4, 8=V (1, 5; Ap, 4/p, D) to approx-
imate U(s, s; 4, §, 7). However we can give an exact decomposition of U(t, s; 4, §, 0)
as the product of the pure transport operator and the pure propagation operator.
First we consider the propagation equation
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0
——q+ AP, x)tr{C(t, x)Vv} =0,

ot
(3.49) 2

8—tv+/1/p~1C(t, x)Vg=0,
(3.49), (g, v) Iz:s:(%a Uo)=1Up ,

where C(t, x) is a smooth 3 x 3 matrix. Since this equation is symmetric hyperbolic,
we have the evolution operator Z(t, s; C) such that the solution w(z, s, x) of (3.49)-
(3.49), is described as

w(t, $)=2Z(t, s; APy, APy, Oy .

We take the solution u of (2.1) and note the equality

(3.50) V. (u(t, X(s, t, x; D))= t<g—i{>(qu)(t, X(s, t, x; 0), ie.,
(3.50y V. T(s, t; 0yu=T*(s, t; 0)T(s, t; 5}V, ,u) where

T*(s, t;0)= t<%>(s, t, ;7).
We put
(3.51) u ()=T1(s, t; D)u(?) .
Then we obtain (with the notations defined by (2.18) and (2.19))
(3.52) ait u, =T(s, t; 0){ — B(Ap, /P, V Ju(t)}
= —T(s, t; O)B(Ap, /p) T*(t, s; O)T(t, 5, )V )
= —{B(AT(s, t; 0)(p, 1/P)) - {T (s, t; D)T*(t, 5; 0)}V,u, .
Thus, if we put
(3.53) pi(t, 5, x)=T(s, ; D)p() ,
Ay(t, 5, x)=T(s, £; D)g4(1) ,
C(t, 5, x)=T(s, t; 0)T*(, s, *; D)(x),
then we have w(t, s)=u,(t), i.c.,
Z(t, 55 APy, Alpy, Cuug=T(s, t; D)u(t) .
This gives
(3.54) U, 5; 4, 4p, =T, 55 )21, 53 4y, My, C).
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4, Proof of Theorems

Proof of Theorem 1.1. We define the approximating sequence for the solution
by

@1 D u=(q,v)=U(,0; 4, g0, o)y,  Uy={(qo, Vo),
}'l) unz(qm un):U(t, 09 }“9 qnfl’vn—l)an n=2.

Then u,=(q,, v,) satisfies

0
a_tqn+un—l 'an+lypn~lv.vn=0

4.2) 5
a—tv,,—+—v,,_1 Vo, +(4/p,- )Vq,=0,
(4.2), u, I t=0= 140> Do) ,
(4.3) pn-—lzp-(l_{")’_lqn-l)’ anlzﬁ{l‘*'l//o('{_lqn—x)}-

We define the equivalent norm |u,|; of |u,]|, by

12 __ -1 a ) a '
(4.4) lu, —Esl <(W’n*1) (E) i (ﬁ) q")
, ay (oY
+'aZ|Sl (p"_1<g> Um <6x‘> Un> .

Let u, and u, _, satisfy [A.0], and [A.1],, /=3, respectively, (and also (2.9) hold) with
suitable constants M,, M, M, and m. Choose Te(0, T] satisfying (2.10). Then, by
virtue of Lemmas 2.1 and 2.2 we can show that u, satisfies [A.1]; for (4, f)e
[1, o0) x [0, T] with the same constants M, and M,, and then satisfies [A.1], with a
suitable constant M = C(Mj, |u,|;). We have only to divide [0, 7] into subintervals
(6o, 1], €™Mt — 1, |B(D) |, -5, <1, 1 <i<m,and apply (2.8) in [1,_,, t;] for i=
1,2, - - and j=6,9, - - -. Thus we have

4.9 lu, |5 < M,/4 for (4, Hell, 0)x[0, T],
(4.5 0P) N gulir+hlvir<M?  for Ae[l, ).
From (4.2) it follows

0
(46) <6t +Un.V>(qn+l —qn)+’l‘ypnv'(vn+l _Un)
= _(Un_vnw1).an_Y(qn_qn‘1)V'vn=gn ’
0
(E+vn'v>vn+1 ——Dn)+(i/pn)v(qn+1 _qn)

= —(U,,—Un_ 1) ‘an+(pnpn—l)_ l{qnw1(j’_1qn)_qn— 1'/11(}'_ lqn—l)}vqnzhn ’
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(46)0 (qn+1_qm vn+1_vn) |t=0=(09 0) .

Applying Lemma 2.1, (4.5) and the Sobolev theorem, we obtain

(47) Iun+1 _un (/)SeMOttl(gn’ hn) l(,)‘T
<eMYKM,\u,—u,_,|;, or
(47)/ |un+l_unIOSeMDl[LM3|un—un—1|07 j'e[la (D)

Here K and L are constants depending only on y, p and p. If we take T,e(0, T]
satisfying

(4.8) eMToT LM, <1,

then {u,} converges in H°=L*(R?) uniformly in (4, £)e[l, o) x [0, T,]. The estimate
(4.5) and the interpolation theorem show that {u,} converges in H'™°, §>0,
uniformly in (4, ?):

4.9) u(A, y=s-lim u,(4, 1) in  B([l, o0); B([0, T); H'"?).

By virtue of (4.5)" u, also converges weakly in H' to the same limit u(4, f). Hence
u(4, 1ye M°([1, o0); M°([0, T,]; H')). By the same argument as in the proof of Lemma
2.2, we can prove that [u(4, 1), is continuous in t€[0, T,]. Thus u(4, £)e M°([1, c0);
B°([0, T,); HY)). By successsive differentiation by 4 we obtain

(4.10) u(d, e M([1, ); B0, T,]; H'7Y), 0<i<l!.

Letting n—o0 in (4.2), we see that u(4,r) satisfies (1.18)—(1.18),, i.e., u(4, )=
U(t, 0; 4, u(4))uy. The continuous dependence of the solution u(4, £) on (4, ;) follows
from Lemmas 2.2, 2.3 and the Gronwall inequality.
Lemma 3.7 shows that u,(4, t)e B°([1, o] x [0, T]\(c0, 0); B'~2*9), 0<d<1/2.
From an easy interpolation it follows with a suitable constant 5, >0
(4.11) (A, ) = U4 Dl 245
<by |u,(4, ) —u (2, |7 " (A, ) —u, (4, )]G
<bQLMY Y u (A, )—u (4, D], with
=2 —n)(1-25)/, 0<d6<1/2, 32<n<2.
This shows {u,(2, )} converges in B'~2*% uniformly in (4, f)e[1, oc] x [0, T,]\(co, 0).
Combined with (4.10) and Lemma 3.7, this proves (ii).

The solution u(4, 1)=(g(4, 1), v(4, 1)) of the equation (1.18)—(1.18), is described
as

(4.12) u(i, )=U(t, 0; 4, q, v}ty .

Letting A— 00, we obtain by virtue of Lemma 3.7
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(4.13) (o, t)= P, T(t, 0; o(00))Poug
+ J‘ Py T(t, r; v(00))PyS(r, 0; v(00))uy dr .
0

Hence u(o0, £)e B°([0, T); HY) n BY([0, T]; H'~') and satisfies
(4.13), u(o0, 0)= Pyt ,

(4.14) %u(oo,t)nLv(oo,t)'Vu(oo,t)

={0(00)-VPy— Pyt(o0) -V} T(t, 0; o(0)) Pty

+ f {v(00) VP, — Poifo0) - V}T(t, r; v(00))PyS(r, 0; t(00))uedr
0

+ P S(z, 0; v{(00))u,
= —(1—Py)S(¢, 0; {c0))u, (see (3.32)).

In the following we use notations P and (1 — P) for the projections of u="(g, v) into
the divergence and rotation free parts of the fluid velocity v, respectively. Then we
have

g 0(00) + p(30) - Vi 00) + (1 — P)S(z, 0; (00 ))ug =0 .

(4.14) a

Since the last term is rotation free, it is described as
(4.15) (1—P)S(1, 0; v(c0))uy=1/pVq™(t, x) € BY([0, T]; HY),
(4.16) g =pGV-(1-P)S(¢, 0; v(c0))y,

e C%[0, T,]; WES(R3) A BY).

loc

Here G is the inverse (fundamental solution) of — A (Laplacian). The last assertion
(4.16) is a trivial consequence of the Sobolev embedding theorem.

REMARK. We have used the well known results about the existence and
uniqueness of the solution of the I.E.Eq. to claim (1.8) and (1.9). The L.LE.Eq. will be
studied in a more conprehensive framework in the forthcoming paper by the author

[3].

Proof of Theorem 1.2. We prove (1.16) under the assumption y,e H' n H¥*2,
1 <k <[/-2. First we note that under our assumption
k+2 . .
4.17) Vq® =p(1—-P)S(t, 0; v°)uee () BY[O, T,1; H;™ 279
j=0
for any f<3/2, as well as v®. This is a consequence of Lemmas 3.4 and 3.5. Since
Hjy = W"*3(R") for B> 1, we have
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k+2
(4.18) q”€ () BA[O, T,); H***7Y),
j=0
by virtue of the Sobolev embedding theorem. We put
g2, )=¢°(4, D+ 1"'g=()+A7'q' (4, 1),
v(d, =14, )+ v+ 2" (4,1,

where ©0(4, £)="(q°, 1°) = Uy(A) P, u,. u° satisfies

(4.19)

(4.20) |04, )|, <blug |, and  [[u(4, D) <blutgli+z.2 -
Substituting (4.19) into (1.18), and using (1.11)—(4.14) and (1.19)—(1.20) we
obtain an equation (cf. (1.12)!):

a [¢3) 1 o0 1 1 0 ~ 0
a—t(q +g)+v-V(g*+qgY )+ AypV- vl = —Av-Vg® — AypgV -0°,

421 0
#.21) Evl-i-v‘Vvl+l/qu1+vl'V(v°+v°°)

== U +0°) Vo' = 20 Vo> — A/(yp)gd(q/)q° ,

(4.21) @*+4", )] ,20=(0,0).

Here (g, v) is the original solution of (1.18). Rewrite (4.20) as the equation of w=
‘(¢", v') with the initial data w,='(—¢>, 0) and the inhomogeneous term f="'(g, h).
Then by the argument of section 2, the solution w is expressed as

t

4.22) w=U(t, 0, 4, u(A)w, + j U(t, s, 4, w(A)f(4, s)ds

0

+ ft Utt, s, A, u(A)10, v1 - V(©° + v°)s))ds .

0
By virtue of (4.18) and (4.20) f satisfies

(4.23) | f(A ) oy <A+ 28) "M ttg s 2 -

Thus we can show the desired estimate for w.

If we assume that the solution u="(g, v) has the expansion (1.10) then we obtain
the linear C.E.Eq. (1.12)/—(1.12)} for u/='(qi, v¥), 1<j<k. Applying similar ar-
guments as above, we have the desired results (1.14)7 and (1.15)/, 1 <j<k. Thus we
have completed the proof.

5. Appendix (I). The Proof of Lemma 3.1

We have only to prove the following

LEMMA 5.1. Let n=2,1=[n/2]+1 and >[n/2]. Take ¢ satisfying
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(5.1) dw)eC™(S" ™1, m>n/2,
and define v(t, x) by

(5.2) ut, x)= f e Sty EDEdE,  ue HYRY).
Then v(t, x) satisfies
(5.3) [ <by gl @llalul, g1+ @72 0<j<l—n/2.

Proof. We have only to show (5.3) for the case j=0. First we show two
lemmas.

LEMMA 5.2. There exists a unique continuous restriction mapping from H(R")
to C%(0, o0); L2(S"1)) defined by (5.4) and satisfying (5.5):

5.4) HY(R" su(pw) ——u(p+) e C°(0, oo)_; L3S,
(535) @) Julp-)lo=<bp "1+ p) ulgl|Vuli,

(i) rlu(p')lép""“jdﬂﬁb2|u|5,;’

1

1
(ii) fIu(P')|5P"_1_”dp<b2|ul§, 0<y<n/2.

4]
Proof. (i) There exists a trivial inequality:

14

(5.6) |u(pw) | <|u(tw)| + J | w- Vu(sw)|ds .

p

Integrating both sides on [p, R], using the Schwartz inequality and then choosing a
suitable constant R, we obtain

4 1/2 X 1/2
(5.7) |u(pw)|2_<_2<J |u(tw)|2dt> (J |Vu(tw)|2dt> .

Multiplying p"~! and integrating both sides on S"~!, we can show

(5.7y o l)ﬁ u(pw)| Zdws.sf [u(&)|2dE+e~ lf | Vu(&)|2d¢ .
1¢l=p

[&l=p
Taking ¢> 0 appropriately, we have (5.5) (i) for j=0. The continuity of u(p-) follows
from the continuity of the Lebesgue measure. The case j> 0 is treated similarly.
(ii)) Let >0 and O<a<t<]1. A simple calculation gives
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(5.8) J[ Bs? Y u(sw)|*ds

t

=[s"lu(sw) 17}, — f v |u(sw) | *ds
. ds

t 1/2 t 1/2
St”lu(tw)|2+2{fsﬂ_llu(sw)lzds} {Jsﬁ+1leu(sw)|2ds} .

a a

This implies
t t
ﬁf sP 7 Hu(sw) | 2ds < 2tP| u(tw) |? +4/,BJ s2 7Y Vu(sw) | %ds .

0 0

Integrating both sides in ¢ on (1/2, 1), we have

1

1 1
(5.9) BJ /Zs”_llu(sw)lzds S8J tﬁ+1|u(tw)|2dt+4/ﬁf sPT Y Vu(so) | 2ds .
0 0

1/2

Putting f=n—2 and integrating (5.9) on S" ™!, we get (5.5) (iii) for y=1. In a similar
way we get (5.5) (iii) for a general integer y [0, #/2).

LEMMA 5.3 (Sobolev). Let W P(R") be the space of measurable functions u(&)
satisfying

(5.10) lule o= 2 [A+1E1 V)| < 0.

lal<k

Assume k—njp<p—n/2 with 2<p<o. Then we have the continuous inclusion
H¥(R™ < WEP(R") with

(5.11) |“|k,p,15b’u|p,l-

Proof of Lemma 5.1 (continued). Let ue H;(R") with />[n/2]+1 and > [n/2].
Then, the integration in (5.2) converges absolutely and there holds

(5.12) [o(t, X) | < Plloldlo,; -

By virtue of (5.5) we can rewrite (5.2) as

5.2y u(t, x)=j f et e!?* 2 w)i pw)p" " *dpdw .
sn-t Jo
Noting the estimate (5.5) and the equality
{_i([+x,w)*la/ap}keip(t‘i'xwu)=eip(l+x*(/)) ,
and integrating by parts in p k=[n/2] times, we obtain
(5.13) lo(t, Y| <CU—| XD Ploldleys  t>]x].

Hence the proof of Lemma 5.1 is completed, if we prove
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(5.14) lo(t, )| < Clx|” " D2 @il ], -

Take x=(0, - -+, 0, »), | x|=y, and the partition {y_,, x¢> %1} = CF(R) of unity
on [—1, 1] satisfying

supp 1, =(— 14/ 2,j+1/2), %20, Yy=1 on [-1,1].

Then, split v(z, x) into three parts v;, j=—1,0, 1, by

(5.15) uit, x):j e""’p”_ldpj

Py {w )i pwydew .
0 sn-1

Putting
w=(w'o(t),7), weS" 2, o)=(1—-1)?,
and using the equality
{Gpy)~tojory e =P,

we obtain

x
volt, X) =f J e p" N —itpy)~*dpdeS
sn-2

g J P00 ol ol Dipeo)ole

This proves

(5.16) |06(t, )< Cy ™ o llil Pllid @it -

In order to estimate v,(¢, x) (and v_,(z, x)), we apply the stationary phase
method (see €.g. Matsumura [12] Appendix) in a simple version.
Putting

(5.17) w=(w’s, a(s)), weS?, sel0, 1],

we obtain

(5.18) vl(t,X)=fj e p" eV (py, o, po')dpde’
0 Jsn-2

1

Vi(py, @, pw’)= J PO Dy (a(s)Ple's, als)ilpw)s™ 2als) ™ ds .
0

It is easy to verify the following
(5.19) a()=(1—=s) P =1+(1/2)sy(s*),  xeC>(0,1/2]),
¥ is monotone increasing on [0, 1/2], x(0)=1, x(1/2)</ 3.

Changing the variable s into r=sy(s?)"* in the definition (5.18) of V,, we get
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(5.20) v,

1
[ e~ PG (ISP, NP STr), par) 2 Lrdr

0
with appropriate C *-functions §(r), 7,(r)=x,(8(r)), 6(r) and {(r). Using the equality
(5.21) {—(ipy)~'0/0r}e 3?12 = peimri2

and integrating by parts j=[(n—1)/2] times in r, we obtain
1

(5200 W =<ipy>"’f e~ {0/ (o, i@ S(r), pE(F" T2 Ndr
0

with (1;1 =h¢.
If n is odd, we have only to estimate the terms of the following type:

V2
U:y'ijjj "I V(par's, pa(s))|s" T2 T T Vdpdadds
0
a+y<j=(n-—-1)/2, O<y<j-—1.

Applying the Holder inequality, we have

. 1/p
(5.22) U< cy"( JJJp"‘ 11+ p)'?| Vo4 |Ps" - 2dpdw'ds)

o (P1NZ . . 1/q
< (J J pn—l(l+p)—(l+1—a)qsn—2—(1+Y)qdpds>
o] o

1/p+1/g=1, l<g<2<p.
If we can choose p and g satisfying
(5.23) Q) 1-1/g=1jp=12~(B—a)n,
(i) n—1—(+j—a)g<-1,
(i) n=2—-(C+yg>-1,

then the integrals on the right hand side of (5.22) converge by virtue of Lemma 5.2,
and we obtain the desired result

5.249) U<cy il .

We rewrite the condition (5.23) as

(5.23y (i) ljg<l4+e—ajn, Bin=1/24¢, > —1/12n)),
i) ljg<l—an, (+j=n),
(i) 1l/g>G+y)/(rn—1), y<min(j—1,j—2), ie.,
(ii1)” 1/g>1—max(l, a)/(n—1).

It is easy to show that there exists an exponent ¢=g(a, y) satisfying (5.23) for each
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(2, 7). Thus we have proved (5.14) for odd n.
If n is even, we split V; into three parts by

(5.24) V,=Uy+U,+U,,

. 1/\/7 .
UO = Co(lP,V) _JJ' € —lpyrZ/Z{lp(wl, p9 O) + rarl//(wls p’ O)}dr s
0

1/\/7 r
U1=Co(ipy)_"j e‘i”y'z’zdrj (r—r)07Y(w', p, r)dr’,

0 0o

W, p, V=7, (NH($r), G)ipoy' S(r), pé(r)) ,
1v2
U2=(ipy>—f‘*f etz Y Vo 09, 1)
0 la| +y<j+1,y<j
x pl (V2 pa $r), pé(r)yr =29 dr
Y, €C([0,1/4/2]).

By the standard calculus we can rewrite U, as

Uo=co(ipy)'f< r - j . >e-“’"2/2w(w', o, O)dr

0 vz
+eyipy) 7O, p, 0)
=co(2m)!*(ipy) ™I T2 (0, DO, p)+0((py) "GO, p) |
+ey(ipy) IO, p, 0).
By virtue of the Sobolev theorem the first two terms are majorized by
(oy)” "R+ (o)A +p) Nitlp, s I=n241,
which is integrable over R"~(0, c0)x S" 2 x [0, n] with p"~!sin" 2 0dpdw’'df. The
last term is majorized by

(py)™"* 71 (1 +p) ™ (14 p) {10, p) |+ pI VA(O', p) 1},

which is also integrable over R" with the same measure. As for the integrals
containing U; and U, in the integrands we can estimate them in a similar way
adapted in the proof for odd n. Thus we obtain the desired result for even n.

6. Appendix (II)

For later use we prove the following

LEMMA 6.1. (i) Let ve Wi(R"), 1<p<w and I>n/p+1, and K be the
singular integral operator with the kernel K(x):
6.1) (1) K(x) is of homogeneous degree —n, K(x)=K(x/|x|)|x|™",
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(i) K(weCs"™Y)  with [Kll,s= ) §05Klgogn-1y>
i

le| <
(i1i) f K{wdw=0,
(6.2) (Ku)(x)=v.p. j K(x—yy(y)dy .
"
We define the operator R by
(6.3) R=[(v0/0x)), K]=(v0/0x;)K — K(vd/dx;) = R(v) .

Then R is a bounded operator in W7 (R"), 0<j<I, with the estimate
(6.4) | R@ul; , <bI Kl slvl,plul;,, 0<j<I.

(i) Let n>3, I>n/241 and ve H(R"). Then the operators K and R(v) are
bounded in H}{(R"), if 0<f<n/2:

(6.5) IKqu.[JSb“KHl,S'qu,/}’ 0<j<l,
(6.6) | R)ul; s <bIK, slvlolul; s 0<j<l.
Proof. First we state the precise definition of the space W ()

(6.7) () W, (@) su(x) < (1+|x)(0/dx)y'ue L¥(Q), |a|<l. The norm |f]|, , 4 is
defined in (5.10).
(i) We write simply W, ,=W, | | ,o=| |, and also W), =H)
| l,2.5=| ;5 without confusions.
To prove (i) we apply the method of Mizohata ([13], [14]) established on the basis

of the Calderon-Zygmund theory on singular integrals ([5], [6]). By an easy
calculation we have (with the abbreviation (0/0x)*= %, 6/0x;=0; and u,= *u)

(6.8) o*{v0;Ku—Kvdu}= 3 < (;( ){(8"”1})K(8ﬁ’u) — K(8,0*"v{0;0"u)}

O0<y<a

o
EI v|<lz o <y>{va-yK('}juy—Kva_y5juy}
a—yl<l—-n/p—

o
+ Z < >{Ua~ vKaj“v - Kva—vajuv}
la=yl>T=np—1 \ 7

=R,(v)u+R,(v)u.
To estimate the first term, we note v,_, e B' "(R"). We have only to estimate
(6.9) S(vyu=vK0u—Kvdu, veB'*%R", uel®R"),

or
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(6.10) Sg(v)u(><)=J| N {v(x) = v(y)} K(x = y)0u(y)dy .
For a while we assume ue W;,(R"). We rewrite S, (v)u as
(6.11) Se(v)u(X)=f| L {o(x) = v(P)} KO = p)u(y)vx = y)dS,

N fl OROIK Gy

+fl o {00x) = U WHOK(x — ) y)dy ,

=S, (0u+S, (u+S; (),

where v(z)= —Z= —z/| z|. Clearly we have
(6.12) |80l <IS" HIVollol Ko, sl %o, »
(6.13) [ S5, (v)ulo, , <bIVOlol Kl sl o, p -

(6.13) is a direct consequence of the Calderon-Zygmund theorem. We rewrite S; (v)u
as the sum S, (v)u+Ss (v)u of integrals on {{x—y|=1} and {e<|x—y|<1}:

(6.14) Sy (Wu=S, (vu+.S; (v)u.
From the Hausdorff-Young thorem (Note d;K(x)=0(| x| ""!).) it follows
(6.15) | Sa, (0t o, <bIVloI Ky sl 1o, p -

The Taylor formula gives

o)~ o= 3 0u(x)xi— )+ wlx, y),

i=1
[wix, < vl 4ol x—y P 0.

We rewrite S5 (v)u as

(6.16) Ss, (= Zaiv(X)J (i = y)O;K(x = y)u( y)dy

e<|x—y|<1

+f . w(x, Y)O;K(x = y)u(y)dy .
e<|x—yi<l1

=S, () + 57 (o)u
Clearly the Hausdorff-Young inequality gives
(6.17) |87 (ulo, , <bIVOl| Ky sl ulo.p -

We note the following equality
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(6.18) (i) xdKX)=0x KW}, ixj,

(i)  x,0,K(x)=0i{x;K(x)} — K(x) .
It is well-known that each Ist derivative of the function of homogeneous degree
—(n—1) has the mean value zero on "', i.e., its integral on "' is zero. (See, e.g.,

Agmon [2] Lemma 11.1.) Hence we can apply the Calderon-Zygmund theory to
estimate S, (v)u and obtain

(6.19) [S6.(0)lo, , <bIVOlolI KI5 sl ulo, p -
Summing up the above arguments, we have
(6.20) | S(Wutlo, , <bIKI, sllvlly +4lttlo, p -

Applying (6.20) to R,(v)u and using the Sobolev theorem to estimate ||3,_.v[l,+, by
|v|; ,, we have the desired result

(6.21) [ Ry (utlo, , <BIKIly sl v, pl 1 ])a, -

In the second term R,(v)u of (6.8), |a|=/—n/p—1+|y| and each u e Wi(R")
with r>2+n/p (if exists). Hence 0;u, and Kou, belong to W:,_‘(R")CBO(R"). Thus
v,-.Kdu, and Kv,__Ju, belong to LP(R") and are estimated as
(622) (l) ' Uaz - ‘,‘Kaju‘,' lO.p Sbl va>y lO,p“Kaju‘,'”O

<b|v|, | Koju,

Ir—l.p

Sblvll,pHK“LS'uhaLp 3

(ll) l Kvaz—‘,'aju}' 'O.psb”K”LS' Uz*yaju}' IO.p
Sb”K“lsl Dll.p' ullal,p .
Thus the proof of (i) is completed.

To prove (i) we first note that x*K is a bounded operator from H°; to H;_,, , if
|a|<j<n/2. This fact is shown from (5.5) (ii)—(iii) of Lemma 5.2 and the following:

(6.23)  (uKu) (&)= K(9ioa(&)/o¢,+ i(0R(&)[8E)A(E)
= (Kxu)" (&) + 0 K(E)AE) »

(6.24) [ x"Kulo<c| Ky s|ulo,ja+¢ 1K .5 ap.0
<b|IK|y sl ulo,) la|<n/2.

al
Here we have used the fact that K(¢)e C'(R"\{0}) and is of homogeneous degree 0,

which is proved later in Lemma 6.2. With the notations S; ,(v)u defined in the proof of
(i) we can see easily
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6.25) @) xS, (ulo<ce*|Volol Kllo,slulo +clVollol Kllo,sl #lo,ja -
(i) xS, () |o <DIKIy s (O0)ulo, 1 <BIKI, 5| Vllo] o,
(i) [x*S; (ulo <clVolloI Kl sl 4o, 5
(iv) xS, (0)ulo <DIVOlo Kz 5l o, o) -

We write S, (v)u as

(6.26) Sa,VIu=0(x) (0;K(x = y)u( y)dy

lx~yl>1

+ jl | (0;K(x— y)o( y)u( y)dy
x—y|[>1

=S (0 + So (01

Then we have

(6.27) XiSg, (V) =v(X) j (0;K(x— y)yiu( y)dy

lx—yl>1

+ v(x) J (X — YO K(x — yhul y)dy -
fx—yl>1

By arguments similar to those used to prove (6.19) and (6.24) the | |, ;—, norm of the
second term is majorized by |v]lo| K/, s | #]o,;- Clearly the first term is majorized by
livlloliKll1.s |#o.1- Repeating this argument, we have

(6.28) | x*Sg (V)ulo <bllvllol Kl x5l %lo, [« -

In a similar way we can show

(6.29) | x*Sq, (V)1 lo DIl KIl 4,5l %o, -

Summing up the above, we have

(6.30) | x*S (W)l <bIvly 46l Kl o), 51 o, -

The rest of the proof is easy and omitted. We have only to apply (6.24) repeatedly.
REMARK. Lemma 6.1 is valid, even if ve B'(R") and V?ve H'~%(R").

LEMMiA 6.2. Let K(x) satisfy the condition (6.1) with [>0. Then the Fourier
transform K(&) of K(x) is of homogeneous degree 0 and belongs to C'(R"\{0}).

Proof. By the well known calculation we have
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(6.31) (2n)"/21€(5):f K(x)e ™= ¢dx
an

(6.32) J' K«w{mgiw-fr-gdsgmw-o}dw E=¢/¢))
sn-1

=K, (&) +K,9).

Take a neighbourhood U of e,=(0, ---,0,1)eS"' and a function R(g)e
C*(U; SO(n)) such that R(o)e,=¢. Then we have

Kl(z)sz(R(E)w) log|w, |[dwe CYU),

which follows from the equality
R E=w ' RE)=w,.

We have also
(6.33) 6¥K4@=>—meuw&““ﬂ«w-@www, 1<|al<l,

which belongs to C'~!*I*1(R"\{0}). Here  denotes the Dirac measure on R. Thus the
proof is completed.
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