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The solution of the initial value problem for the compressible Euler equation tends to the solution 
of the corresponding incompressible Euler equation with the corresponding initial data, as the 
Mach number (which is proportional to a parameter 1/2) tends to zero. Under suitable conditions, 
we also obtain the asymptotic expansion theorem for those solutions, when 2 is large. 
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1. lntroduction 

This is a completion of the work made by Klainerman and Majda [10], [11]. 
Consider the initial value problem of the compressible or incompressible Euler 
equation (C.E.Eq. or I.E.Eq.) which describes the state of flow of the compressible or 
incompressible ideal fluid, respectively: 

~ - p + v ' V p +  ?pV.v--O , 

(1.1) 

- - v + v V v + - - V # = O ,  
~t p 

(p, v)[,=o =(po(x), yo(X)), 

0 
- - v + v .  Vv+ l_ v q ~ = O ,  
Ot p 

V-v=O,  

(1.1)o 

(1.2) 

(1.2) 0 vi,= o = Vo(X ) 

t>_O, x e R  3 , 

t ~ O ,  x 6 R  3 , 

(and V. yo(x) = 0, usually). 

Here p(t, x), v(t, x) and p(t, x) denote the pressure, velocity and density of the fluid at 
time t > 0 and point x e R 3. The notation �9 or ( ,  > (resp. • ) means the scalar product 
in R a (resp. the vector product in R3), or sometimes in R". The parameter 7 > 1 is 
constant and 2 varies in [1, ~) .  The density pis  calculated by means of the ideal gas 
condition 

(1.3) p = p~s, 
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where s is the entropy of the fluid and assumed to be constant, s(t, x ) ~ g > 0  on the 
whole space. The fluid is assumed to be isentropic. 

The sound speed calculated from (I.1) is 2(Tp/p)I/2=a. Hence roughly 
speaking, 2 is (proportional to) the reciprocal of the Mach number M--Iv  m [/0,, = 
Ir,. 12-1(Tp,,/ p,,) -1:2, 

Besides the existence theorem and others, Agemi [I], Ebin [7] and Klainerman- 
Majda [10], [11] proved (under some restrictive conditions on the initial data 
(Po, Yo)) that the solution (p~, v 4) of the equation (1.1)-(1.1)0 approaches the solution 
(p~O, vO~) of (1.2)-(1.2)o, as 2 tends to oo. The aim of this paper is to weaken the 
assumptions, especially to remove the condition V. v o -- 0. Hence the initial layer, i.e., 
the discontinuity of v~(t, x) at 2 = ~ (or at t-- 0) may appear in our limiting process. 
Our main results are the following (see (1.22)-(1.26) for the definition of function 
spaces): 

THEOREM 1.1. Assume that the initial data (Po, Yo) satisfies 

(1.4) 0 po =po(2, x) =p(1 + 2 -  ~qo(x)), `6=constant>O, 

(1.5)o (i) (qo, Vo)=Uo~ Ht with l> 3, 

(iŸ I Uo Iz < a f o r a  sufficiently small constant a ~ (0, 1/5]. 

Then: (i) there exists a solution (p(2, t, x), v(2, t ,x))  o f  the C.E.Eq. (1.1)-(1.1)o 
satisfying the following properties in a time interval [0, T]: 

(1.4) p(2, t, x) =`6(1 + 2-~q(2, t, x)),  

(1.5) (i) (q, v)6MJ([1, oo); B~ T]; HZ-i)), O < j < l ,  

(ii) [(q,v)[z<_2a for (2, t ) ~ [ 1 , ~ ) x [ 0 ,  T].  

Here T>0  depends only on l u o 13, ,6, Y and a, but not on 2~[1, ~) .  The solution (q, v) is 
unique in B~ T]; H3), and depends continuously on the initial data (qo, yo) as the 
mapping from H ~ to Mi([1, ~) ;  B~ T];/7~-J)), O<j<_l. 

(ii) The solution (q, v) atso satisfies the following 

(1.6) (i) (q, v)~B~ ~ ]  x [0, T ] \ ( ~ ,  0); B/-2+£ 0 < 3 <  1/2, 

(ii) llq(2, t , ' ) l lz_z.~+lrV'v(2,  t,')t[z_3+~~O as 2~ov  ( t>0 ) ,  

(iii) (q(2, t, -), v(2, t, "))-~(0, v(~,  t, ")) weakly in H t (~~oo) ,  

where the convergence is uniform on [t o, T] for any t o > O. 

(iii) There exists a unique solution (q~ x), v~176 x)) o f  the LE.Eq. (1.2), 
satisfying on [0, T] 

(1.7) v ~~ x) = Pro(X), 

(1.8) (qO~, v~)e Bi([0, TI; B t+l - Jx  H t - i ) ,  O < j < l -  1, 
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(1.9) v ~ ( t , x ) = v ( ~ , t , x ) ,  (t, x ) e (0 ,  T ] •  3 . 

Here P denotes the projection o f  L2(R3) 3 into the divergence f ree  subspace. 

THEOREM 1.2. In addition to the eondition o f  Theorem 1.1 we assume further 
Uo=(qo, vo)~ H~ + z, 1 < k  <_ l -  2. Then we have the asymptotic expansion in )~e[)~,, ~ )  

(1.10) 

k 

q(2, t, ")=q~ t)+ 2-~q~( t )+ ~ 2-'qi()~, t) ,  
i=1 

k 
v(2, t, ")=yO(X, t ) + v ~ ( t ) +  ~, 2-ivi(2, t), 

i= l  

where (qi, vi), 0 < i<_ k, satisfy 

0 
qO + 2y/~V �9 v ~ = 0 

Ot 
(1.11) 

v ~ + 2/fiVq ~ ~ O, 

(1.11)o 

(1.12) 1 

(1.12)~ 

(1.13) 1 

,(qO, v o) [, =o = Pl t(qo, Yo) (for the definition of  P1 see (3.13)). 

~3--f (q ~ + q 1) + (v~ + v~)" V(q ~ + ql) + 2yp~ V" v x 

+ ~fi(q~ + ql)V.  v ~ + v 1. Vq o = _ 2?fiqOV. v ~ _ 2(v ~ + v~) �9 Vq ~ , 

- -  vi + ( v~ + v~)" VvX + 2/Pl Vq 1 + 1/(Tfi)(q ~ + q 1)Vq ~ + v 1" V(v ~ + v ~) 
~ t  

= _ 2v ~ �9 V(v ~ + v ~ ) - v ~ �9 V(2v ~ + 1/(TpO2q~ ~ 

(qOO + q l ,  1)1)It=0 = 0 ,  

(i) Pi =Pi( 2, t, x)=fi(1 +2-1q~ 

(ii) PI =p t (2 ,  t, x ) = f { 1 -  1/(2Dq~ 

(1.12) s 

(1.12)�91 

~t q i + (v~ + v~)" Vq j + 27PjV" v j 

+ 7~qJV" v ~ + v j" Vq ~ =gj(q ,  v)i_ 1, V(q, v)j_ ~), 

- ~  v j + (v ~ + v~) �9 Vv j + 2/psVq ~ 

- l/(yfi)qJVq ~ + v j" V(v ~ + v ~) = hj((q, v)j_ 1, V(q, v)2_ 1), 

(qi, vi)l . t=o=O, 2 _ < j < k ,  
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(1.13)./ 

(1.12) k 

(1.12)~ 

(1.13) k 

(1.13) ./ 

(1.14) 0 

(i) 

(ii) 

(i) 
(ii) 

(iii) 

(1.15) 0 

(1.14) 1 

(1.15) 1 

(1.14)./ 

(1.15)./ 

where 1 = 21 < �9 �9 �9 _< •k < 00. In part icular  we have 

K. ASANO 

pj=pj()~, t, x ) = f i  l + J , - l q ~  ~ ,~ - i -  lqi , 
i=1 

p i =  the sum o f  the terms up to order 2 - j  whivh appear in the expans ion  

{ ~' F o f p =  1+2-1q~~ ~ 2 - i - X q  i ( see(1 .21) ) ,  
i=O 

c~t qk + V" Vq k + 27pV" v k = gk(2- 1, (q, V)k- 1), 

• Uk "~ l')" V1)k -~- )L/pVqk -- 1/(Tfi)qkVq = hk(2 - 1' (q' v)k- 1) '  

(qk, v k) 1, = o = O, 

(p, v), p=fi(1 +2-1q),  is the solution of(1.1)-(1.2), 
p i s  the densi ty  calculated by  (1.3), 

gi and  hj, 2 < j  < k ,  are bilinear func t ions  of" (q ,v) j_ l=  
(qO, q~,  . .  ", q j - l ,  v o, v ~, . .  ", v j 1) and  its f i r s t  derivatives 

V(q, v)j_ 1 =(Vq ~ "" ", VvJ-1). The coefficients appearing in 9k and  h k 
depend  smooth ly  on 2 -1 e[0, 1]. 

(qO, v o) �9 BO([1, oo); B~ T]; Ht)) 

r B~ oo]x [0, T]\(oo, 0); f f-2+~)) ,  0_<6<1/2, 

(qO, vO)llk _< Co(1 + 20-11Uo lu+z,•, 

(q~ + ql, v a) �9 CO([1, ~) ;  BO([0, T]; H l- 1)), 

[(qO~ +ql ,  vi)Ik-1 < C1 log(1 +2)1Uo Ik+z,z, 

(q J, v i) �9 CO([,�91 oo); B~ T]; H t -~) ) ,  1 <j_< k ,  

[(qJ, v J ) l k_ j_<Cj{ log ( l+2) } . / l uo[u+2 ,2 ,  l < j < k ,  

(1.16) I (q(2, t ) -  q~ t), v(2, t)--v~ t ) -  va( t ) ) Ik -1  

<C2  -1 log (1 +2)1Uo [k+2,2, O < t < T .  

REMARK. Ukai [15] proved the main part of Theorem 1.1 simultaneously with 
(exactly a week ahead of) the author. However, his method is different from ours 
except the use of the evolution operator for the linear C.E.Eq. with constant 
coefficients. Klainerman-Majda [11] showed the corresponding results of Theorem 
1.2 under the condition 
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(1.17) po(2, x )=p+2-Zq~(x ) ,  

Vo(~, x) = v~ +,~- l v~(x), v .  v~ = o, 

(q~, v~) e Hi .  

In our study the assumption on the initial data are weakened extensively. We note the 
similarity of the asymptotic expansion (1.10) with the one given in [4]. We also note 
that our method can be applied to the study of the relation between the compressible 
and incompressible Navier-Stokes equations. This theme wilI be discussed in the 
forthcoming paper which will succeed [3]. 

Using the description of Klainerman-Majda (i.e., that of  Theorem 1. l) we write 
the variable p as in (1.4). Then the C.E.Eq. (1.1) reduces to 

0 
~ - q  + v" Vq + 2~,pV.v=O , 

(1.18) 
0 
0--[ v + v" Vv + 2/pVq = O, 

(1.18)o 

with the conditions 

(1.19) 

(q, v)[,=o =(qo" Yo), 

p(2, t, x)=fi{1 +2-1q(2,  t, x)}, t i > 0 ,  

(1.20) p(2, t, x ) =  {rio +2-Xq( 2, t, x))/g} ~/~ , ~ > 0 .  

If  q is sufficiently small, [ q [ < a for some a ~ (0, 1 q as in Theorem 1.1, we can rewrite 
(1.20) as below: 

(1.21) (i) p=f i{ l+~o(2-~q)} ,  fi=(fi/s-)'/~>O, 
k - 1  

~,o(Z)={1 +z} ' /~-  1 = Y, a f + ? ~ ~ ( z ) ,  
j = l  

~ , 6 C ~ ( [ - 2 a ,  2a]), ~o(0)=0,  0 < r 2 4 3  and 

I~o] <1/2 on [-2a, 2a]. 
k - 1  

(ii) { l + f f o ( Z ) } - l - l = r  Z aJzJ+zkCk(Z), CJ~C~([--2a, 2a]) �9 
j=l 

Under the assumption (1,5) (ii) the equation (1.18) is Friedrichs' symmetric 
hyperbolic system ([8], [13]), and the well-established theory can be applied to solve 
(1.18) ([9]). This is the method of  Klainerman-Majda [10], [11]. We proceed in the 
same way. 

We introduce the function spaces H t, H~ and HŸ of scalar or vector valued 
measurable functions for le  R and fl ~ R: 
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(1.22) Hl~f(x) '~( 1 +l ~ IZ)t/zf(O~L2(R3), where 

= (2n) - 3/2fe-ix~f(x)dx = (Ff)(O. 

norm ]f l t  is defined by t f l 2 = f ( 1  +l The �91 /(012dr 

(1.23) /4~= ~ H ~-~ is a complete metric space, 
6>0  

(1.24) H~~f (x )~ (1  +lxl2)~/2V~f(x)eL2(R3)=H ~ for O<_j<_l. Here l>_0 is an 
integer. The norm [ f  [~,~ is defined by 

[ f  1 2 -  l l,~-- ~ l+[x[2)~[VJf(x)]2dx. 
j = 0 ,  

Only once or twice we use/~~ = • H~2~ and q = { f  ~ B0(Ra); V f E  H l- 1 }. 
For a (closed) domain f2c R" and a Banach space (more generally, a linear 

topological space) Y we denote by ck(f2; Y) the space of Y-valued continuous 
functions which are k times continuously differentiable on f2 in the topology of Y. By 
Bk(f2; Y) (resp. Bk+~ Y), 0 < 0 <  1) we denote the subspace of f (x )~  Ck((2; Y) 
whose derivatives (8/Sxyf(x), I ~ [ < k, are bounded on ~ (resp. bounded and H61der 
continous with exponent 0). If Yis a Banach space with the norm [ Ir, Bk+~ Y), 
0_<0< 1, is a Banach space with the norm Hf[]r,k+O: 

(1.25) (i) I I f l [ y , k = [ I f H k  = E sup [(8/Sxyf(x) lr, 
I~l_<k xe~  

(ii) [IfHr,k+o=Hf][k+O=][fl]k_a+[]Vkfl[o, 0 < 0 < 1 ,  

IIgll0 = IIgllo + auN Ig(x)-g(y)]r/I x -  y 10. 
x # y  

Similarly by Mk(~; Y) we denote the space of Y-valued strongly measurable 
functions f (x)  on ~2 whose derivatives (8/Oxyf(x) (in the distribution sense), I~1 < k, 
are essentially bounded on (2. Mg(f2; Y) is also a Banach space with the norm defined 
by (1.25) (i), if Yis a Banach space. We use the notation C k= Ck(R3; C") and B ~+~ 
Bk+~ C"). 

For a function f ( t ,  x) e B~ T]i; H ~) or M~ T]i; H l) (i = 1, 2) we put 

]fil, T= sup li(t,')[z (or =sup [ f ( t , s , ' ) J z ) .  
O~_t<_T t,s 

The diagonal set of [0, T] 2 is denoted by A, A ={(t, t); te[0, T]}. 
We use b~ for the constant associated with the Sobolev inequality, b(l) (and K, L 

in section 4) associated with the equation and C or C(M) in general. C(M) means that 
the constant C(M) depends (mainly) on the quantity M. With a Banach space Y, 
B(Y) denotes the space of the bounded linear operators in I1. 
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2. T h e  L i n e a r  C . E . E q .  ( I )  

We consider the initial value problem of the linearized C.E.Eq. corresponding to 
(1.18): 

& q+g.Vq+27pW.v=g, 

(2.1) a 
- -  v + 17. Vv + (2 / f i )Vq  = h ,  & 

(2.1)~ (q, v)lt=s=(qo, yo), 

riO-, t, x)=ff{1 + 2-1r t, x)}, 
(2.2) 

r t, x) = ~5{1 + t)o(2-1~7)}--q -'~/~- 1401 ( J . -  lg])) . 

To solve the above equation we assume 
[A.0] l (i) (qo, Yo)= Uo e H t with an integer l>  3, 

(ii) ] Uo ]2 <a  with a constant a of Theorem 1.1, 
[A.1], (i) ª162 v')eM~([i, co); B~ q H,-J)), t>3,  0_<j_</, 

(i)' ª  M-/([1, ~) ;  M~ Ÿ Ht-~))c~ B2([1, ~);  B~ Ÿ J)). 
(ii) Iª for(2, t )~ [1 ,~ ) •  Ÿ 

(i i i)  (7/~)-l]~lŸ162 2 ( j=3),  <~r2 (4< j< l ) ,  

- " V  " 1 (iv) (2p-)1 ( ~ ~ t - + v ) q  o+~]lV~}lo<bo{(l+2-1M3)+l/2}M3<Mo, 

(Note that (i)' follows from (i).) 

[A.2]k f=(9, h)eMJ([ 1, ~);  M~ 0, T]; H k J), O<j<k.  

To estimate the solution u= (q, v) of (2.1)-(2.1)0, we define an equivalent norm 
l ulj of H j by 

( (~~- ) ' q '  ( ~ x ) " ) , ~  ( ~(~~-x )~ (~~-x) ~ ) 
(2.3) luiS2= ~ (7P'-)-1 q + p v, v , 

I~l_<j I I - J  

where ( , )  denotes the usual inner product in L2(R3). If we put 

(2.4) L = L(v-) = ~ -  + LT. V, 

and take a real valued function ~b(t, x), an easy calculation proves 

d 
(2.5) dt - -  (c)w, w) = ((Lc~)w, w) + (qS(V �9 v-)w, w) + 2Re(~bLw, w). 

Using (2.5), [A.I]t (ii)-(iv) and the equation (2.1), we obtain 
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(2.6) 

(2.6)' 

This gives 

(2.7) 

d ,2 / ' f [ O  g.V)Tp..)_l}q, v)  ~ l U l o  = Ik�91 + q ) + ( { ( ~ - ~ + g ' V ) ~ } v ,  

+ ((~?p')- ~(V'v')q, q) + (~(V'~v, v) + 2Re(g, q)' + 2Re(h, v)', 

r ~ ~ - I u l £  <-Molu[£243  

i.e., 

l u I£ ~ eM~ Uo I£ t --si  I f i£  r) .  

Using (2.5) and (2.7) to estimate w=((O/dx)~q, (O/~x)'v), we have the following 

LEMMA 2.1. Assume [A.0]~, [A.1]~ and [A.2]~ with l>3. Then: 
(i) the linear C.E.Eq. (2.1)-(2.1)s has a unique solution u = ( q, v) satisfying lA. 1]l 

(i)' and the estimates 

(2.8) (i) lu[j<elt-slb")M3{lUolj+lt-sl(b(l) l ª  O < j < l ,  

(ii) lul'3<elt-slbl31M3{lUo[3+c]f['3,t} , 

where lul j_3.t=0 for  0 < j < 3 .  The solution is unique in B~ T]; H1)(3 
BI([0, T]; H~ 

(ii) Assume further f =  0 and 

(2.9) lUo[3<M3/m with some m > 4 .  

Choose TE (0, T] so that there holds 

(2.10) (i) M3>4erb~3)M3 lu o ['3, 

(ii) eTbl31M3_<2N/ 2 . 

Then the solution u = (q, v) of(2.1)-(2.1)~ satisfies the conditions [A. 1]l (ii)-(iv) with the 
same M 3 and with T and fil replaced by T and M =  C(AI, I u o I Ÿ 

(iii) I f  we assume further (except (2.9)) 

[A.3], ª  v-')eM-/([1, ~1; B~ T]; B'+~)), 

then u=(q, v) satisfies the condition [A.1]t (i). 

As the proof is quite standard, we omit it except a brief comment on the 
condition [A. 1] (iv). (For example, see Kato [91, Klainerman-Majda [11] or Mizohata 
[131.) If (q, v) satisfies (2.1) (with f=0 ) ,  it follows 

(2.11) ~ - + v - V  q =  -27fi(1 +2-1q")V'v+(v-v ' ) 'Vv.  

Combining (2.11), [A. 1]z (ii) and (2.8) (ii), we can show that [A. 1]~ (ir) holds for (q, v) 
under the condition (2.10). (Note b o < b(l).) We also note that under the condition 
[A.1]~ (ii) and (2.10) there hold 
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pq <ff =/~(1 + 2-lq)  < 3p/2, 
(2.12) 

15/2 _< fi = 15{ 1 + ~0(2- ~ 9)} < 315/2, 

(2.13) li q IIo -< l q 12/4 -< [ u 12/4 < (2yfl) 1/21 u l~q 

-< (2Y/~) 1/2] Uo 12/~/2 <21 uo 12 < 2 a .  

Now we give an improved version of Lemma 2.1. 

LEMMA 2.2. Assume [A.0]~, [A. 1]t and [A.2]k with l> 3 and 0 < k < l. Then the 
solution u=(q, v) o f  (2.1)-(2.1)s satisfies the condition [A.1]k (i). In particular, the 
claims (ii) and (iii) of  Lemma 2.1 hold with the same constants T and M of  Lemma 2.1 
without assuming [A.3]t. 

Proof First we consider the case f = 0 .  By Lemma 2.1 u=(q, v) belongs to 
M~ Ÿ176 Ÿ Ht-1), and then by the interpolation theorem to 
BO([0, Ÿ H~-~+o), 0 < 0 <  1. By the interpolation, we can define l ufj+ o for 0 < 0 <  1 
and O<j<_l-1. Then (2.8) (ii) implies 

(2.14) ]u(t')lŸ237 t', te[0, Ÿ 

where the constant c is independent of 0~ (0, 1). Since [u [t-l+o is continuous in 
0~[0, 11 for u e H  t and lull-l+o is uniforrnly equivalent with lulŸ for 0~[0, 1], 
I ulŸ +o is continuous in 0~[0, 1] for u e H  ~. Since u(t') and u(t) belong to H t, (2.14) 
gives 

(2. t5) lu(t')lŸ237 t, t '~[0, TI.  

This implies I u(t) [Ÿ is continuous in [0, Ÿ Since u(t) is weakly continuous in H t, u(t) 
is strongly continuous in the topology of H t. If  uoeHS, O<j<l, u(t) is strongly 
continuous in t ~ [0, Ÿ in the topology of H j. The strong continuity in the variable s 
is proved similarly. 

Denote the solution u(t) = u(t, s) of (2.1)-(2.1)s with f =  0 as 

(2.16) u(t)= U(t, s; 2)Uo--- U(t, s; 2, ª , 

and define by (2.16) the evolution operator U(t, s; 2, ª associated with the initial 
value problem (2.1)-(2.1)s. Then the solution u(t) of (2.1)-(2.1)~ with f satisfying 
[A.2]k is described as 

(2.17) u(2, t, s)= U(t, s; 2, ~u o + U(t, r; 2, ~f(r)dr.  

This gives the conclusion. 

REMARK. Define differential operators A(g, 2,6, 2/~, V) and B(2fi, 2/~, V) by 

(2. ~8) A(~, ;~,-qL v)= ~. v + B(;~, ;/~, V), 
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2/~, v)=( 0 &yvh . . . .  (2.19) B(2/~, (2/fi)V 0 } -= "~~P' 21ti). V x . 

The followings ate trivial properties of U(t, s; 2, �91 v')= U(t, s; 2, ª 

(2.20) U(t, r; 2, ª s; 2, ª  U(t, s; 2, ª  

d 
(2.21) d~- U(t, s; 2, u-)= - A(t~, 2/~, 2/~, V)U(t, s; 2, u'), 

d 
(2.22) als U(t, s; 2, u')= U(t, s; 2, u-)A07, 2/~, A/ti, V). 

Here ff and ~ are calculated by the formula (1.19)-(1.20) from ~. 
Finally we state the continuous dependence of U(t, s; 2, ª on ª = (~, a). 

LEMMA 2.3. Let ª  v') and ª  vi) satisfy [A.1]l and u o 6 H  k, 3 < k  <_l. 
Then we have 

(2.23) I U( t, s; 2, ª o -  U( t, s; 2, ª Ik-~ 

<-- C I t -  s I el' -slb(~ ª  ª Ik-1, ti uo Ik . 

Proof. Using (2.21) and (2.22), we obtain 

d 
(2.24) drr U(t, r; 2, u')U(r, s; 2, ª 

= U(t, r; 2, u'){(t7 t - v')" V + B((ql - q-)~,(~-- 1�91 2 - 'q-) 

+ ( q l -  q)q~~(2-'qa, 2-~q'), V)} U(r, s; 2, ª 

where ~1, q~l~C~([ - 2 a ,  2a]2) �9 Integrating (2.24) and using (2.8), we obtain the 
desired result (2.23). 

The following Lemma 2.4 is a version of Lemma 2.2 and needed to solve the 
linear C.E.Eq. (1.12)J-(1.12)�91 1 <_j<_k. The proof is similar to that of  Lemma 2.2. 

LEMMA 2.4. Let (~, ti, v-)(2, t, x) satisfy the condition 

[A. l']t,/i (i) (~, ti, v') ~ B~ ~) ;  B~ T]; Ht)) 

m c~ ~); ~'([0, Ÿ H'- ')) ,  I_>3 

(ii) II(O/Ot+~.V)(~/p, ~l~)llO, T <_bo 2.  

Consider the initial value problem o f  the linear C.E. Eq. (2.1)-(2.1)~ with the initial data 
u o = '(qo, yo)~ H I, the non-homogeneous term (9, h)= 0 and the coeffieients defined by 

~(2, t, x) =~o(1 + 2 - ' 0 ,  
(2.25) 

~(2, t, x)= ~(1 +2-'~)'/~'. 
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Then there exists a unique solution u(2, t, x )= (q, v) of  the above equation ((2.1)-(2.1), 
with (g, h) = (0, 0)) satisfying [A. l']l. a with some A >_ A. Moreover u satisfies the same 
estimates stated in Lemma 2.1 for 2 ~ [A, ~ ) .  

REMARK. We describe the above solution u as u=  U(2, t, s; ~, q v')u o. This is 
the definition of the evolution operator U(2, t, s,; ~,/7, ~ associated with the above 
linear C.E.Eq. Then U(2, t, s; t~,/7, v')- U(2, t, s; ~~,/71, ~~) satisfies the similar es- 
timate as (2.23) for 2~[A, ~) ,  where both of(~,/7, ~) and (ql, q vi) are assumed to 
satisfy lA. 1']�91 ~. 

3. The Linear C.E.Eq. (II) 

We study the evolution operator U(t, s; 2, ~, tS) in detail. First we consider the 
linear C.E.Eq. corresponding to the case (ti, v3 = (0, 0): 

0 
~ - q  +2},q 

(3.1) O 

Of v+(2/~)Vq=O, 

(3. l)s (q, v)b=, = (qo, Yo). 

Putting u ='(q, v), we rewrite the above equation as below: 

(3.2) 0t u =  -B(2/~, 2/p, V)u= -2B(/~, l/p, V)u, 

(3.2)0 ul,=s=Uo='(qo, Yo). 

The symbol B ( r  l/p, 4) of  B(fl, 1/p,V)is  expressed as 

(3.3) 
~,/p o o o 

B(r �91 o o o " 

~3/P o o o 

We put 

(3.4) 

/~ = (Tfi/p) 1/2 and 

e + ( ~ ) = ' ( + v , ' ( ) ,  

e + ( r  1, v t~) 

v = ( ~ p p ) l / 5 ,  

~'= 4/1 ~ I =e,(~), 

(3.5) Pt (~) = (2v)- ' ~ ( ", e -+ (4))e_+ (�91 = ~ P 1 ,  _+ (~)'  
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( 1 +v~l Ave2 +v�91 

) +~l/V 
p,,_+(�91 +gjv �91 

+ QIv 

(3.6) Po(�91 = 1 - P i ( � 9 1  �9 

Then Pi(�91 and PE(() are projections in C 4 and satisfy 

B(�91 •191 + N  �91 lP1,_+(�91 
(3.7) 

B(�91191  = O . 

Ii  we take an orthonormal set {el(�91191 �91 l, e2(�91 e3(~)} o f  R 3, we have 

3 
(3.8) Po(�91 = ~ <', eo,j(r162 eo,j(r te j(�91 

j=2 

We define the Fourier transform ª191 F u ( i )  by 

(3.9) ª191191 = (2=)- 3/2fe i x  ' g u ( x ) d x  " 

Noting that iB(�91 generates a unitary group in C4: 

(3.10) e-i,s(r = ~ e  • i,.l g lP1 ' + (�91 + Po({) ,  

we define an evolution operator Uo(t ) acting in H ~ by 

(3.11) U o ( t  ) = F -  l e  - itB(OF 

- e-,et~. ,lp.V)= Uo(t; fi ' t i ) .  

Clearly we have 

(3.12) I Uo(t)Uo[l<_a(v)lUol I for u o ~ H  l , 

and the unique solution u(2, t) of (3.1)-(3.1)s is described by 

u(2, t )= U o ( 2 ( t -  s))u o . 

We define projections Po and P1 by (3.13). Then they have the property (3.14): 

(3.13) Pi  = F -  1 P j ( � 9 1  j = 0, 1, 
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(3.14) (i) IP~ul,~a(v)]ul,, j = 0 ,  1, P o + P i =  1 , 

(ii) P o u = O r 2 1 5  

(iii) P l u = O ~  P o u = u ~ q = O  and V.v=O.  

(iv) Uo(t)Po = Po Uo(t) = Po, 

(v) Uo(t)P1 =P1 Uo(t)=F-l(~e+-itul~lP1, +_(�91 

The following Lemma 3.1 will be proved in the Appendix (I). 

LEMMA 3.1. Let u ~ H~, ti> 1, or u 6 H t (l>2). Then there hold 

(3.15) Id Uo(t)Pluo]lt-2 < C(1 + l i  [)-li Uo Ir.p, 

(3.16) NUo(t)Pluolll_2+£ as t ~ + ~ ,  0 < 6 < 1 / 2 .  

Second we consider the linear C.E.Eq. corresponding to the case 2 = 0, i.e., the 
linear transport equation with a vector field tT= f(t): 

0 
(3.17) o~- w + f(t). Vw=O , 

(3.17)s w[t=s=w o . 

The (backward) characteristic equation associated with the equation (3.17)-(3.17), is 
described as below and easily solved: 

d 
(3.18) d~ X =  --/~(t; X ) ,  X [t:s= XER 3 

We denote the solution X(t, s) of (3.18) by 

(3.19) X(t, s)=X(t,  s, x; ~)= X(t, s; f)(x). 

The mapping X(t, s; v') is a C ~ 2-diffeomorphism in R 3 and has the following 
property. 

LEMMA 3.2. (i) If~(2, t)~Bi([1, ~ ) ;  B~ Ÿ with 1>_3 and O<j<l, 
then X(t, s, x; v')~ CJ([1, ~) ;  C~ Ÿ C1-2-i)), O < j < l - 2 .  

(ii) I f  we assume further f~B~ ~ ] x [ 0 ,  T]\ (~ ,s ) ;  Bt-Z-J)), then 
X(t, s, x; v')~ C~ 0o] x [0, ~]z; Ct-2-j)) ,  O < j < l - 2 .  

Proof. We prove the latter part. First we note 

(3.20) F X(t, s, x, v ' ) -x l  <_ II~llo,~,l t - s i  <b2] f12,1"] t - s i .  

Then, by a simple calculation we obtain 
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(3.21) I X(t, s, x; t?(2)) - X(t, s, x; t~(#)) I 

<-I X(s + ~, s, x; ~(,~))- X(s + ~, s, x; • I 

+ I u(2, r, X(r, s, x; tT(2))) -- ~(i 2, r, X(r, s, x; ª ] dr 
+e 

+ L I X(r, s, x; g(X)) - X(r, s, x; g(/~)) f dr ,  
+e 

L > b 2 sup [ f(2) [ 3, ~ ~ sup II 0(2)IIL ~- -> II VtT(;~)ll o, ~'. 

Ir we take 2 and p so large that the first integrand is majorized by t/, then it follows 
from the Gronwall  inequality 

(3.22) [ X(t, s, x; z7(2)) - X(t, s, x; ff(p)[ 

<_eLIt-sl{2b2 sup I ~?12,~,e+ Tq} . 
2 

This shows that (X( t , s ,x;  ~(2))} is uniformly convergent as 2 ~ ~ ,  if 
(t,s,x)E[O, Ÿ215 Thus X(t,s,x;~(2))6C~ ~ ] x [ 0 ,  T]2; C~ Differ- 
entiating (3.18) by x, we obtain the desired results. 

The solution w(t, x ) =  w(t, s, x) of  (3.17)-(3.17)s is uniquely determined and 
described by 

(3.23) w(t, s, x) = Wo(X(t, s, x; f))  = T(t, s; O)Wo, 

which is the definition of  the transport  opera tor  T(t, s; ~). In a similar way used to 
prove Lemmas 2.1 and 2.2, we can show 

LEMMA 3.3. (i) Let ª176 Ÿ  z) with l>3 and wo~H j for some 
j ,O<j<l .  Then there exists a unique solution weBl([0 ,  Ÿ H j) of  (3.17)-(3.17)s 
described by (3.23). w = T(t, s; f )w o satisfies 

(3.24) [ T(t, s; 6)w o li<el t-slb(l)l~l,.,t[ Wo [ j ,  t, S t  [0, T I .  

(ii) I f  f(2, t)~MJ([1, oo);B~ with l>3 and O<j<l,  then 
w(2, t, s, x ) =  T(t, s; ª o enjoys the same property as f .  

(iii) I f  f~B~ oo]x[0,  Ÿ s ) ;B  t-2) in addition to the assumption of 
(ii) and w o E H k, then T(t, s; f )w o ~ B~ oo) x [0, Ÿ H k) for 0 < k < l -  2, and 
eB~ oo] x [0, Ÿ iQk)for l _  1 <k<l .  

(iv) Let wo~Htp. Then T(t, s; Owo~MS([1, oo); B~ ~]2; Htp-j) with O<_j<l 
(resp. B~ oo] x [0, ~]2; ~~))  under the assumption of (ii) (resp. (iii)). The cor- 
responding estimate of(3 .24)  holds with I Ii replaced by I li,t,. 

(v) I f  f and li satisfy the assumption o f ( i ) ( o r  (ii)), then there holds for 1 <k  <l  
with ro(k) = 2, 1 < k <_ 2, and m(k) = k, 3 < k < l: 
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(3.25) I T(t,  s; v')w o - T(t, s; zTx)Wo I k_l 

-<Ceft-sfb(IXIQJ'r+lQIz'OI Wo ]ro(k) I1)- -gl  Ik-1 dr , 1 < k  < l .  

The same estimate also holds with I f ( r ) - f l ( r  ) Jk-1 replaced by II~(r)--~l(r)ltk-~ �9 

Proofi The claims (i)-(iv) are easy consequences of Lemma 3.2 and the 
interpolation theorem. The claim'(v) follows from (3.24) and an equality 

d 
(3.26) dr T(t, r; v')T(r, s; v i )=  T(t, r; Q{61 �9 V -  ~" V} T(r, s; vi), i.e., 

T(t, s; v') - T(t,  s; vi) = - i r  T(t,  r; v"){ t71 �9 V - ~" V} T(r, s; 6l)dr . 

Third we define an operator V(t, s; 2, v') = V(t, s: 2,/~, ~, f) which approximates 
U(t, s; 2, ~, 0 when 2 ~ ~ :  

(3.27) V(t, s; 2, v3= Uo(2( t - s ) ;  ff, ~)PI +PoT( t ,  s; v') . 

Remembering (2.22) and noting the equality (which follows from (3.14) (iii)) 

(3.28) B(2fi, 2/fi, V)Po = O, 

we have the following equality (on H ~) 

d {U(t, r; 2, 4, OV(r,  s; 2, ~}  (3.29) dr 

= U(t,  r; 2, ~, ~{O'V+B(~, fil, V ) }Uo(2(r - s ) )P1  

+ U(t,  r; 2, q~, f){f-VP o - P o ( f . V ) } T ( r ,  s; ~) ,  

Pl = 2 l p  --  2lp = q~)m (2 - '  4 ) / ~  , 

where the function ~bl ~ C~( [ -2a ,  2a]) is defined in (1.21) (ii) with k =  1, 0<~b I _<5/3. 
From (3.29) it follows 

(3.30) U(t, s; 2, 4, v 3 -  V(t, s; 2, v') 

= - U(t, r; 2, 4, v')A(5, q, Px, V )Uo(2 ( r - s ) )P ,  dr 

+ U(t, r; 2, q, ~{Po( g" V ) -  g" VPo} T(r, s; ~ dr .  

Putting 

(3.31) Q(r, s; g) = {Po(5(r)" V) - (~(r) �9 V)P o} T(r, s; g) , 

we set the following Volterra equation for S(t ,  r; g): 
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(3.32) S(t, s; v')- Q(t, r; v')S(r, s; v')dr=Q(t, s; v'). 

To solve the equation (3.32) we need the following Lemmas 3.4 and 3.5. Lemma 3.4 is 
proved by using Lemmas 3.3 and 6.1 (Appendix (II)). 

LEMMA 3.4. (i) Let fE B~ T]; H ~) with t>_3 and w o e H  k for some k, 
0 <_ k <_ I. Then Q(t, s; f )w o ~ B~ Ÿ H k) and satisfies 

(3.33) [Q(t, s; ~Wo[ j < d(l)[ f(t)[q W o Ij. 

(ii) Ir g(2, t )eMJ([l ,  ~);  B~ Ÿ H t-j) for O < j < l  and w o e H  k, then 
Q(t, s; O(2))w o enjoys the same property a s f  with [0, Ÿ and l replaced by [0, Ÿ and k 
(O<_k<_i). 

(iii) I f  fEB~ ~ ] •  T ] \ ( ~ ,  s); B l-z+~) with 6 > 0  in addition to the as- 
sumption of(ii), then Q(t, s; g(2))Wo sB~ ~ ]  x [0, Ÿ \ (~ ,  A); Hk) for  O < k < l - 2 .  
The same holds for l -  1 < k < l with H k replaced by I7Ik. 

(iv) I f  W o ~ Hk~ (1 < fl < 3/2), then the above claims (i)-(iii) hold with H k (resp. 
F1 ~) replaced by HkB (resp. /~~). 

(v) I f  f and f, satisfy the assumption of  (i) (or (ii)), then we have 

(3.34) I Q(t, s; v")Wo - Q(t, s; ~x)Wo I k- 1 

<C(It--st(l~]~,~,+l~l ll,1,))lwol,,~k) Iv(r)--61(r)lk-flr 

with m(k) defined in Lemma 3.3 (v). The same estimate holds with I v - v x  Ik 1 replaced 

by I[~--e, IIk-,- 

LEMMA 3.5. Let f~MJ([1, ~);B~ Ÿ Ht-J)) with l>_3 and for O<j<L 
Then, the equation (3.32) has a unique solution S(t, s; ~) enjoying the same properties 
(ii)-(v) stated in Lemma 3.4 for Q(t, s; f). 

Proof Associating with the operator Q(t, r; v') in H k, we define an operator Q~ 
acting in B~ Ÿ H k) ( O < k < l )  by 

(3.35) (Q J ) (0  = Q(t, r; ~f(r)dr .  

Clearly Q~ �9 B~ Ÿ B(B~ ir]; Hk))) and satisfies 

(3.36) [QJ(t) lk  <[t--slc(l)lOl~,fd'-slb(~176 O<_k < l .  

An easy calculation shows 

(3.37) I Q~"f(t)Ik < [ t - s  [" (n - 1)! {c(l)[ 6 b3,}"el t-slb(t)l~l,., I f [k, ~" 

Thus we can obtain the solution S(t, s; v') by means of the convergent Neumann 
series: 
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(3.38) S(t, s; v')= Q(t, s; v')+ Js Q(t, r; v')(1 - -Qs) - IQ( ' ,  s; v')(r)dr 

=Q(t,  s; v')+ Sl(t, s; ~) . 

S(t, s; v')Wo (resp. Si(t ,  s; v3) is continuous in (t, s)e[O, Ÿ in H k for wo e H k (resp. in 
B(Hk)), 0 < k < l, and satisfies 

(3.39) [S(t ,s;  v')wo(k <Celt-slCl~l,.rlWolk, O<__k < l .  

The properties of S(t, s; f) are proved by using the expression (3.38) and Lemma 3.4. 

From (3.30) and (3.32) it follows 

(3.40) U(t, s; 2, ~, ~ = V(t, s; 2, ~ + V(t, r; 2, ~S(r, s; ~dr 

+ W(t, s; 2) + W(t, r; 2)S(r, s; ~dr ,  

(3.41) W(t, s; 2)= - U(t, r; 2, ~A(g, ~, Pi, V)Uo(�91 dr.  

Noting that A(f, ~], ~1, V) is a differential operator of 1st order with coefficients 
(g, ~, ~~)eMJ([1, oQ); B~ TI; HI-0)  for O<_j<_l, we apply Lemmas 2.2 and 3.1 to 
investigate the operator W(t, s; 2). Then we have 

LEMNA 3.6. Let ª  g) satisfy [A. 1]l and u o = (qo, yo)e H 1. Then: 
(i) W(t, s; 2, ª o enjoys the same propertv as ª t) with l and [0, ir] replaced 

by l - 1  and [0, T] 2. Moreover we have 

(3.42) (i) I W(t,  s; 2, ª o [1-1 < C(h~r I u o I,, 
(ii) I W( t , s ;  2, ª I 1_~~0 uniformly in (t, s)~[0, T] 2 (6>0), as 

~'-~ 00 . 

(ii) I f  Uo e H~ for  some k, 3 <_ k < l, and ti, 1 < fl < 3/2, then there holds 

(3.43) [ W ( t ,  s; 2, ª O ]k-3 ~-~ C(1~1)] u O Ik, b,/~ -1 log(1 +21 t - s  ]). 

Proof. We have only to prove the claims (3.42) (ii) and (3.43). Lemma 3.1 
(3.16) implies [ A ( f , ~ , ~ l ; V ) U o ( 2 ( r - s ) ) P l u o ] t _ 3 ~ O  as 2 ~ ~  uniformly in 
(r, s) ~ [0, T] ~ if I r - s i >  e > 0. Since U(t, r; 2, ~, v') is uniformly bounded in H ~-3, the 
same holds for U(t, r; 2, #, v3A(" " ")Uo(2(r-s))Pluo.  Hence I W(t, s; 2)u o Iz_3~0 
uniformly in (t, s)~ [0, Ÿ as 2--* ~ .  By using the interpolation theorem, we obtain 
the desired result. (3.43) follows from Lemma 2.2, Lemmas 3.1 (3.15) and the defini- 
tion (3.41)of W(t, s; 2, ª 

Combining Lemmas 3.1 and 3.3-3.6, we obtain 

LEMMA 3.7. Assume that ª = (~, v") satisfies [A. 111 and u o ~ H 1 with l�87 3. Assume 
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further that ª176 oo] • [0, Ÿ s); Bl-2+~)for 0 < 3 <  1/2. Then U(t, s, 2; ª o 
satisfies [A.I]~ (i) and belongs to B~ 0o] x [0, Ÿ A); B/-2+~) for 0 < 3 <  1/2. 
Moreover u(2, t) = U(t, s; 2, ª o converges to u(oo, t) = (q(oo), v(oo)) weakly in H t 
uniformly in ( t, s), if  l t - s l > ~ > 0 ,  u(oo)= (q(oo), v(oo)) satisfies 

(3.44) q(oo, t )=0  and V ' v ( ~ , t ) = 0  for t%s,  

Ov~/Ot+f(oo).Vv(oo)+P'S(t,  s; v(oo))uo = 0, t ~ s .  

Here P' denotes the projection into the rotation free subspace, P1 u =- (0, P'v). 

Proof From (3.27), Lemmas 3.1, 3.3 (v), 3.4 (v) and 3.5 it follows 

(3.45) li V(t, s; 2, f(2))uo- PoT(t, s; ~7(~))uollt_3~O, 

f (  V(t, r; t7(2))S(r, s; 2, ~(,~))uodr 

-- f )  PoT(t, r; ff(oo))S(r, s; ff(oo))uodr 1_3""~0 

uniformly in (r, s) as 2 ~  ~ ,  if ] t - s i >  e > 0. From Lemma 3.5 (the strong continuity 
of S(r, s; f(2))Uo) and (3.42) (ii) it follows 

(3.46) W(t, s; )~, ª ] t -1_~~0,  6 > 0, 

f t ~(2))uodr 1-1 W(t,r;2, ª ~ 0 ,  as 2--* oo, 
-,~ 

uniformly in (t, s) e [0, Ÿ Hence by (3.40) u(2, t) = U(t, s; 2, ª o converges to the 
limit u(oo, t) in B 1-3 as 2--*oo. Since u(2, t) is bounded in B~ Ÿ H~) cBO([0, T]z; 
B t-3/2) for 2~[1, oo), we see that u(2, t) tends to u(oo, t) in B l-2+~, 0 < 6 < 1 / 2 ,  as 
2~oo,  by virtue of the interpolation theorem. The convergence is uniform, if 
] t - s i > e > 0 .  Clearly u(2, t) converges to u(oo, t) weakly in H l uniformly in (t, s), if 
] t -  s ] > e > 0. The expression (3.40) gives 

(3.47) u( oo, t)= PoT(t, s; tT(oo))uo 

i, + PoT(t, r; g(oo))S(r, s; g(oo))uodr. 

This proves P1 u(oo, t )=  0, which implies the ¡ part of (3.44). Differentiating (3.47) 
and using (3.32), we obtain the second equality of (3.44), that is, 

(3.48) Ou(oo)/Ot+~(oo).Vu(oo)+(1 -Po)S( t ,  s; ~(oo))Uo = 0 ,  t ~ s .  

REMARK. We have used the operator V(t, s;2, v') = V(t, s; 2/7, )qfi, v-) to approx- 
imate U(t, s; 2, ~7, v'). However we can give an exact decomposition of U(t, s; 2, g], v') 
as the product of the pure transport operator and the pure propagation operator. 
First we consider the propagation equation 
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8 
Ot q + J'7/~l(t' x)tr{C(t,  x)Vv} = 0 ,  

(3.49) 
�91 
~~ v + 2/fi I C(t, x)Vq = O, 

(3.49)s (q, v)[, =s = (qo, Yo) = Uo, 

where C(t, x) is a smooth 3 x 3 matrix. Since this equation is symmetric hyperbolic, 
we have the evolution operator Z(t, s; C) such that the solution w(t, s, x) of (3.49)- 
(3.49)~ is described as 

w(t, s )= Z(t ,  s; 2fil, 2/~1, C)u o . 

We take the solution u of (2.1) and note the equality 

(3.50) Vx(u(t , X(s, t, x; ~ )=  ~ (Vxu)(t, X(s, t, x; ~ ) ,  i.e., 

(3.50)' V~T(s, t; ~u = T*(s, t; ~T(s ,  t; ~(Vxu) where 

t/~X \ 
T * ( s , t ; ~ =  ~~-x XS, t , x ; ~ .  

We put 

(3.51) u,( t)= T(s, t; f)u(t) . 

Then we obtain (with the notations defined by (2.18) and' (2.19)) 

(3.52) ~t ul -= T(s, t; v'){ -B(2fi, 2/fi, Vx)u(t)} 

= -- T(s, t; v')B(2/~, 2/fi)" T*(t, s; v')T(t, s; v-)(V~ul) 

= - { B ( 2 T ( s ,  t; v")(fi, l/ti))" { T(s, t; v')T*(t, s; v " ) } V x u  1 . 

Thus, if we put 

(3.53) /~l(t, s, x )=  T(s, t; v-)fi(t) , 

fil(t, s, x ) =  T(s, t; f )~( t ) ,  

C(t, s; x) = T(s, t; F)T*(t, s, "; tT)(x), 

then we have w(t, s )=ul ( t ) ,  i.e., 

Z(t,  s; 2fil, )-/fil, C)uo = T(s, t; f )u( t ) .  

This gives 

(3.54) U(t, s; 2/~, 2/~, t~)= T(t, s; v3Z(t, s; 2/~1, 2/~1, C). 
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4, Proof  of Theorems 

Proofof  Theorem 1.1. We define the approx imat ing  sequence for  the solution 
by 

(4.1) 1) u~ =(q~,  v~)= U(t, 0; 2, qo, Vo)Uo, 

n) u,=(qn, u,)=U(t,O;2, q . 1, Un_l)�91 

Then u n = (q,, v,) satisfies 

(4.2) 

(4.2)o 

(4.3) 

U0 = (q0' V0), 

n > 2 .  

c~~- qn + v, _ 1 �9 Vq, + 27p,_ 1 V-/)n = 0 

Ot v,+v,_1 "Vv,+(2/p,_OVq,=O, 

u. I ,:o = (qo, Yo), 

p._l=p(l+~-lq._l), p . _ ,  = ti{ 1 + I~o(,�91 lqn_ l)} �9 

We de fne  the equivalent  no rm I u, ]Ÿ o f  ] u n Iz by 

( 4 . 4 )  lUnlŸ 2 =  ~ (7Pn- 1) -1 qn, qn 
I~1_</ 

( (~x) (~x)) + Z  p . - ,  ~., ~. �9 
i~l_<t 

Let u o and u,_ 1 satisfy [A.0]l and [A. 1]l, l-> 3, respectively, (and also (2.9) hold) with 
suitable constants  M 3, &r M o and m. Choose  Te(0 ,  Ÿ satisfying (2.10). Then,  by 
virtue of  L e m m a s  2.1 and 2.2 we can show that  u, satisfies [A.1] 3 for (2, t ) s  
[1, oc )x  [0, T] with the same constants  M 3 and M o, and then satis¡ [A.1]l with a 
suitable constant  M =  C(M3, l u o Ir). We have only to divide [0, T] into subintervals 
[ti-1' ti], eTbtl)M3l t i -  ti-llb(l)[u, li-3, T < 1, 1 < i< m, and apply  (2.8) in [t i_ 1,  ti] for i =  
1, 2, . . .  a n d j = 6 ,  9, - . - .  Thus we have 

(4.5) ru, l'3<M3/4 for  (2, t)~[1,  ~ )  • [0, T ] ,  

2 < tlAr2 (4.5)' (Tfi)-11 qn IŸ r +~1 v, t.T . . . .  

F r o m  (4.2) it follows 

(4.6) 

for  2E[1, oo).  

( ~ +  V, " V)q .+  l --qn)+ )cTpnV "(v•+ l--Vn) 

= - ( v  - v,_ O" V q , -  ~(q , -q ,_  l )V 'v .=g,  , 

+ v n ' V  vn+l-v . )+(2/p . )V(q .+l-q .  ) 

= - ( v .  - v. _ 1) �9 Vv. + (p.p. _ 1) - I {q.01(2 - lq.) - q. - 101( 2 - lq. - 1)} Vq. = h . ,  
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(4.6)0 ( q , * l - q . ,  v , + l - v , )  I,=o =(0, 0). 

Applying Lemma 2.1, (4.5)' and the Sobolev theorem, we obtain 

(4.7) lU,+l--U,[£ <eM~243 

<eM~ 1£ or 

(4.7)' l u , + l - U ,  l o < e M ~  lo, 2~[1, oo). 

Here K and L are constants depending only on 7, ,¡ and q If we take T o ~(0, TI 
satisfying 

(4.8) eM~176 < 1 , 

then {u,} converges in H ~ = L2(R 3) uniformly in (2, t) ~ [1, oo) x [0, To]. The estimate 
(4.5)' and the interpolation theorem show that {u,} converges in H z-£ 3>0,  
uniformly in (2, t): 

(4.9) u(2, t )=  s-lim u,(2, t) in B~ ov); B~ To]; Hl-~)).  

By virtue of (4.5)' u, also converges weakly in H z to the same limit u(2, t). Hence 
u(2, t) ~ M~ ov); M~ To]; Ht)). By the same argument as in the proof of Lemma 
2.2, we can prove that [u(2, t)li is continuous in t e [0, To]. Thus u(2, t)~ M~ oo); 
B~ To]; Ht)). By successsive differentiation by 2 we obtain 

(4.10) u(2, t)c Mi([1, oo); B~ To]; Hi- i )) ,  O < i < l .  

Letting n- - ,~  in (4.2), we see that u(2, t) satisfies (1.18)-(1.18)o, i.e., u(2, t )= 
U(t, 0; 2, u(2))u o. The continuous dependence of the solution u(2, t) on (2, Uo) follows 
from Lemmas 2.2, 2.3 and the Gronwall inequality. 

Lemma 3.7 shows that u,(2, t)~B~ ~ ] •  [0, T ] \ ( ~ ,  0); Bl-2+£ 0 < 6 <  1/2. 
From an easy interpolation ir follows with a suitable constant bt > 0 

(4.11) Ilu.(L t)-u.(2, t)llt-z+a 

<_b, lu.(2, O--Uf.(2. t)I~-o lU.(L 0--Um(2, 0 [£ 

<bl (2LM) l -~  t ) -  um(2, t)l£ with 

0 = ( 2 - ~ 1 ) ( 1 - 2 3 ) q  0 < 6 < 1 / 2 ,  3 / 2 < � 9 0  

This shows {u,(2, t)} eonverges in B 1-2+£ uniformly in (2, t) e[1, ~ ]  x [0, To] \ ( ~ ,  0). 
Combined with (4.10) and Lemma 3.7, this proves (ii). 

The solution u(2, t )=  (q(2, t), v(2, t)) of  the equation (1.18)-(1.18)o is described 
as 

(4.12) u(2, t) = U(t, 0; 2, q, v)u o . 

Letting 2 ~ ~ ,  we obtain by virtue of Lemma 3.7 
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(4.13)0 

(4.14) 

(4.13) u(oo, t)= PoT(t, 0; v(oo))Pou o 

+ f£ PoT(t, r; v(oo))PoS(r , 0; v(oo))u o dr. 

Hence u(oo, t) s B~ T]; H ~) c~ BI([0, T]; H ~-1) and satisfies 

u( oo , O) = PoUo , 

�91 
~ -  u(~,  t) + v(oo, t)' Vu(oo, t) 

= {v(oo)" VP o - Pov(Oo)" V} T(t, 0; v(oo))Pou o 

+ f£ {v(oo)' VP o - Pov(Oo) ' V} T(t, r; v(oo))PoS(r , 0; v(oo))uodr 

+ PoS(t, 0; v(oo))u o 

= - (1-Po)S( t ,  0; v(oo))uo (see (3.32)). 

In the following we use notations P and ( 1 -  P) for the projections of u =t(q, v) into 
the divergence and rotation free parts of the fluid velocity v, respectively. Then we 
have 

(4.14)' c?t v(oo) + v(oo)- Vv(oo)+ (1 - P)S(t, 0; v(oo))u o = O. 

Since the last term is rotation free, it is described as 

(4.15) (1 - P ) S ( t ,  0; v(~))Uo=-- 1/fiVq~(t, x) eB~ rol; H~), 

(4.16) q ~ =  f i G V . ( 1 -  P)S(t ,  0; v(oo))u o 

e C~ To]; 1.6 3 Wloc(R ) B~ 

Here G is the inverse (fundamental solution) of - A  (Laplacian). The last assertion 
(4.16) is a trivial consequence of the Sobolev embedding theorem. 

REMARK. We have used the well known results about the existence and 
uniqueness of the solution of the I.E.Eq. to claim (1.8) and (1.9). The I.E.Eq. will be 
studied in a more conprehensive framework in the forthcoming paper by the author 
[3]. 

Proof o f  Theorem 1.2. We prove (1.16) under the assumption u o �9 H l ~ H2 k + 2 
1 < k < l - 2 .  First we note that under our assumption 

k + 2  

(4.17) Vq oo =p(1 -P)S( t ,  0; v~176 ~ ("] B J([0, To]; H~ +2-i) 
j=0 

for any fl<3/2, as well as v ~176 This is a consequence of Lemmas 3.4 and 3.5. Since 
Hip= Wi'6/5(R n) for t i>  1, we have 
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k+2 

(4.18) q~e ~ BJ(r0, To]; H~+~-J), 
j = o  

by virtue of  the Sobolev embedding theorem. We put 

q(2, t )=q~ t ) +  2 - 1 q ~ ( t ) +  2-1q~(2, t ) ,  
(4.19) 

v(2, t) = v~ t) + v ~(t) + 2 -1U(~,t), 

where u~ t )=  ~(qO, v o) = Uo(2t)P1Uo" u o satisfies 

(4.20) [u~ t) lt~bluolt and Ilu~ t)llk~bluolk+z,z. 

Substituting (4.19) into (1.18), and using (1.11)~4.14) and (1.19)-(1.20) we 
obtain an equation (cf. (1.12)1): 

O 
~ -  (q ~ + ql) + v" V(q oo + ql) + 2?pV" v 1 = - Av. Vq ~ - 27fiqV �9 v ~ , 

(4.21) 0 

0t 
- -  v 1 + v. Vv  1 + 2 /p Vq  I + v 1 �9 V(v~ v ~~ 

= -- 2(v ~ + v co). Vv o _ )~v o . Vv ~ -- )~/(?fi)qr ~ , 

(4.21) 0 (q~ +q l ,  vi) [t_o =(0 ,  0) .  

Here (q, v) is the original solution of  (1.18). Rewrite (4.20) as the equat ion of  w=  
t(ql, vi) with the initial data  w o = ' ( - q  ~, 0) and the inhomogeneous  term f = ' ( g ,  h). 
Then by the argument  o f  section 2, the solution w is expressed as 

(4.22) w = U(t, 0, 2, u(2))w o + J l  U(t, s, 2, u(2))f(2, s) ds 

f' + U(t,s, 2, u(;0)'(0, v l"v(v~ 
o 

By virtue of  (4.18) and (4 .20)fsat isf ies  

(4.23) I f (2 ,  s)Ik-1 <c2(1 -I-�93 u o lk+2,2 �9 

Thus we can show the desired estimate for w. 
If  we assume that  the solution u = ' (q ,  v) has the expansion (1.10) then we obtain 

the linear C.E.Eq. (1.12)J-(1.12)�91 for uJ=t (q  J, v J), l<_j<_k. Applying similar ar- 
guments as above, we have the desired results (1.14) j and (1.15) j, 1 <j<_k.  Thus we 
have completed the proof .  

5. Appendix (I). The Proof of Lemma 3.1 

We have only to prove the following 

LEMMA 5.1. Le t  n > 2 ,  l > [ n / 2 ] +  l and fl>[n/2]. Take  0 sat is fying 
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(5.1) 

and define v(t, x) by 

v(t, x) = f e  ix ~e i'1r ~b(r r ])ª162162 (5.2) 

Then v(t, x) satisfies 

(5.3) 

Proof . 
lemmas. 

(9(w)6C"~(S"-I) , m>n/2,  

u6H~(R"). 

{iv(t)llj<bz.,.al149[i,,lul~.a(l +itl) (,-t)/z, O<j<l -n /2 .  

We have only to show (5.3) for the case j = 0 .  First we show two 

LEMMA 5.2. There exists a unique continuous restriction mapping from Ha(R ") 
to C~ ~) ;  L2(S"-a)) defined by (5.4) and satisfying (5.5): 

(5.4) Hl(R")~u(p~o) l ,u(p.)~C~ oo); L2(S'-1)), 

(5.5) (i) u(p.)[o<bP (n-a)/2(l+p)-J[u[~/2[V u 1/2 
- -  . O , j ,  

f; (ii) lu(p.)l£243 

(iii) f~ lu(p.)l£ , 0 < 7 < n / 2 .  

Proof (i) There exists a trivial inequality: 

(5.6) I u(p~o) [ < I u(t~o) I + I oJ" Vu(s~o)[ds. 

Integrating both sides on [p, R], using the Schwartz inequality and then choosing a 
suitable constant R, we obtain 

(fp~, )1/2( .fp~. )112 
(5.7) I u(po)) I z < 2 [u(t~)12dt I Vu(to))12dt . 

Multiplying p"-1 and integrating both sides on S"-a,  we can show 

(5.7)' p('-l)f[u(pog),2d~o<eflr ~ ,u(~),2d~+e-'flr ~ IVu(~)12d~. 
Taking ~ > 0 appropriately, we have (5.5) (i) f o r j =  0. The continuity of  u(p.) follows 
from the continuity of  the Lebesgue measure. The case j > 0  is treated similarly. 

(ii) Let fl > 0 and 0 < a < t < 1. A simple calculation gives 
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f', 
(5.8) J. risa - 11 u(sco) lZ ds 

= [sal u(sco) 12]•  u(so))l 2ds 

This implies 

f~ f' B sP-llu(so)12ds<-2?[u(t~)12+4/B sP+alVu(sc~ 
do 

Integrating both sides in t on (1/2, 1), we have 

f? f/ ;o (5.9) fl s 0-11 u(s~o) I 2ds <_ 8 t o + 11 u(teg) [ 2dt + 4/fl s ~ + 1[ Vb/(S(D) I 2ds .  
/2 

Putting f l = n - 2  and integrating (5.9) on S "-1, we get (5.5) (iii) for y=  1. In a similar 
way we get (5.5) (iii) f o r a  general integer 7 � 9  [0, n/2). 

LEMMA 5.3 (Sobolev). Let W~'P(R ") be the space of measurable functions u(~) 
satisfying 

(5.10) [ulk, p,l = ~ [ ( I+I�91191 
lal_<k 

with 2 < p < ~ .  Then we have the continuous inclusion Assume k - n/p < t i -  n/2 
H~(R") = W~" P(R") with 

(5.11) l u l ~ , p , ~ ~ b l u l p , t  . 

Proof of  Lemma 5.1 (continued). Let u �9 Hin(R") with l > [n/2] + 1 and fl > [n/2]. 
Then, the integration in (5.2) converges absolutely and there holds 

(5.12) Ir(t, x) l_< II 4~lrol ª 10.1- 

By virtue of (5.5) we can rewrite (5.2) as 

(5.2)' v( t, x)= fjs,_ , l o  e~w e'~ 49(~~252176 l dpd~ " 

Noting the estimate (5.5) and the equality 

{ -- i(t + x" ~o)- 1 •  keiP(t + x" r = e iP( t  + x .  ( , ) )  

and integrating by parts in p k =  [n/2] times, we obtain 

(5.13) Iv(t,x) l<C(t--lxl)-k[4~lolª t > l x l .  

Hence the proof of Lemma 5.1 is completed, if we prove 
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(5.1 4) [ v(t, x) [ < C [x 1- ~"- 1)/2 II 49 II ~1 ª I~~~ . 

Take x=(0 ,  . - - ,  0, y), I x [=y,  and the partition {Z-l, Zo, Z1} = C~(R) of unity 
on [ - 1 ,  1] satisfying 

s u p P z j c ( j - 1 / x / 2 ,  j + l / x / T ) ,  Zj_>O, ~Zj--1 on [ - 1 , 1 ] .  

Then, split v(t, x) into three parts va, j - -  - 1, O, 1, by 

vj(t 'x)=fo�91 , e~P'~"~�91 (c~176252176176 (5.15) 

Putting 

Og=(60'~(Z),T), co, E S  n 2, ~(~)=(1__Z2)1/2, 

and using the equality 

we obtain 

This proves 

(5.16) 

{(ipy)- x ~/c3"c}lr : -  e ipy~ , 

vo( t , x )=fo f s ._2e iWp"  l(- i tpy)-kdpdco ' 

f~ x eiPr~(~?/~?z)k{xo(r)49(d~(z), r)ª 
- 1  

I yo(t, x) l~ Cy-kllZo IIk]l 49 II k[ ª Ik.~" 

In order to estimate vl( t ,x  ) (and v_~(t, x)), we apply the stationary phase 
method (see e.g. Matsumura [12] Appendix) in a simple version. 

Putting 

(5.17) co=(co's, a(s)), co' ~ S  "-2 , s t [0 ,  I], 

we obtain 

(5.18) vi(t, x)= eiWp "- XeiPYVl(py, co', pe)')dpde)', 
n - 2  

~', p~')= f~ e ip'~~~s~- "z1(~r(s))49(~'s, ~r(s))ª 2~(s)-1els . vl(py, 

It is easy to verify the following 

(5.19) a(s)=(1 - s  2) 1/2= 1 +(1q x~C~([0,  1q 

Z is monotone increasing on [0, 1q x(0)= 1, x ( l q  

Changing the variable s into r : s z ( s 2 )  1/2 in the definition (5.18) of V 1, we get 
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(5.20) vi Jo e-i~176167 ~(r))ª p6(r))r "-2 ~(r)dr, 

with appropriate C~-funct ions  g(r), ~�91 Xl(g(r)), #(r) and ~(r). Using the equality 

(5.21 ) { - (ipy) - 1 #q ~/2 = re -iPr'2/2 , 

and integrating by parts j = [ ( n -  1)q times in r, we obtain 

I0 ' ' 
(5.20)' V 1 =( ipy)-J  e-i~ -1} {~l(e), r)ª pg(r))r"-2}dr, 

with q~l =)~lq ~- 
If n is odd, we have only to estimate the terms of  the following type: 

;f f7 U = y -J p" - 1 -i+~ I Wª p~(s)) Is"- 2 - j -  ~dpddds, 

~+7<j=(n-1) /2 ,  0 < 7 < j -  1. 

Applying the H61der inequality, we have 

(5.22) U <-cy-J( f f f p"- l(l + p)'P, V~ª 2dpd~o'ds) 1lp 

pn- 1(1 +p)-(t+J-~)qSn-2 

l < q < 2 < p .  1 /p+l /q=l ,  
If  we can choose p a n d  q satisfying 

(5.23) (i) 1 - 1 / q = l / p > l q  

(ii) n -  1 - ( l + j - ~ ) q < -  1 , 

(iii) n - 2 - ( j + 7 ) q > - l ,  

then the integrals on the right hand side of  (5.22) converge by virtue of Lemma 5.2, 
and we obtain the desired result 

(5.24) U< cy-J] ª [~.t �9 

We rewrite the condit ion (5.23) as 

1 /q<l+e-~ /n ,  

1 / q  < 1 - crin, 

(5.23)' (i) 

(ii) 

(iii) 

(iii)' 

( t i ~ n =  l q  e >  - 1 / (2n) ) ,  

( l+j=n),  

1/q>(j+7)/(n-1),  7 < m i n ( j - 1 , j - ~ ) ,  i .e. ,  

1/q> 1 - max(1, ~)/(n- 1). 

It is easy to show that  there exists an exponent q=q(~, 7) satisfying (5.23)' for each 
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(~, 7). Thus we have proved (5.14) for odd n. 
If n is even, we split V 1 into three parts by 

(5.24) 1/1 = Uo + U1 + U2, 

Uo=coOPY) J ~x/,/Y " - "Jo e-ipy,212 { ~9(~o', p, O) + ra,t~(~o', p, 0)}dr, 

U1 = c~ J ~ll'iY i i  Jo e-i~ (r-r')O2" t]s(e)" p' r')dr' , 

tis(o)', p, r) - 21(r)4b(m'w ~(r))ª167 p~(r)) , 

ff 
/ ' 2  

U 2 = (ipy) - j -  1 e -los'212 ~ I~=, ~((n', r) 
I~l+'eNj+ 1,7_<j 

• pi ~ i(wª pff(r))r" - 2 - ~- edr 

i/s,,~, ~ C ~176 , l / x / - 2 - ] ) .  
By the standard calculus we can rewrite U o as 

U o : c o ( i p y ) - S ( f ; - f  ~o )e-i~ p,O)dr 
l l.iT 

+ cl(ipy ) -S- 18,O(co, ' p, O) 

=co(2n)a/2(ipy)- J-1/24b(0', 1)ª p) + O((py) - j -  1)1 ª p)[ 

+ cl(ipy ) - j -  10,O(~o', p, 0). 

By virtue of the Soboiev theorem the first two terms are majorized by 

(PY)-~"-')I2( 1 +(PY)-'I2)( 1 +p)-'l ¨ l = n / 2 +  1 , 

which is integrable over R"_~(0, ~ ) x S " - 2 x  [0, ni with p,-1 sin,-2Odpdm,dO. The 
last term is majorized by 

(py) -,/2 -,(1 + p) -,(1 + P)'{I ª p) I + Pi Vª p) I}, 

which is also integrable over R" with the same measure. As for the integrals 
containing U 1 and U 2 in the integrands we can estimate them in a similar way 
adapted in the proof  for odd n. Thus we obtain the desired result for even n. 

6. Appendix (II) 

For later use we prove the following 

LEMMA 6.1. (i) Let v~WZp(R"), l < p < ~  and l > n / p + l ,  and K be the 
singular &tegral operator with the kernel K(x): 
(6.1) (i) K(x) is o f  homogeneous degree - n ,  K ( x ) = K ( x / [ x l ) [ x [ - "  , 
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( i i )  K(~.)6Ct(S ~-~) with [IK[l~,s = ~, II�91 
I~l_<l 

(iii) L',, , K(¨ 

(6.2) (Ku)(x)= v.p. ~ K ( x -  y)u(y)dy. 
JR n 

We define the operator R by 

(6.3) R = [(vO/�91 K] = (v�91191 K(vc~/�91 - R(v) . 

Then R is a bounded operator in WJp(R"), O<_j<_l, with the estimate 

(6.4) [ R(v)ulj, p <_bllKll2,sl v Ir,pi ulj, p, O<j<_l. 

(ii) Let n_>3, l>n/2+l  and v~Hl(R"). Then the operators K and R(v) are 
bounded in H~(R"), if O<_fl <n/2: 

(6.5) [Ku[j.~<_bl[K[[Ju[j,~, O<_j<_l, 

(6.6) ]R(v)u[j,~<_bHK][~.s[V[l.o[U[j.~, O<_j<_l. 

Proof First we state the precise definition of the space W~.~(O): 

(6.7)(i) W~.~(O)~u(x)~:~(l+[x[)~(�91 [~[</.  The norm [f[l,p,p is 
defined in (5.10). 

(ii) We write simply W l - l I - l p.o-Wp, [ [l,p,o=[ Ir,p, and also W2,#--H#, 
] [~,2,~=] [~.p without confusions. 

To prove (i) we apply the method of Mizohata ([13], [14]) established on the basis 
of  the Calder£ theory on singular integrals ([5], [6]). By an easy 
calculation we have (with the abbreviation (�91191 �91 �91161 i= 0 i and u, = c~'u) 

(6.8) �91191161 ( ~ ){(O~-'v)K(~~O~u)'K(Oj~~-'vX�91191 

- ~ ( ~ ){v~_,K~ju,-Kv~_,�91 
I~-~[<_l-n/p-1 Y 

I ~ - ) ~ ] > l - n / p - 1  

-- R l(v)u + R2(v)u . 

To estimate the first term, we note v,_~. ~ B ~ +~ We have only to estimate 

(6.9) S(v)u=vKOju-KvOju, veBl+~ uELP(R"), 

or  
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(6.10) S~(v)u(x)= f {v (x) -v (y)}K(x-y)S iu(y)dy .  
x - y l > E  

For a while we assume u e W~(R"). We rewrite S~(v)u as 

S~(v)u(x) = ~ { v(x) - v( y)} K(x - y)u(y) vj(x - y)dSy (6. 1 1) 
di x-yl  =~ 

+ f (•jv( y))K(x - y)u(y)dy 
dl x - y l > e  

+ ~ { v(x) - v(y)} (OjK(x - y))u(y)dy, 
dl x - y l > e  

- Si,~(v)u + S2,~(v)u + $3, ~(v)u, 

where v ( z ) = - ~ = - z / I z  [. Clearly we have 

(6.12) I SL~(v)Ulo.p<q "-1111Vvlloll Kilo.si u to,p, 

(6.13) [ 82. e(o)u lo. p ~< b [[ Vv[lo [I K]]I, si u 1o, p .  

(6.13) is a direct consequence of the Calder£ theorem. We rewrite S3,~(v)u 
as the sum $4, ~(v)u + S•, ~(v)u of integrals on {1 x - y  [ > 1 } and {e < I x - y  I < 1 }: 

(6.14) S3,~(v)u = S4,~(v)u+ Ss,,(v)u. 

From the Hausdorff-Young thorem (Note cgjK(x)=0(I x I " 1).) it follows 

(6.15) [S,,,~(v)ulo,p<_bllvllolIKlll,sl ulo, p. 

The Taylor formula gives 

v(x) -  v(y) = ~ ajv(x)(x i - yj) + w(x, y), 
i=1 

[w(x, y) l < Ilvlll+olx-yl 1+~ . 

We rewrite S5,~(v)u as 

(6.16) $5 ~(v)u= ~,c3iv(x) I < ( x i -  Yi)(ajK(x- y))u(y)dy 
�9 , d�91  1 

+ [" w(x, y)(8jK(x - y))u( y)dy. 
d~ < ] x - y l < l  

- S6,~(v)u + ST,~(v)u. 

Clearly the Hausdorff-Young inequality gives 

(6.17) I ST,�91 p <- bllVvllollKIIl,sl ul0,v. 

We note the following equality 
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(6.18) (i) x ia jK(x )=Oj{x iK(x ) } ,  i ~ j ,  

(ii) x i a i K ( x  ) = (~i{xq - K ( x ) .  

Ir is well-known that each 1st derivative of the function of homogeneous degree 
- ( n -  1) has the mean value zero on S "-1, i.e., its integral on S "-1 is zero. (See, e.g., 
Agmon [2] Lemma 11.1.) Hence we can apply the Calder£ theory to 
estimate S6,~(v)u and obtain 

(6.19) I S6.~(v)U]o.p<bl]Vvl]ollK]12,s[ U[o,p . 

Summing up the above arguments, we have 

(6.20) ]S(v)u [o,p<bllKII2,sIIv]ll +0[ ª [o,p- 

Applying (6.20) to R~(v)u and using the Sobolev theorem to estimate I[c~~-:v I[1 § by 
Ir [z.p, we have the desired result 

(6.21) [ RI(v)u [o,p<blIKll2.sl v Ir, pi u I ] ~ l , p  ' 

In the second term R2(v)u of (6.8), l ~ f > _ l - n / p -  I +tY[ and each u,,e W'p(R") 
with r >  2 + n / p  (ir exists). Hence 0iu ;, and KO~u;, belong to W~-  ~(R") c B~ Thus 
v~_,~K~ju;, and Kv~ ~?ju;, belong to LP(R ") and are estimated as 

(6.22) (i) [va_;,K�91 o 

<- bl v I~, pi Kc3ju,, [~ _ t, p 

<_ b[ v[l, pH KIIl,s[ u ]l~l,p ' 

(ii) I Kv~_.,3ju., [o,p <b]lKlll,Sl v~_.eOju. ,,[o,p 

<_ b ll Kl[1,sl V II, pi U [l ~ t, p " 

Thus the proof of (i) is completed. 
To prove (ii) we first note that x~K is a bounded operator from H~ to H~ I, if 

I ot l<_j<n/2.  This fact is shown from (5.5) (ii)-(iii) of Lemma 5.2 and the following: 

(6.23) (XkKU)~(r = k(r252162162 + i(c~k(r252162 ) 

= ( I (x~u)~(4 )  + i(,~kk(�91252191 
(6.24) [x~Kulo <_clIKItl,s[Ulo, l,l +c'llklll~l,slª  

<blIK[It,slU[o,l,l , Ic(l<n/2. 

Here we have used the fact that /~(r  C~(R"\{0}) and is of homogeneous degree 0, 
which is proved later in Lemma 6.2. With the notations S~,,(v)u defined in the proof of 
(i) we can see easily 
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(6.25) (i) [x~S~,~(v)Ulo~C~l=lHVvllollKIIo,slulo +clIVvllollKIIo,slulo.l~l , 

(ii) [x~S2,~(v)u Io-<bHKllLsl (~~v)u Io, l~l<-£ sHVvllol u Io,~ 

(iii) Ix~ST,~(v)U[o <_cHVv]lo~[Kl[1,s[U[o,l~l , 

(iv) [x~S6.,(v) u lo <bllVvllo IIKIh.sl u Io, l~l. 

(6.26) 

We write S4.,(v)u as 

S4, ~(v)u = v(x) f (OjK(x - y))u(y)dy 
x - y [ > l  

+ I x -  rl > 1 (~jK(x - y ) ) v ( y ) u ( y ) d y  

- Ss ,~(v)u + S g , . ( v ) u .  

(" 
(6.27) XkS8 .(v)u = v(x) i (c?jK(x -- y))yku(y)dy 

' J I x - y l > l  

-~- I)(X) f x - y I > 1 ( x k  - -  y k X O j K ( x  - y))u(y)dy . 

By arguments similar to those used to prove (6.19) and (6.24) the [ [o, i- 1 norm of the 
second term is majorized by HVl]oHKI]i,s l u 1o,i- Clearly the first term is majorized by 
]tvHo]lKl]l,s] u Io,1. Repeating this argument, we have 

(6.28) [x~Ss,~(v)U[oy U[o.l,i �9 

In a similar way we can show 

(6.29) [x~  u lo --< bllvllolIKll I~l,sl u lo, I~l �9 

Summing up the above, we have 

(6.30) [ x=S~(v) u lo -< b li v 111 + 0 II Klll~ i, si u Io, ~. 

The rest of the proof is easy and omitted. We have only to apply (6.24) repeatedly. 

REMARK. Lemma 6.1 is valid, even i f v e B l ( R  ") and V2veHI-2(R"). 

LEMMA 6.2. Let K(x) satisfy the condition (6.1) with l>0. Then the Fourier 
transform K(r of  K(x) is o f  homogeneous degree 0 and belongs to CI(R"\{0}). 

Proof. By the well known calculation we have 

Then we have 
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(6.31) (2Ÿ fR, K(x)e-iXr 

= / ~ , ( 0  +/~2(�91 �9 

T a k e  a n e i g h b o u r h o o d  U o f  e , = ( 0 ,  . . - , 0 ,  1 ) ~ S  "-1 a n d  

C~(U; SO(n)) such tha t  R(a)e,=a. T h e n  we have  

= fK(R(�91 log le). Ido)  CI(U) , 

which fol lows f rom the equa l i ty  

We  have also 

(~'= ~/I �91 l) 

a funct ion R(a)~ 

C 
(6.33) O~K2(~) = - 7tiJK(co)6 (l" I- 1~(co" r 1 <1 ~ [ <  l ,  

which  be longs  to C l-I~ I+ I (R ,  \{0}). Here 6 deno te s  the Di rac  measu re  on  R. T h u s  the 

p r o o f  is comple ted .  
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