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A heuristic method for packing disks in a circle is constructed, and is applied to the
estimation of the sizes of holes through which given sets of electric wires are to pass.
Modern intelligent machines such as planes and cars have a variety of electric systems,
and consequently a lot of electric wires run in a complicated way. These wires should
pass through holes opened in the walls of the body of a machine. Those wholes should
be as small as possible because larger holes weaken the body. The problem of finding
the smallest hole is reduced to the problem of finding the smallest circle containing all
of given disks without overlap. In the proposed method, a sufficiently large circle is
initially constructed, and it is shrunk step by step while keeping all the disks inside. For
this purpose a Voronoi diagram for circles is used. Computational experiments show the
validity and the efficiency of the method.
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1. Introduction

Modern intelligent cars contain many electric systems. For example, a car has
many sensors such as temperature sensors and speed sensors, many controllers such
as engine controllers and break controllers, many power electricity such as an engine
starter and a power steering, many lights such as head lights and break lamps, and
many additional systems such as a global positioning system, a CD player, sound
speakers and a radio. Consequently a large number of electric wires run in the body
of a car in a complicated manner.

Fig. 1 shows a typical example of a bundle of electric wires used in an actual
car. As shown in this example, a set of wires of various sizes are collected together
into a cylinder-like bundle, and many bundles are again collected together into a
larger bundle. In order to layout those bundles of wires, we have to make holes on
walls of the body through which the wires pass. Those holes should be large enough
for the bundle of wires to pass, but we do not want to make them unnecessarily
large because larger holes will weaken the body.

Hence, we want to estimate the size of a bundle of wires as precisely as possible
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Fig. 1. Example of a bundle of wires used in a car.

in order to determine the sizes of the holes. From the precision point of view the
best way is to actually make a bundle using real wires. However we do not want to
do that, because we want to know the appropriate sizes of the holes in the design
stage, where everything is just on sheets of paper or in computers. Thus, given a
set of the sizes of wires, we want to estimate the size of the bundle that would be
generated when we put them together tightly. This is the problem we consider in
this paper.

Considering the cross section of a wire bundle, we may reduce the problem into
a two-dimensional disk packing problem, that is, given a set of disks (corresponding
to the cross sections of wires), we want to find the smallest enclosing circle that
encloses all the disks without overlap.

Disk packing is an old and hard problem, and has been studied by many
mathematicians. Examples of old work can be found in Goldberg [3] and Kravitz [9].
Since these days, various types of packing problems have been studied. They include
packing disks in a circle [5, 6, 9, 11, 16], packing disks in a square [4, 13, 14, 20],
and packing disks on a sphere [3]. They search for the smallest size of the enclosing
figure in a strict sense, and gave solutions only to some restricted numbers of disks.
Moreover, they concentrate their attention onto the case where all the disks are of
the same size. Actually there is almost no result for disks with different sizes.
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Fortunately, however, what we want in order to estimate the size of a wire
bundle is not the strictly smallest enclosing circle, but an approximation that is
nearly smallest. Such enclosing circles were studied by Drezner and Erkut [2]; they
reduced the problem to a nonlinear optimization problem, but they reported that
their method was time consuming and could compute the circles enclosing up to
23 disks. What we want, on the other hand, is an enclosing circle that encloses
several hundreds of disks with different sizes, and hence we cannot use the previous
methods.

In this paper, we propose a new method for finding a small circle that encloses
a given set of disks with different sizes. Intuitively speaking, this method simulates
a physical process in which we shake the disks inside the enclosing circle while we
shrink the enclosing circle step by step until the disks cannot move any more.

The structure of the paper is as follows. In Section 2, we describe the method
currently used in industry and discuss its insufficiency. In Section 3, we give a
basic structure of our algorithm, which simulates a shrink-and-shake procedure. In
Section 4, we accelerate our algorithm using generalized Voronoi diagrams. In Sec-
tion 5, we give some experimental results to show the behavior and the performance
of our algorithm. Finally we give some concluding remarks in Section 6.

2. Bundle Coefficient Approach

Let us denote by ci a disk with radius ri . The location of ci is not fixed; we can
move ci in the plane freely. Suppose that we are given a set C = {cl, c2, ... , c,,.} of
n such disks. Our goal is to find a nearly smallest circle that encloses all the disks
without overlap in reasonably small computation time.

Table 1 shows an example of a disk set that actually arises in an existing car. In
this table, the left column shows the category names of wires, the middle column

Table 1. Wires belonging to a bundle in an actual car.

category of a wire radius (mm) number
23A 1.8 3
20G 0.7 11
31G 0.8 .31
44G 0.9 5
45G 1.05 9
51G 1.3 12
25J 0.55 25
28J 0.65 54
30J 0.75 1
31J 0.9 6
22X 0.9 4

10E 1.75 1

total	 162
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shows the radii of the perpendicular sections of the wires, and the right column
shows the number of wires belonging to each category and each size. Hence, in this
example, the bundle contains 162 wires, among which the largest one is more than
three times larger in radius than the smallest one.

We first describe what is currently being done in industry. They have a secret
number, say B, called a "bundle coefficient". Let S be the sum of the areas of the
disks:

n

S =	 7rrá 2
i—I

Then, they estimate the diameter of the bundle by B^.
This estimation is based on the assumption that in the section of a wire bundle,

the ratio of the area occupied by the wires to the empty area is constant.
However, this is not true in general. A typical example is shown in Fig. 2.

Fig. 2 (a) shows the case where all the disks are equal in size, and they are packed
tightly in the way just like a nest of bees. In Fig. 2 (b), on the other hand, additional
smaller disks are inserted in the empty space. Therefore, the ratio of the occupied
area is larger in Fig. 2 (b) than in Fig. 2 (a). This example implies that the bundle-
coefficient method does not work well, because the distribution of wire sizes changes
from bundle to bundle.

(a)	 (b)

Fig. 2. Two packings in which the ratio of the empty space is different.

Actually there are more than one bundle coefficient in industry, and experi-
enced persons select according to their inspiration the one that seems the most
suitable for each set of wires. This kind of estimation cannot guarantee the quality
of the result, and hence a more logical method is required.

3. Shrink-and-Shake Algorithm

In this section we present the basic structure of the proposed algorithm. First,
we show an example of the behavior of our algorithm, next sketch the basic struc-
ture, and then describe how to simulate shaking disks in a circle.
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3.1. Rough illustration of the behavior
Fig. 3. illustrates the behavior of the algorithm which we are proposing. As

shown in (a), we first place a given set of disks without overlap and construct an
enclosing circle. Next, we generate another circle that is a little smaller than the
current enclosing circle, as shown in (b). We call this new circle the target circle.
At this stage, there are some disks that are partly protruding the target circle.

Fig. 3. Shrink-and-shake strategy.

So we next try to push such protruding disks toward inside the target circle.
For this purpose we choose one protruding disk. Suppose that we now choose the
dark gray disk in (b). Then, instead of pushing this disk directly, we try to move
other disks as far as possible from the dark disk, just as we shake the disks; at
this point we do not shake much, but we give just one stroke of shaking. Fig. 3 (c)
shows the result of a stroke of shaking, where light gray disks are those that were
moved by the shaking. Note that as the result of this shaking, the dark disk was
moved inside the target circle, and that at the same time some other disks that
were previously protruding the target circle were also moved inside.

There still remain some protruding circles, and hence we choose one shown by
the dark disk in (d). We give another stroke of shaking in such a way that all the
movable disks were moved toward opposite to the dark disk. Then, we get the next
configuration as shown in (e).
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We repeat a similar procedure until either all the protruding disks are moved
inside the target circle or the shaking procedure does not work any more. In the
former case we succeed in shrinking, and hence we update the current enclosing
circle and generate a still smaller target circle. In the latter case, on the other
hand, we fail in shrinking, and hence we generate a new target circle between the
current enclosing circle and the current target circle. In both cases we repeat the
whole shaking procedure. This is a kind of binary search in the sense that we
adjust the size of the target circle according to whether we succeed in pushing the
protruding disks or not.

3.2. Basic structure of the algorithm
Now we describe the basic structure of our algorithm. In the next algorithm we

use two small positive parameters p and E. The parameter p is used for determining
the radius of the target circle in such a way that the radius of the target circle is
(1—p) times the radius of the current enclosing circle; p is halfened in the processing
so as to realize the binary search. The parameter s, on the other hand, is used
for judging the termination of the procedure in such a way that the algorithm
terminates when the difference of the radii of the enclosing circle and the target
circle becomes smaller than e; E is fixed throughout the procedure. Square brackets
in the procedure represent additional description for the readers.

Algorithm 1 (basic algorithm).
Input: n disks ci with radius ri, i = 1, 2, ... , n, positive number p that is small
enough (for example, p = 0.02), and a sufficiently small positive number e (for
example, e = min(ri, r2, ... , r n ) / 1000).
Output: Non-overlapping placement of the n disks and their enclosing circle with
radius R such that R is nearly smallest.
Procedure:
1. [Initialization] Place c1 i c2,... , c,-,, without overlap, and find their enclosing

circle D. Let the radius of D be R. R' — (1 — p)R.
2. Choose the target circle D' whose center is the same as that of D and whose

radius is R'.
3. [Main repetition] While there are protruding disks, choose one, say cz, and do

the following.
3.1. Sort the remaining disks in the decreasing order of the distances from ci.
3.2. Choose the remaining disks one by one in this order, and if it can be moved

to some place in D' which is farther than the present location from ci, move
it to the farthest possible location.

3.3. If there is not enough space to push ci into D', go to Step 5. Otherwise,
push c- into D'.

4. [Succeed in shrinking] D — D', R' F- (1 — p)R' and go to Step 2.
5. [Fail in shrinking] p <— p/2 and R' f-- (1 — p)R. If R — R' > e go to Step 3.

Otherwise, report the present enclosing circle D and the associated placement
of cl, c2 i ... , cn , and stop.	 n
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^ 1. Generate the initial enclosing circle D.

2. Set the target circle D'
(which is a little smaller than D).

D < - D'

Are all circles contained in D'?

yes
no

3. Choose a circle, say c 1 ,
which is not contained in D'.

3.1, 3.2, 3.3 Try to push c, into D'.

Is ci pushed

yes	 successfully ?

no

5. Choose new circle D' as a circle
between D and current D'.

Is the difference between D
no \ and D' small ?

¤ yes

Report D and stop.

Fig. 4. Flow chart of Algorithm 1.

Fig. 4 shows the flow chart of Algorithm 1. The numbers in this figure represent
the step numbers of the procedure of Algorithm 1.

3.3. How to push protruding disks
The most important part of Algorithm 1 is Step 3, which tries to push the

protruding disks into the target circle. Step 3.1 of Algorithm 1 can be done in
O(n log n) time by a standard sorting technique such as the heap sort or the merge
sort. On the other hand, Step 3.2 and Step 3.3 are not trivial, and take much time
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if they are executed naively.
Suppose that we choose disk c^ at Step 3.2 and want to move it farther from

the protruding disk ci. Since the target circle D' is only a little smaller than the
current enclosing circle, we can expect that only a small part of the protruding disk
c2 is outside D'. Hence, let us assume that the center of the protruding disk ci is
inside D'. Then, at the farthest possible location of the chosen disk c^, c, touches
two other disks, or touches one disk and the target circle.

Keeping this fact in mind, we can describe Step 3 in more detail. Let S =
{ci, c2 i ... , cn , D'} be the set of the n given disks and the target circle D' in their
current locations. For two sets X and Y, let X\Y denote the set of elements
belonging to X but not belonging to Y. Then, Step 3 of Algorithm 1 can be
executed by the next algorithm.

Algorithm 2 (naive realization of Step 3 of Algorithm 1).
3. While there are protruding disks, choose one, say ci, and do the following.

3.1. Sort the remaining disks in the decreasing order of the distances from ci.
3.2. Choose the remaining disks one by one in this order and do the following

3.2.1, 3.2.2 and 3.2.3.
Comment: Let the chosen disk be c 7 E S\{D', c}.
3.2.1.3.2.1. Set storage T empty.
3.2.2. For every pair of two elements Ck, C1 E S\ {ci, c^ }, do the following.

(1) Compute the new location of the disk c 7 touching Ck and cl simulta-
neously, where if Ck or cl coincides with D', c 7 touches D' from inside.

(2) If there is no such location, go to (4).
(3) For each c of such locations, if c'^ is farther from the protruding disk

ci than c^, check whether c'' is inside D' and c'^ does not intersect with
any disk in S\{c^, D'} and if the result is true, insert c'^ into T.

(4) Go to 3.2.2 to check the next pair of circles.
3.2.3. If T is not empty, move cj to the location in T that is the farthest

from ci .

3.3. If there is no space to push cz into D', go to Step 5 of Algorithm 1. Oth-
erwise, push ci into D' (and go to Step 4 of Algorithm 1). 	 n

Step 3.2 of Algorithm 2 requires O(n 4 ) time, because for each triple of cj, Ck
and cl, we have to check the intersection of c at the new location against all the
other disks at Step 3.2.2 (3). Step 3.2 is repeated many times in Algorithm 1, and
hence the time complexity of Algorithm 1 is very large.

In order to avoid such high computational cost, we next consider how to de-
crease the time complexity.

4. Acceleration of the Algorithm

To decrease the time complexity of Algorithm 2, we employ the circle Voronoi
diagram.

Let cI, c2 i ... , cn be non-overlapping disks and D be an enclosing circle. The
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region inside D and outside c1i c2, ... , cn can be partitioned into n + 1 subregions
and their boundaries in such a way that the points nearer to D than to any disks
constitute the subregion associated with D and all the points nearer to ci than to
any other disks or D constitute the subregion associated with ci for i = 1, 2, ... , n.
This partition is called the circle Voronoi diagram inside D for disks c1i c2,. . . , cn

[15]. An example of the circle Voronoi diagram is shown in Fig. 5. The circle
Voronoi diagram can be constructed in 0(n log n) time by the plane sweep method
[21] or the divide-and-conquer method [10, 17]. From an average complexity point
of view, the circle Voronoi diagram can also be constructed efficiently from the
point Voronoi diagram or from the Laguerre Voronoi diagram by flip operations

[ 7, 8]

Fig. 5. Circle Voronoi diagram inside an enclosing circle.

Consider Step 3.2 of Algorithm 2 again, where we want to move the disk c^
to the location farthest from the protruding disk c i . Let V be the circle Voronoi
diagram inside D' for disks c l , . .. , cß _ 1 i cj+ 1 i ... , c, . A point on an edge of the
circle Voronoi diagram is in equal distance from the both side disks, say ck and cl,

and the other disks are farther. Hence, a new disk c'^ that touches two disks ck and
cl and that does not intersect with other disks has its center on the edge shared
by the subregions associated with the two touching disks Ck and c 1 . Therefore,
the candidates of the new location of c'^ can touch only such pairs of disks whose
subregions share an edge of the circle Voronoi diagram V. The number of edges of
V is of O(n) [15], and hence the number of pairs ck and cl that should be checked
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in Step 3.2.2 of Algorithm 2 can be reduced from O(n 2 ) to O(n).
Moreover, in Step 3.2.2 (3) we check whether the new disk c'^ intersects with

other disks, which requires O(n) time. However, this check can be replaced by the
check whether or not the center of c'^ is on the associated edge of V. Hence, the
time complexity of Step 3.2.2 (3) decreases from O(n) to O(1).

Summarizing the above consideration, we can construct the next algorithm
which replaces Algorithm 2.

Algorithm 3 (improved version of Algorithm 2).
3. While there are protruding disks, choose one, say ci, and do the following.

3.1. Sort the remaining disks in the decreasing order of the distances from ci .
3.2. Choose the remaining disks one by one in this order, and do the following

3.2.1,...,3.2.4.
Comment: Let the chosen disk be c^ E S\{D', ci }.
3.2.1. Set storage T empty.
3.2.2. Construct the circle Voronoi diagram V inside D' for disks c l , ... , cj _ I ,

Ci+1,...,Cl.

3.2.3. For each edge of V, find the associated two side disks, say ck and
cl, check whether the disk c^' with radius r touching ck and cl has its
center on the edge, and if the answer is "yes", insert the disk c'^ into T.

3.2.4. If T is not empty, move c, to the location in T that is the farthest
from ci .

3.3. If there is no space to push ci into D', go to Step 5 of Algorithm 1. Oth-
erwise, push cz into D' (and go to Step 4 of Algorithm 1). 	 n

Recall that Step 3.2 of Algorithm 2 requires O(n4 ) time. On the other hand,
Step 3.2 of Algorithm 3 requires only O(n2 logn) time because of the following
reason. Step 3.2.1 and Step 3.2.4 can be done in O(1) time. Step 3.2.2 can be
done in O(nlogn) time in the worst case [10, 21]. Step 3.2.3 requires in 0(n) time
because the circle Voronoi diagram for n circles has only O(n) edges. In Step 3.2,
Steps 3.1 — 3.4 are repeated O(n) times, and hence the total time complexity of
Step 3.2 is O(n 2 log n).

We can further reduce the time complexity of Step 3.2 in the following way.
In this algorithm Step 3.2.2 is repeated n — 1 times, but the circle Voronoi di-
agrams constructed in this step are similar to each other. Therefore, instead of
constructing these Voronoi diagrams independently, we can modify one diagram to
get another. Suppose we already have the circle Voronoi diagram for n — 1 disks
c1,.. .. ,c. Then, we get the circle Voronoi diagram for n — 1 disks
cI, ... , C.j, Cj+2 i ... , cn first by deleting cj+l and next by inserting ci . The deletion
and insertion of one disk requires only local change of the diagrams, and this change
requires O(1) time on the average [15]. Hence, we can expect that Step 3.2 requires
O(n2 ) time on the average.
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5. Experimental Results

In this section we presents actual behavior of the proposed algorithm from
both output quality point of view and the time complexity point of view.

5.1. Example of the behavior
Fig. 6 shows an example of the behavior of our algorithm for the set of disks

given in Table 1.

(a)
	

(b)

(c)	 (d)

Fig. 6. Behavior of the algorithm for the set of disks in Table 1.

Fig. 6 (a) shows an initial placement of disks and an initial enclosing circle. To
get this initial enclosing circle, we first shuffled the disks and fixed a linear order,
next place the center of the first disk at the origin of the coordinate system, then
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placed the other disks one by one in this order in the position nearest to the origin,
and finally generate the smallest enclosing circle with the center at the origin.

Fig. 6 (b) and (c) show the placements obtained at the end of the third repeti-
tion and 7th repetition, respectively, of Step 3 of Algorithm 1, where the parameter
values p = 0.02 and E = (mini ri)/1000 were used. Fig. 6 (d) shows the final result.

From this figure, we can understand that our procedure is in a sense similar
to shaking the disks while shrinking the enclosing circle.

5.2. Quality of the enclosing circle
The output of Algorithm 1 depends on the initial placement of the disks. For

the set of disks in Table 1, we chose 10 different linear orders of the disks at random,
and observed the outputs of Algorithm 1. The result is shown in Table 2.

Table 2. Radius of the enclosing circles obtained by Algorithm 1

trial
number

no. of target
circles

no. of
successes

no. of
failures

radius
[mm]

total area
disk area

1 40 11 29 11.73 1.236
2 15 6 9 11.86 1.264
3 21 10 11 11.78 1.246
4 11 3 8 11.88 1.268
5 18 9 9 11.87 1.266
6 31 12 19 11.77 1.244
7 33 12 21 11.76 1.242
8 31 12 19 11.74 1.239
9 21 6 15 11.77 1.244
10 24 9 15 11.81 1.253

average 24.5 9.0 15.5 11.796 1.2502
variance 81.8 9.56 44.3 0.0030 0.00014

The leftmost column in this table represents a sequential number of trials. The
second column represents the number of target circles set in Step 2; this number
corresponds to the number of repeats of the main step, Step 3, of Algorithm 1. The
third and the fourth columns represent the number of the success cases and that of
the failure cases in shrinking the enclosing circle. Hence, the numbers in the second
column equal to the sums of the numbers in the third and the fourth columns. The
fifth column represents the computed radius of the enclosing circle. The rightmost
column represents the ratio of the area of the enclosing circle to the sum of the
areas of the disks; the square root of this value corresponds to the secret number
used in industry.

From this table we can see that the number of the repeats of Step 3 varies
very much, while the variance of the computed radius of the enclosing circles is
very small. The main reason for large variance of the member of repeats is that
the success of shrinking with large p much depends on the initial placement of the
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disks. On the other hand, the main reason for small variance of the computed
radius is that the success of shrinking with small p does not depend much on the
initial placement. Thus, our algorithm can compute the radius in a stable manner.
Hence, we can expect that the algorithm will give a good estimate of the size of the
enclosing circle.

Table 3 shows the actual sizes of the wire bundles together with the computed
sizes. In this table, we represent the data about 20 wire bundles, which are num-
bered as in the leftmost column. The second column represents the number of wires
in each bundle, and the third and the fourth columns represent the diameter of the
smallest wire and that of the largest wire. The fifth column represents the mea-
sured diameters of the actual wire bundles, while the sixth column represents the
computed diameters. The seventh column represents the errors, i.e., the differences
between the computed diameters and the actual diameters. The rightmost column
represents the relative errors, i.e., the ratio of the absolute value of the error to the
measured diameter of the actual bundle of wires.

Table 3. Comparison of actually measured diameters and computer-estimated diameters
of wire bundles.

bundle
number

no. of
wires

smallest
wire
[mm]

largest
wire
[mm]

measured
diameter

[mm]

computed
diameter

[mm]

error
[mm]

relative
error

[%]
1 59 1.4 8.0 19.2 19.2 0.0 0.00
2 68 1.4 8.0 20.8 21.0 0.2 0.96
3 62 1.4 8.0 20.1 20.0 -0.1 0.50
4 73 1.4 8.0 21.7 22.0 0.3 1.38
5 68 1.4 8.0 21.2 21.2 0.0 0.00
6 79 1.4 8.0 22.7 22.9 0.2 0.88
7 71 1.4 8.0 22.1 21.8 -0.3 1.36
8 82 1.4 8.0 23.5 23.7 0.2 0.85
9 43 1.4 8.0 18.1 18.0 -0.1 0.55
10 43 1.4 8.0 17.3 17.4 0.1 0.58
11 77 1.6 5.5 21.6 21.1 -0.5 2.31
12 93 1.6 5.5 22.9 22.6 -0.3 1.31
13 60 1.6 5.5 18.6 18.1 -0.5 2.69
14 83 1.6 5.5 22.0 21.7 -0.3 1.36
15 101 1.6 5.5 23.5 23.2 -0.3 1.28
16 107 1.6 5.5 24.0 23.8 -0.2 0.83
17 97 1.6 5.5 22.9 22.6 -0.3 1.31
18 59 1.6 5.5 18.5 18.0 -0.5 2.70
19 72 1.6 5.5 19.7 19.4 -0.3 1.52
20 83 1.6 5.5 22.0 21.7 -0.3 1.36
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From this table, we can see that the computed diameters are very close to
the actual size of the wire bundles. Indeed, they were much closer than we had
expected. This closeness might be understood in the following way.

There are some factors that might cause the computed diameter smaller than
the actual size.

First, the actual electric wires are covered by insulator, and the insulator usu-
ally has large friction. Our algorithm, on the other hand, implicitly assumes that
the wires have no friction. Because of this assumption, disks can move in our al-
gorithm even if free space is very narrow, which might make the enclosing circle
smaller than an actual bundle.

Secondly, our algorithm solves a two-dimensional packing problem while the
actual bundle of wires has a three-dimensional structure. If the wires were strictly
straight, the two-dimensional disk packing problem might be a good approximation
of the bundle. However, actual wires are curved, and form complicated three-
dimensional structure. Consequently, there might be larger empty space in an
actual bundle of wires than in the output of our algorithm. This fact might also
make the enclosing circle smaller than an actual bundle.

On the other hand, there is a factor that might cause the computed diameter
larger than the actual size. In our formulation, we assumed that the section of a
wire, i.e., a disk, does not change its shape. However, the insulator covering a wire
is not strictly rigid; it is slightly flexible. Hence, when we hold a bundle of wires in
our hand tightly, the insulation deforms in such a way that part of empty space is
occupied by the deformed insulator. This phenomenon might make the actual size
of the wire bundle smaller.

In this way there are both factors that might make the bundle size larger and
that might make it smaller. These factors seem to cancel each other, and result in
the closeness of the actual size and the computed size of the wire bundle. This is
our current understanding of the data in Table 3.

5.3. Actual computational complexity
In order to evaluate the effect of acceleration using circle Voronoi diagrams,

we measured the computation times of Algorithm 1 implemented together with
Algorithm 2 (the naive method) and that with Algorithm 3 (the improved method).
In this experiment, we used n disks of the same radius r as the input for various
values of n.

Since the disks are of the same size, the associated Voronoi diagram coincides
with the ordinary Voronoi diagram of the centers of the disks. So we used our fast
and robust software VORONOI2, which was based on the topology-oriented princi-
ple and has the O(n) average time complexity for uniformly distributed generators
[18, 19].

Both of the algorithms were implemented in FORTRAN, compiled by G77
compiler in Solaris Operating System, and executed by ULTRA10 Work Station of
Sun Microsystems.

Our primal goal in this experiment is to compare the CPU time of Algorithm 2
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and Algorithm 3 for various n, the number of disks. For this purpose we first tried
to observe the behavior of these algorithms in our whole computational procedure
given by Algorithm 1. However, we found this was not suitable for our purpose.
This situation can be understood when we see Fig. 7.

S.

Improved method

50	 100	 150	 200	 250

Number of circles

Fig. 7. CPU times of the naive method and the improved method for natural initial

placements.

Fig. 7 shows the CPU times of Algorithm 2 (broken line) and Algorithm 3
(solid line) for n = 40, 50, ... , 250. The horizontal axis represents the number n of
disks in linear scale and the vertical axis represents the CPU time in logarithmic
scale. For each value of n, we gave the initial placement of the n disks (computed
in Step 1 of Algorithm 1) to Algorithms 2 and 3, executed the algorithms ten times
and took the average. Hence, each plotted point in this figure shows the CPU time
for executing one stroke of the shrink-and-shake procedure. We can see that the
observed CPU times behave unstably, and even the monotonicity is not satisfied.

This kind of instability comes from the nature of the problem. For example,
both algorithms ran faster for n = 110 than for n = 100. We understand the reason
for this phenomenon when we see the initial placements of disks shown in Fig. 8.

In Step 1 of Algorithm 1, the disks are placed one by one without overlap at
the location nearest to the origin in such a way that a new disk touches two of the
old disks, and the initial enclosing circle is chosen as the smallest one centered at
the origin. Fig. 8 shows the initial placement of n disks and the enclosing circle;

(a) shows the case for n = 100 while (b) for n = 110. For n = 110, the initial
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(a)
	

(b)

Fig. 8. Natural initial placement: (a) n = 100; (b) n = 110.

enclosing circle touches only one disk, and hence the shrink-and-shake procedure
requires to push only one protruding disk. For n = 100, on the other hand, the
initial enclosing circle touches many disks, and hence many protruding disks arises
when the enclosing circle is shrunk, and the algorithms should push all of them.
This is the reason why the 100 disks need more CPU time than the 110 disks.

Thus the unstable behavior of the CPU times in Fig. 7 comes from the fact
that the number of protruding disks varies in a complicated way when we increase
n.

(a)
	

(b)

Fig. 9. Artificial initial placement: (a) n = 100; (b) n = 110.
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Hence, in order to avoid this kind of complication, we used a more artificial
initial placement as shown in Fig. 9. For a given n, we placed the first n — 1 disks
in the way described above, while we placed the nth disk in the possible farthest
location while touching two of the old disks. Fig. 9 (a) and (b) show the resulting
placements for n = 100 and n = 110, respectively. By this convention, we can
observe the behavior of Algorithms 2 and 3 for the case where there is only one
protruding disk.

100

10

	

U 1	 - - - - - Naive method

i
	

Improved method

	0.1	 L

0
	

100	 200
	

300	 400	 500

Number of circles

Fig. 10. CPU times of the naive method and the improved method for the input with

exactly one protruding disk.

Fig. 10 shows the result of this experiment. The horizontal axis represents
the number n of disks in linear scale, and the vertical axis represents the CPU
time in logarithmic scale. The broken line shows the CPU times of the naive
method (Algorithm 2) while the solid line shows those of the improved method
(Algorithm 3).

From this figure we can see that the naive method runs faster for n <_ 130,
while the improved method shows better performance for n > 140. Note that the
input disks are of the same size in this experiment, and consequently the circle
Voronoi diagram coincides with the ordinary Voronoi diagram of the centers of the
disks. Therefore, the Voronoi diagram could be constructed faster than the general
case where the disk sizes are not necessarily the same. Hence, in the general case
where the disks are of different sizes, the improved method will run faster than the
naive method only for n much larger than 140.

On the other hand, the wire bundles arising in automobile industry usually
have 50 to 200 wires. Hence, our conclusion is that for the purpose of estimating
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the sizes of wire bundles in automobile industry, we should use the naive method.
We should add some remarks to this conclusion. The time complexity of O(n 4 )

of Algorithm 2 comes from a very pessimistic evaluation. In actual implementa-
tion of the software used in our experiment, we tuned up the procedures of the
naive method. For example, when we got O(n4 ) time complexity, we assumed that
Step 3.2.2 (3) is repeated O(n) time because O(n) candidates of new locations for
c^ are generated in Step 3.2.2 (1). In the actual implementation, on the other hand,
the number of the candidates of locations for c is much smaller. Indeed, if a candi-
date of a location is nearer to the protruding disk ci than the farthest location found
by that time, we need not do Step 3.2.2 (3) for this candidate. Moreover, for many
pairs of ck and cl, there is no candidate location at all for c touching both of them,
and hence we need not do Step 3.2.2 (3) for those pairs. Thus, the actual CPU time
was much smaller than the theoretical worst-case complexity O(n 4 ). This is part
of the reason why the naive method is not too slow, and can be used for packing
problems with moderate sizes found in industry.

6. Concluding Remarks

In this paper, we reduced the problem of estimating the size of a wire bundle
to the two-dimensional disk packing problem, and proposed a shrink-and-shake
method for solving this problem (Algorithm 1). The proposed method is heuristic
in its nature, but the experiments show that the output is stable in the sense that
the variance of the estimated size of the enclosing circle is very small. Moreover,
the size of the enclosing circle obtained by our algorithm is close to the actual size
of the wire bundle; it is actually close enough for our original goal of estimating the
size of the hole we should make.

From the time complexity point of view, we presented two methods, a naive
method (Algorithm 2) and an improved method (Algorithm 3), for the main part
of the shrink-and-shake procedure. Experiments show that the improved method
gives better performance for large numbers of disks. Also we found that the naive
method is useful to solve moderate sizes of problems arising in actual industry.

Our next question is how large the number of disks for the improved method
to show a better performance than the naive method in the case where the sizes of
disks are different. This is one of our future problems.

There are many related problems for future. In order to make a better estima-
tion of the size of a wire bundle, we need to consider the friction of insulator and
the three-dimensional structure of wires.

In this paper we presented the shrink-and-shake strategy, but other strategies
might be also possible. For example, when we push the protruding disk toward
inside the enclosing circle, the force propagates from disk to disk. This physical
phenomenon can also be formulated in a mathematical manner in order to get
another strategy.

As for the disk packing problem, we can consider many variants. For example,
other problems are obtained when we replace the enclosing circle with other shapes,
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such as an enclosing square, an enclosing rectangle, an enclosing triangle and an
enclosing ellipse. It might be also a challenge to consider a non-convex enclosing
shape.
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