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A family of two-step, almost P-stable methods with phase-lag of order infinity is developed 
for the numerical integration of second order periodic initial-value problems. The method 
has algebraic order six. Extensive numerical testing indicates that  this family of methods 
is generally more accurate than other two-step methods, that  have been proposed. 
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1. I n t r o d u c t i o n  

In the last ten years there has been considerable interest in the numerical 
solution of initial-value problems of the form: 

y" (x )  = f ( x , y ) ,  y(xo)  = Yo and y'(xo) = y£ (i.i) 

These involve ordinary differential equations of second order in which the first 
derivative does not appear explicitly. Equations of this type having oscillatory solu- 
tions are of particular interest. Examples occur in celestial mechanics, in quantum 
mechanical scattering problems, and elsewhere. 

When deriving efficient numerical methods for the solution of (1.1) it is nec- 
essary to consider the phase-lag as well as the algebraic order of the method. The 
important concept of phase-lag was first introduced by Brusa and Nigro [12]. 

Recently, several methods with minimal phase-lag have been proposed for the 
numerical integration of the initial-value problem (1.1). 

Chawla and Rao [1, 2, 3, 4] have developed methods with phase-lag of order six 
and eight. Also, Thomas [6] has given a two-step sixth order method with phase-lag 
of order eight. Van der Houwen and Sommeijer [7, 8] have derived some methods 
with minimal phase-lag. 

Coleman [9] has given a new approach to constructing methods for the numer- 
ical integration of y" -- f ( x ,  y) via a rational approximation to the cosine. 

Also, Simos and Raptis [13] have proposed some two-step P-stable Numerov- 
type methods with minimal phase-lag. Raptis and Simos [14] have derived a four- 
step method with phase-lag of order infinity. Simos [18] 19] has derived explicit 
two-step methods with minimal phase-lag and a two-step method with phase-lag 
of order in¡ 

Cash [15] has derived some Runge-Kutta type methods of order four and six. 
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Qi and Mitsui [17] have proved that the attainable order of these methods is four 
and ir is impossible to construct a sixth order P-stable formula of this type. 

The purpose of this paper is to develop a family of two-step almost P-stable 
Runge-Kutta type methods with phase-lag of order infinity. This method requires 
ah a priori knowledge, of an estimate of, the frequency parameter.  

Numerical results presented in Section 3 show that this new method is more 
accurate than the other methods with minimal phase-lag that  have been proposed. 

It must be noted that this new method can be useful in cases where a large 
step-size is to be used; that is, where a modest accuracy is sufficient or in the 
case of problems where the solution consists of a slowly varying oscillation with a 
high-frequency oscillation superimposed, having a small amplitude. 

2. D e r i v a t i o n  o f  t h e  F a m i l y  o f  T w o - S t e p  S ix t h  O r d e r  P - S t a b l e  M e t h o d  
w i t h  I n ¡  P h a s e - L a g  

For the numerical integration of the initial-value problem (1.1) consider the 
sixth order discretization developed by Cash [15]. 

Y~+I - 2y= + Y ~ - I  = h2[bofn+l + b2fn + bof,~-i  + bl(],~+~ + ]~_~)] (2.1) 

where f .+~ is given by: 

f,~• = f (x ,~  =t= ah,  Y,~+a), 

Yn• = a+yn+l + b• + c• + h2(d• + e~f,~ + g+ fn-1)- 
(2.2) 

Consider that:  

TECn+I = y ( x  + h) - 2y(x) + y ( x  - h) - h2{boy" (x  + h) + b2y"(x )  

+ boy" (x  - h) § b l [ y " ( x  + ah)  + y " ( x  - ah)]} 
(2.3) 

and 

TEC,~• = y ( x  2= a) - a ~ y ( x  + h) - b ~ y ( x )  - c •  - h)  
t 

- hn  + h)  + e + y " ( x )  + g + y " ( x  - h)]. 
(2.4) 

We assume that  the solution of (1.1) is sufficiently smooth. So we can have from 
the above formulae (2.3) and (2.4), using Taylor series expansions, the following 
system equations, for the method (2.1)-(2.2) to be of algebraic order six. 

2b0 + 2bl + b2 = 1 

12a2bl + 12b0 = 1 

30a4bl + 30b0 = 1 
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a+  + b+ + c +  = 1 

a - a+  + c +  = 0 

a+  + c+ + 2 (d+  + e+ + g + )  = a 2 

a+  - c+ + 6 (d+  - g+)  = a 3 (2.5) 

a+  + c+ + 12(d+ + g + )  = a 4 

a _ + b _ + c _ = l  

a-Fa_ - c _  = 0  

a _  + c _  + 2 ( d _  + e _  + g _ )  = a 2 

a _  - c_ + 6 ( d _  - g _ )  = a 3 

a _  + c_  + 12(d_  + g _ )  --- a 4. 

T a k i n g  a,  c+ a n d  c_ as free p a r a m e t e r s  a n d  so lv ing  s y s t e m  (2.5) we  h a v e  t h a t :  

bo = (5a 2 - 2 ) / [ 6 0 ( a  2 - 1)] 

b l  = - 1 / [ 2 0 a 2 ( a  2 - 1)] 

b2 = (25a 2 - 3 ) / ( 30a  2) 

a+ ~ a ~ - c +  

a _  ~ - - a ~ - c _  

b_ = a - 2 c _ + 1  

b+ = - a -  2c+ + 1 

d+ ----- (a  4 -{- 2a 3 - 3a  - 2 c + ) / 2 4  

d_  --  (a  4 - 2a 3 -F 3a - 2 c _ ) / 2 4  

e+ = - ( a  a - 6a  2 § 5a -F 1 0 c + ) / 1 2  

e_  = - ( a  a - 6a  2 - 5a  § 1 0 c _ ) / 1 2  

g+ ---- (a  4 - 2a  3 + a - 2 c + ) / 2 4  

g_  ---- (a  4 + 2a 3 - a -  2 c _ ) / 2 4  

a n d  t h e n  t h e  loca l  t r u n c a t i o n  e r r o r  is g iven  by: 

h 8 
L . T . E . ( h )  - -  302400a2(a  2 _ 1 ) { ( - 5 5 +  13a2§ s) 

+ [63(c+ + c_)  - 105a 4 + 42a~)]y(2)}. 

(2.6) 

(2.7) 
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We app ly  these  me thods  to the tes t  equa t ion  y~~ -- - k 2 y .  Set t ing  H = k h  we 
obta in  the following po lynomina l  as the  character is t ic  one of the  second order linear 
difference equat ion:  

where: 

P ( w )  = A ( H ) w  2 -  2 B ( H ) w + A ( H )  (2.8) 

A(H) -- 1 + H215a 4 - 2a 2 - 3(c+ + c_)]/[60a2(a 2 - 1)] 

+ H4(a  4 - c+ - c_) / [240a2(a  2 - 1)] 
(2.9) 

B ( H )  = 1 - H2125a • - 28a 2 + 3(c+ + c_)] /[60a2(a 2 - 1)] 

+ Hala 4 - 6a 2 + 5(c+ + c_)]/[240a2(a 2 - 1)]. 

We call the  po lynomina l  P ( w )  the  stabil i ty  polynominal .  

DEFINITION 1. T h e  me thod  wi th  s tabi l i ty  po lynomina l  given by (2.8) is said 
to  have interval  of  per iodic i ty  (0, H02) ir, for all H 2 E (0, H02) the  roo ts  wi, i = 1, 2 
of  (2.8) satisfy: 

Wl : e ir(H) and  w2 = e - i r (H) .  (2.10) 

I t  is obvious t h a t  if w is a root  of P ( w )  t hen  so is w -1.  

Also, f rom Defini t ion 1 we have t h a t  all the  roots  of  P ( w )  have modul i  equal  
to  1. 

DEFINITION 2. We c a l l a  m e t h o d  P-s table  if its interval  of  per iodic i ty  is 
(o, o~). 

DEFINITION 3. We call a m e t h o d  almost  P-s table  if its interval  of  per iodici ty  
is (0, oo) - W,  where  W is a set of dis t inct  points.  

We note  t h a t  T h o m a s  [6] has defined "a lmost  P - s t ab le  me thods" ,  as the meth-  
ods which are s table  for small  and large values of H = kg.  

DEFINITION 4. (van der Houwen et al. [8]). For any  m e t h o d  corresponding 
to the s tabi l i ty  polynominaJ  (2.8) the  quant i ty :  

T ( H )  = H - c o s - l [ Q ( H ) ] ,  where  Q ( H )  = B ( H ) / A ( H ) ,  (2.11) 

is called the  dispersion, phase error or phase-lag. If T ( H )  = O ( H  t+l)  as H ---* 0 

the  order of dispers ion is t. 

F rom (2.11) it is obvious t ha t  the  phase- lag  of a m e t h o d  is the  leading t e rm  in 
the  expansion of: 

[cos(H) - Q ( H ) ] / H  2. (2.12) 

DEFINITION 5. We c a l l a  m e t h o d  phase-f i t ted if it has  a phase- lag  of order  
infinity. 
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To have a phase- lag  of order infinity, it is obviuos t ha t  the  equat ion  
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[cos(H) - Q(H)]/H 2 = 0 i.e. A(H) cos(H)  = B(H) (2.13) 

holds. 

T H E O R E M  1. The method (2.1)-(2.2) has a phase-lag of order infinity ir: 

c +  ----- a 4 - -  c _  + 
20a2(a 2 - 1) 12a2(a 2 - 1) 

H 2 H 2 + 12 

6a2(a 2 - 1) (H  2 - 12) 

( H  2 + 12) cos (H)  + 5 H  2 - 12 

864a2(a 2 - 1) 

[(H 2 + 12) cos (H)  + 5 H  2 - 12] ( H  2 + 12)" 

(2.14) 

For this value of c+ the above method is almost P-stable. 

Proof. From (2.13) with the  help of (2.9) it is easy  to  see tha t  B(H) = 
A(H) cos(H)  for the  value of c+ given by (2.14). 

I t  is well known t h a t  a symmet r i c  two-s tep  me thod  with  s tabi l i ty  po lynomina l  
given by (2.8) has an interval of per iodic i ty  (0, Ho 2) ir A(H) • B(H) > 0 for all 
H 2 �9 (0, / /o2) .  

Now if we subs t i tu te  (2.14) into (2.9) we have that :  

A(H) - B(H) = - H 6 [ c o s ( H )  - 1] /{40[(H 2 + 12)cos (H)  + 5 H  2 - 12]} 

A(H) + B(H) -- H6[cos (H)  + 1] /{40[(H 2 + 12) cos (H)  + 5 H  2 - 12]}. 
(2.15) 

I t  is easy to see t ha t  A(H) i B ( H )  > 0 for aH H 2 
W = {H; H = 2 m r ,  m = 1 , 2 , . . . } .  

So the  m e t h o d  (2.1) (2.2) is a lmost  P-s tab le .  

�9 (0, oc) - W,  where 

3. N u m e r i c a l  I l l u s t r a t i o n  

We il lustrate the  new m e t h o d  proposed  in this pape r  by considering two 
problems:  (1) the  well known "almost periodic problem of Stiefel and Bettis" and 
(2) the  "resonance problem" of the radial SchrSdinger equation. 

3.1.  P r o b l e m  1. 
We consider the  following a lmost  periodic p rob lem s tudied  by  Stiefel and Bet t is  

[16]: 
z " + z - - - - 0 . 0 0 1 e  iz, z ( 0 ) = l ,  z '(0)----0.9995i,  z 6 C  (3.1) 

whose theoret ica l  solut ion is: 
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z(~)  = ~(~)  + ir (x) ,  ~, ~ �9 R 

u(x)  = cos x + 0.0005x sin x (3.2) 

v(x)  = sin x - 0.0005x cos x 

The  so lu t ion  (3.2) represents  m o t i o n  on a p e r t u r b a t i o n  of  a c i rcular  o rb i t  in 

the  complex  plane.  T h e  po in t  z (x )  spi ra ls  ou twards  so t h a t  a t  t ime  x i ts  d i s tance  

from the  origin is: 

9(x)  = v % 2 ( ~ )  + v2(~)] = v/[1 + (0.0005~)~]. (3.3) 

We wri te  (3.1) in the  equivalent  form: 

u '1 + u = 0.001 cosx ,  

v"  + v = 0.001 s inx ,  

u(0)----1, u ' ( 0 ) = 0  
(3.4) 

v(0) = 0, v'(0) = 0.9995. 

The  ac tua l  s y s t e m  was solved numer ica l ly  for 0 < x < 40~v (which cor responds  

to  20 orb i t s  of the  po in t  z(x))  using: 

M e t h o d  1: Two-s t ep  P - s t a b l e  fou r th -o rde r  wi th  phase - lag  of  o rder  six devel-  

oped  by  Chawla  and  Rao,  [3]. 

M e t h o d  2: F o u r t h  order  m e t h o d  wi th  phase- lag  of o rder  six deve loped  by  
T h o m a s  [6]. 

M e t h o d  3: S ix th  order  m e t h o d  wi th  phase - lag  of order  e ight  deve loped  by  

T h o m a s  [6]. 

M e t h o d  4: T h e  two-s tep  m e t h o d  wi th  phase - lag  of  o rde r  inf in i ty  of Simos 

[19]. 

M e t h o d  5: Two-s t ep  s ix th -order  phase  f i t ted  P - s t a b l e  m e t h o d  which was de- 

ve loped  in Sect ion 2. In  th is  p rob lem we take  H --  h. 

In  Table  1 we presen t  the  abso lu te  er rors  g(x) - g p r o d u c e d  by  using these 

m e t h o d s  wi th  s t ep  sizes h --  7r/4, 7r/8 a n d  7r/16. 

Table 1. Comparison of the absolute errors Ig(x) - g[ for the methods 1-5. 

h Method 1 Method 2 Method 3 Method 4 Method 5 
e 

~r/4 0.470 10 - 4  0.715 10 - 4  0.561 10 -5  0.733 10 - 7  0 .853 10 - 9  

7r/8 0.104 10 -5  0.794 10 - 6  0 .145  10 - 7  0.193 10 - 9  0 .875 10 -11  

r / 1 6  0.347 10 - 7  0.135 10 -7  0.760 10 - s  0.326 10 -1o 0.954 10 -13 

3 .2 .  P r o b l e m  2. 

The  rad ia l  or one-d imens iona l  SchrSdinger  equa t ion  m a y  be w r i t t e n  as: 

r  = f ( x ) .  y(~),  x �9 [ 0 , ~ ) ,  (3.5) 
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where f ( x )  = W(x)  - E, and W(x)  = l(l + 1)/x  2 + V(x) is an effective potential  
with V(x) ~ 0 as x ~ ~ ,  1 is an integer, and E is a real number  denoting the 
energy. 

The problem is one of boundary-value type, with y(0) = 0, a n d a  second 
boundary condition for large values of x determined by physical considerations. 

If  E = ~2 > 0, then, in general, the potential  funciton V(x)  dies away faster 
than  the term l(l + 1)/x2; equation (3.5) then effectively reduces to y"(x) + (E - 
l(l + 1)/x2)y(x) = 0, for x greater than  some value R depending on the potential  
function V(x).  The above equation has linearly independent solutions ~xjl (~x) and 
~xnt (~x), where Jl (~x) and ni (~x) are the spherical Bessel and Neumann functions 
respectively. Thus the solution of equation (3.5) has the asymptot ic  form: 

y(x) ~~~--o~ A~xj t  (~x) -- B~xn l  (~x) 

~~~ C [ s i n ( ~ ~  - l ~ / 2 )  + t a n  ~~ c o s ( ~ x  - z ~ / 2 ) ] ,  

where 51 is the phase shift which may be calculated from the formula: 

tan£ = [ y ( x 2 ) s ( ~ l )  - v ( x l ) s ( ~ 2 ) ] / [ V ( X l ) C ( ~ ~ )  - y(~~)c(xl)] 

for xi and x2 distinct points on the asymptot ic  region with S(x) = ~xj t (~x)  and 
c ( x )  : - ~ x n ~ ( ~ x ) .  

In our numerical example we have used the Woods-Saxon potential  with l = 0 
potential  i.e. 

W(x)  = V(x) = u0/(1 + t) - (uo/a)t/(1 + t) 2 

where t = e x p [ ( x -  xo)/a] ana u0 = -50.0 ,  a = 0.6, x0 = 7.0 and x E [0, oo). 
We consider, in particular,  the resonance problem for E E [1, 1000] with boundary 
conditions y(0) = 0 and y(x) ~- s i n ( v ~ x  + 6) at large values of x. 

The resonance problem consists in finding values Ej  of E (eigenenergies) at 
which the phase shiff 6(Ej) equals 7r/2. 

In our numerical test we shall use, for convenience, the exact eigenenergies Ej 
with six decimal digits accuracy and successively compute the  phase shifts by the 
tire techniques denoted in Problem 1. The deviations of the computed  phase shifts 
from the exact value 1r/2 are presented in Table 2. 

Prom the results obtained we conclude tha t  the new method 5 is more accurate 
than  the other methods especially in cases of large step sizes. 

All computat ions were carried out on an IBM PC-AT 80386 with ah 80387 
mathcoprocessor of the Informatic Labora tory  of the Agricultural University of 
Athens, using double precision ari thmetic with 14 digits accuracy. 
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Table 2. Devia t ions  of the  computed  phase shifts from the  exac t  value Ir/2, 
in 10 - 6  units for various choices of step size shown in the  second 

column. The  empty  areas indicate  tha t  the corresponding variat ions 
are larger than  the  format  allowed in the table. 

E h Method  1 Method  2 Method  3 Method  4 Method  5 

53.588872 1/8 3140 44854 2036 89 12 
1/16 199 157 39 0 0 
1/32 4 3 1 0 0 
1/64 1 0 0 0 0 

163.215341 1/8 25436 36347 90191 3216 985 
1/16 3454 3005 479 10 1 
1/32 58 49 8 0 0 
1/64 2 1 0 0 0 

341.495874 1/8 340798 189123 18485 
1/16 33940 23547 4309 296 27 
1/32 571 487 69 1 o 
1/64 11 9 5 o o 

989.701916 1/8 48325 
1/16 448431 65095 1652 
1/32 19566 11543 9904 135 7 
1/64 324 275 85 0 0 
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