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A family of two-step, almost P-stable methods with phase-lag of order infinity is developed
for the numerical integration of second order periodic initial-value problems. The method
has algebraic order six. Extensive numerical testing indicates that this family of methods
is generally more accurate than other two-step methods, that have been proposed.

Key words: second order periodic initial-value problem, phase-lag

1. Introduction

In the last ten years there has been considerable interest in the numerical
solution of initial-value problems of the form:

y'(x) = f(z,9), y(zo) =yo and y'(z0) = yp (1.1)

These involve ordinary differential equations of second order in which the first
derivative does not appear explicitly. Equations of this type having oscillatory solu-
tions are of particular interest. Examples occur in celestial mechanics, in quantum
mechanical scattering problems, and elsewhere.

When deriving efficient numerical methods for the solution of (1.1) it is nec-
essary to consider the phase-lag as well as the algebraic order of the method. The
important concept of phase-lag was first introduced by Brusa and Nigro [12].

Recently, several methods with minimal phase-lag have been proposed for the
nurerical integration of the initial-value problem (1.1).

Chawla and Rao [1, 2, 3, 4] have developed methods with phase-lag of order six
and eight. Also, Thomas [6] has given a two-step sixth order method with phase-lag
of order eight. Van der Houwen and Sommeijer [7, 8] have derived some methods
with minimal phase-lag.

Coleman [9] has given a new approach to constructing methods for the numer-
ical integration of ¥ = f(z,y) via a rational approximation to the cosine.

Also, Simos and Raptis [13] have proposed some two-step P-stable Numerov-
type methods with minimal phase-lag. Raptis and Simos [14] have derived a four-
step method with phase-lag of order infinity. Simos [18, 19] has derived explicit
two-step methods with minimal phase-lag and a two-step method with phase-lag
of order infinity.

Cash [15] has derived some Runge-Kutta type methods of order four and six.
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Qi and Mitsui [17] have proved that the attainable order of these methods is four
and it is impossible to construct a sixth order P-stable formula of this type.

The purpose of this paper is to develop a family of two-step almost P-stable
Runge-Kutta type methods with phase-lag of order infinity. This method requires
an a priori knowledge, or an estimate of, the frequency parameter.

Numerical results presented in Section 3 show that this new method is more
accurate than the other methods with minimal phase-lag that have been proposed.

It must be noted that this new method can be useful in cases where a large
step-size is to be used; that is, where a modest accuracy is sufficient or in the
case of problems where the solution consists of a slowly varying oscillation with a
high-frequency oscillation superimposed, having a small amplitude.

2. Derivation of the Family of Two-Step Sixth Order P-Stable Method
with Infinite Phase-Lag

For the numerical integration of the initial-value problem (1.1} consider the
sixth order discretization developed by Cash [15].

Yntl — 2Yn +Yn-1 = hz[bofn+1 +bofn+bofr1+b1 (?n+a + ?n—a)] (2.1)
where f,14 is given by:

fnia = f(l'n + ahaynia)>

Tnta = @t Unt1 + b1Yn + Ce¥no1 + 2 (de fas1 + exfn + g fa1). 22
Consider that:
TECn+1 = y(z + h) — 2y(z) + y(z — k) — K2{boy" (z + k) + bay" (x)
+boy”(z — B) + bafy” (= + ah) +y"(z — ah)]} .
and
TECnte = y(z +a) — axy(z +h) — bry(z) — cxy(z — h) 2.4

— R dy"(z + k) + exy”(z) + g+¥"(z — Rh)).

We assume that the solution of (1.1) is sufficiently smooth. So we can have from
the above formulae (2.3) and (2.4), using Taylor series expansions, the following
system equations, for the method (2.1)-(2.2) to be of algebraic order six.

260 +2b; + by =1
12a%b; + 12bg = 1
30a*b; + 30b = 1
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ay+by+cp =1
a—ay +cp =0
ay +ey +2(dy +eq +gy)=d?
ay —ct +6(dy —gy) = a® (2.5)
ay +cy +12(dy +g4) = a*
a_+b_+c_=1
at+a_—c_=0
a_+c_ +2(d_+e_+g_)=a’
a_—c_+6(d_—g_)=d®
a- +c_+12(d-+g-)=a.

Taking a, c; and c. as free parameters and solving system (2.5) we have that:

bo = (5a — 2)/[60(a® — 1))

by = —1/[20a%(a® — 1)]

by = (25a% — 3)/(30a?)

ay =a+cy

a_ =—a+c_

b_=a—2c_+1

by =—a—2c4 +1 (2.6)
dy = (a* + 203 — 3a —2¢,)/24
d_ = (a*—2a+3a —2c_)/24
ey = —(a* — 6a® + 5a + 10c, ) /12
e_ = —(a* — 6a® — 5a + 10c_)/12
g+ = (a* —2a® +a —2c,)/24

g- = (a* +2a® —a—2c_)/24

and then the local truncation error is given by:

h8
{(~55 4 13a% + 42a°)y®

L.T.E.(h) = 302400a2(aZ — 1) (2.7)

+[63(cy + c_) — 105a* + 42a5)]y(®)}.
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We apply these methods to the test equation y”’ = —k?y. Setting H = kh we
obtain the following polynominal as the characteristic one of the second order linear
difference equation:

P(w) = A(H)w? — 2B(H)w + A(H) (2.8)
where:
A(H) =1+ H?[5a* — 2a% — 3(cs + c_)]/[60a%(a? — 1)]
+ H*(a* — ¢y — c_)/[240a%(a® - 1)] 9)
B(H) =1- H?[25a* — 28a® + 3(c4 + c_)]/[60a%(a® — 1)]
+ H4[a* — 6a% + 5(c; + c_)]/[240a%(a® — 1)].
We call the polynominal P(w) the stability polynominal.

DerINITION 1. The method with stability polynominal given by (2.8) is said

to have interval of periodicity (0, Ho?) if, for all H? € (0, Hy?) the roots w;, i = 1,2
of (2.8) satisfy:

wy = ) and wy = e WU, (2.10)

It is obvious that if w is a root of P(w) then so is w™'.

Also, from Definition 1 we have that all the roots of P(w) have moduli equal
to 1.

DerFiniTION 2. We call a method P-stable if its interval of periodicity is
(0, 00).

DEerINITION 3. We call a method almost P-stable if its interval of periodicity
is (0,00) — W, where W is a set of distinct points.

We note that Thomas [6] has defined “almost P-stable methods”, as the meth-
ods which are stable for small and large values of H = kh.

DerINITION 4. (van der Houwen et al. [8]). For any method corresponding
to the stability polynominal (2.8) the quantity:

T(H) = H — cos™'[Q(H)], where Q(H)= B(H)/A(H), (2.11)
is called the dispersion, phase error or phase-lag. If T(H) = O(H**!) as H — 0
the order of dispersion is t.

From (2.11) it is obvious that the phase-lag of a method is the leading term in
the expansion of:

[cos(H) — Q(H)]/H>. (2.12)

DEFINITION 5. We call a method phase-fitted if it has a phase-lag of order
infinity.
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To have a phase-lag of order infinity, it is obviuos that the equation
[cos(H) — Q(H)]/H* =0 ie. A(H)cos(H)= B(H) (2.13)

holds.
THEOREM 1. The method (2.1)—(2.2) has a phase-lag of order infinity if:

20a%(a® —1)  12d%(a® - 1)
H? H%+12
3 6a2(a? — 1)(H? - 12) 514
(H? +12)cos(H) + 5H? — 12 (2.14)
864a%(a% — 1)
[((HZ +12)cos(H) + 5H? — 12)(H2 4+ 12)°

c+:a4—c_+

For this value of ¢ the above method is almost P-stable.

Proof. From (2.13) with the help of (2.9) it is easy to see that B(H) =
A(H) cos(H) for the value of ¢ given by (2.14).

It is well known that a symmetric two-step method with stability polynominal
given by (2.8) has an interval of periodicity (0, Hy?) if A(H) £+ B(H) > 0 for all
H? ¢ (0, Hoz).

Now if we substitute (2.14) into (2.9) we have that:

A(H) — B(H) = —H®[cos(H) — 1]/{40[(H? + 12) cos(H) + 5H? — 12]} 2.15)
A(H) + B(H) = H®[cos(H) + 1]/{40[(H? + 12) cos(H) + 5H2 — 12]}. '

It is easy to see that A(H) + B(H) > 0 for all H? € (0,00) — W, where
W={H; H=2mm, m=1,2,...}.
So the method (2.1)—(2.2) is almost P-stable.

3. Numerical Illustration

We illustrate the new method proposed in this paper by considering two
problems: (1) the well knoun “almost periodic problem of Stiefel and Bettis” and
(2) the “resonance problem” of the radial Schrédinger equation.

3.1. Problem 1.
We consider the following almost periodic problem studied by Stiefel and Bettis
[16]):

2" + 2 =0.001e"*, 2(0) =1, 2/(0) = 0.9995i, z€C (3.1)

whose theoretical solution is:
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z(z) = u(z) +iv(z), u,veR
u(z) = cosz + 0.0005z sin ¢ (3.2)
v{z) = sinz — 0.0005z cos z

The solution (3.2) represents motion on a perturbation of a circular orbit in
the complex plane. The point z(z) spirals outwards so that at time z its distance
from the origin is:

9(z) = V/[w2(z) + v2(z)] = /[1 + (0.0005z)2]. (3.3)
We write (3.1) in the equivalent form:

v’ +u=0.00lcosz, u(0)=1, u'(0)

=0
" . , (3.4)
v" +v=0.001sinz, v(0)=0, +'(0)=0.9995.

The actual system was solved numerically for 0 < z < 40x (which corresponds
to 20 orbits of the point 2(z)) using:

Method 1: Two-step P-stable fourth-order with phase-lag of order six devel-
oped by Chawla and Rao, [3].
Method 2: Fourth order method with phase-lag of order six developed by

Thomas [6].

Method 3: Sixth order method with phase-lag of order eight developed by
Thomas [6].

Method 4: The two-step method with phase-lag of order infinity of Simos
[19].

Method 5: Two-step sixth-order phase fitted P-stable method which was de-
veloped in Section 2. In this problem we take H = h.

In Table 1 we present the absolute errors g(z) — g produced by using these
methods with step sizes h = w/4,7/8 and w/16.

Table 1. Comparison of the absolute errors |g(z) — g| for the methods 1-5.

h Method 1 Method 2 Method 3 Method 4 Method 5

/4  0.470107%* 0715107* 0.561107° 0.73310~7  0.853 107°
/8  0.104107° 0794107 0.1451077 0.193107° 0.875 107!
/16 03471077 0.1351077 0.760 10°% 0.326 10°1° 0.954 10713

3.2. Problem 2.
The radial or one-dimensional Schrédinger equation may be written as:

y"(.’L‘) = f(.’L') y(z), =€ [07 oo)) (3‘5)
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where f(z) = W(z) — E, and W(z) = (I + 1)/2% + V(z) is an effective potential
with V{(z) — 0 as £ — oo, ! is an integer, and F is a real number denoting the
energy.

The problem is one of boundary-value type, with y(0) = 0, and a second
boundary condition for large values of  determined by physical considerations.

If E = p? > 0, then, in general, the potential funciton V (z) dies away faster
than the term [(Il + 1)/z?; equation (3.5) then effectively reduces to y”(z) + (E —
I(1 +1)/z?)y(z) = 0, for = greater than some value R depending on the potential
function V{z). The above equation has linearly independent solutions wzj; () and
wzn(pz), where ji(px) and n;(pz) are the spherical Bessel and Neumann functions
respectively. Thus the solution of equation (3.5) has the asymptotic form:

y(z) = Apzji(ez) — Bozn(pz)

— 00

L= Clsin(pz — In/2) + tan 6, cos(pz — In/2)],
where 6, is the phase shift which may be calculated from the formula:

tané, = [y(z2)S(z1) — y(z1)S(x2)]/[y(z1)C(z2) — y(22)C(z1)]

for z; and z, distinct points on the asymptotic region with S{z) = pzji(pz) and
C(z) = —pzny(pz).

In our numerical example we have used the Woods-Saxon potential with { =0
potential i.e.

W(z) = V(z) =ug/(1+t) — (up/a)t/(1 + t)?

where t = exp|[(z — z0)/a] and ug = —50.0, a = 0.6, zp = 7.0 and z € [0,00).
We consider, in particular, the resonance problem for E € [1, 1000] with boundary
conditions y(0) = 0 and y(x) ~ sin(vEz + 6) at large values of z.

The resonance problem consists in finding values E; of E (eigenenergies) at
which the phase shift §(E;) equals /2.

In our numerical test we shall use, for convenience, the exact eigenenergies E;
with six decimal digits accuracy and successively compute the phase shifts by the
five techniques denoted in Problem 1. The deviations of the computed phase shifts
from the exact value 7 /2 are presented in Table 2.

From the results obtained we conclude that the new method 5 is more accurate
than the other methods especially in cases of large step sizes.

All computations were carried out on an IBM PC-AT 80386 with an 80387
mathcoprocessor of the Informatic Laboratory of the Agricultural University of
Athens, using double precision arithmetic with 14 digits accuracy.
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Table 2. Deviations of the computed phase shifts from the exact value /2,

in 1078 units for various choices of step size shown in the second

column. The empty areas indicate that the corresponding variations

are larger than the format allowed in the table.
E h Method 1 Method 2 Method 3 Method 4 Method 5
53.588872 1/8 3140 44854 2036 89 12
1/16 199 157 39 0 0
1/32 4 3 1 0 0
1/64 1 0 0 0 0
163.215341 1/8 25436 36347 90191 3216 985
1/16 3454 3005 479 10 1
1/32 58 49 8 0 0
1/64 2 1 0 0 0
341.495874 1/8 340798 -—— - -———- 189123 18485
1/16 33940 23547 4309 296 27
1/32 571 487 69 1 0
1/64 11 9 5 0 0
989.701916 1/8 -———- - - - - ———— 48325
1/16 -———- —-—— 448431 65095 1652
1/32 19566 11543 9904 135 7
1/64 324 275 85 0 0
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