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We consider a linear Abel integral operator Aa : L2 (0, 1) —> L2 (0, 1) defined by

(A0y)(t) = ra) f t (t—s)^ -1 K(t, ^)y(s)ds, 	 0<t<1, 0<o<1.

We construct a scale {Xp}ßEt of Hilbert spaces of functions in (0, 1) and relate it with
a Hilbert scale of Sobolev spaces. Under suitable assumptions on K, we prove that
^jAaui1L2(o , 1 ) gives an equivalent norm in X_^. On the basis of this equivalence, we
find a lower and upper estimate for the singular values of A. and, furthermore a Hölder
estimate for J^UflL2( o , l ) by IIAOuIIL2(o , i ) provided that IIuIIX9 with q > 0 is uniformly
bounded. Finally we discuss convergence rates of regularized solutions obtained by a
Tikhonov method.

Key words: Abel integral equation, I11-posedness, singular values, conditional stability,
Tikhonov's regularization

1. Introduction

In this paper, we consider a linear Abel integral operator Aa : L2 (0,1) —>
L2 (0,1), defined by

(1.1) (Aay)(t) = j I J t (t - s)° -1 K(t, s)y(s)ds, 0 < t < 1, 0 < a < 1.

The function K = K(t, s) is assumed to satisfy the conditions

K is continuous on D = {(t, s) E R2 :0 < s< t < 1},

K(s, ^)=1 for 0<s<1

(1.2)	 there exists a decreasing function k E L 2 (0,1) such that

F (t, ^) < k(s) for 0 < s < t < 1.

In particular, the third condition of (1.2) is satisfied if aK E L°°(D). Moreover,

in the case K(t, s) = 1, (t, s) E D, the operator Aa is the classical Abel integral
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operator J' : L 2 (0, 1) -* L2 (0, 1), defined by

(Jay)(t) = I, (a) 1 ' (t  - s) °-ly(s)ds,	 0 t < 1, 0 <c < 1.

For treatises on theory and applications of Abel integral equations, we refer to
Gorenflo and Vessella [11], Samko, Kilbas and Marichev [25].

The purpose of this paper is twofold. First we treat the linear Abel integral
operator (1.1) by methods of operator theory and establish an isomorphism within
a framework of a Hilbert scale which is closely related to a scale of Sobolev spaces
over the interval (0, 1). Second, by this isomorphism, we study the asymptotic
behaviour of the singular values of A,, and a method of Tikhonov regularization.
For estimation of the singular values, there are many papers. For example, Dostanic
[6], Faber and Wing [7], Gorenflo and Vu Kim Than [10], Hille and Tamarkin [17],
Vu Kim Than and Gorenflo [27]-[29]. Our method is not by "hard analysis", but on
the basis of the min-max principle for singular values (e.g. Baumeister [4], Hofmann
[18]). Our estimate is not sharper than one given by Vu Kim Than and Gorenflo
[29], but it is applicable to operators in a class which is a little wider.

For the regularization, we apply results by Natterer [23] (see also Baumeister
[4]). See also [24] where the application to the Radon transform is considered and
the isomorphism in the Sobolev space of order -1/2, is essential.

As for other methods of regularization for general linear Abel integral equa-
tions, we refer to Dang Dinh Ang, R. Gorenflo and Dang Dinh Hai [3].

This paper is composed of six sections. §2 provides preliminaries. In §3 we
obtain the result concerning the isomorphism. In §4 we prove a lower and upper
estimate for the singular values of Aa . Finally in §5 and §6, conditional stability
and a Tikhonov type method of regularization are discussed with convergence rates.

2. Preliminaries

Throughout this paper, all functions are complex-valued. As usual, z denotes
the complex conjugate of z E C. L2 (0,1) is a Hilbert space over C with the scalar
product (•, •)L2 and the norm I! • ^[^Z:

(u, V)L2 = 
fo

1u(t)v(t)dt.

For convenience, we also introduce the operators Dk , k = 0, 1, 2, 3,... according to

(Dky)(t) = ddt(t)

Then Dc is left-inverse to Jk , that is, D''Jk = I = the identity operator.
In this section, we form a Hilbert scale which is adequate to the mapping

properties of P. Let us set

1
JL.= n- 2 rr, 0.(t)=^cos An t,	 0<t<1, n EN.



Linear Abel Integral Equations 	 139

By N, we denote the set {1, 2,3,. . .} of natural numbers. Since {µte }FEN is the set
of all the eigenvalues of the boundary-value problem,

(D2u)(t) = —Au(t),	 0 <t < 1

du (0) = u(1) = 0,

and 4 is an eigenfunction for p,n, n E N, it is known (e.g. Theorem 6.2 of Chap

ter 1 of Levitan and Sargsjan [20]) that { fin } nE NN is complete in L 2 (0,1). Moreover,

(On, Çbrn)L2 = 0 if Ti 54 m, (ßß,z , n )L2 = 1. We conclude that

(2.1)	 {qn}nEN is an orthonormal basis in L2 (0, 1).

Now for ß E R, we form a Hilbert scale X0 on this basis (e.g. Chapter 5 in Baumeis-

ter [4], Louis [22]). Let ß E R. In span {¢n } nE N, we define scalar products and norms

by

(2.2)	 (16 v)Xß = E llnß (u, On)LZ(v, On)L 2 ,	 u, v E span { (ßn}nEN

n=1

I1u1IX p = (U,u.)xß,	 u E span {lSn } fl N.

The completion of span {On }nEN in the norm I!xp is a member Xß of a Hilbert

scale. By (2.1), we see that

Xo = L 2 (0,1).

We note that {µnQ¢n}nEN is an orthonormal basis in Xp. Further characterization

of Xß, /3 > 0, in terms of Sobolev spaces is given at the end of this section.

For simplicity, we write J, not J1 . That is, the operator J : L2 (0,1) --*

L2 (0, 1) is given by

(Jy)(t) = JO
y(s)ds,	 0 < t < 1.

First we establish

LEMMA 1.

11JV1)Lz = IIUIIX_,

for all u E LZ (0,1).

Proof. Let us set /(t) _ / sin j t, 0 < t < 1, n E N. Similarly to (2.1),

we see that is an orthonormal basis in L2 (0,1). Therefore, by Parseval's

equality, we get

0"

IIJulIL 2 J	 I (J2L+ 4 n )L2I 2 .

n=1
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On the other hand, by integration by parts and O n (1) = 0, Ju(0) = 0, we have

(Ju, bn)L 2 = f 1 Ju(t)bn(t)dt = 1 f 1 u(t)0n(t)dt
0	 An 0

= 1 (u,çbn)L 2 ,
An

so that

IIJuII L2 =	 An2I(u, On)LZ I 2 — II u IIX_1
n=1

by the definition of X_1. Thus the proof is complete.

Next

LEMMA 2. Re (Ju, u)L2 > 0, u E L2 (0, 1). That is, J is accretive in L2 (0, 1).

Proof With Re Ju(t) = «(t) and Im Ju(t) = z5(t), we get

Re fRe (Ju, u)L2 = Re /
3o 

Ju(t)D1(Ju(t))dt

1 	t_1

=	 («(t)(D10)(t) + (t) (D 1 0)(t)) dt = [« (t)2 + 0(t)2 ] t=o

= ZIJu(1)I 2 > 0.

This completes the proof. We refer to Tanabe [26] for the notions of accretivity.

LEMMA 3. 7(I + J) = L2 (0,1). Here 7Z(I + J) is the range of I + J
R(I + J) = (I + J)L2 (0, 1).

Proof. By a standard iteration argument, for an arbitrarily complex A 0,

(2.3)	 (AI + J) -lu(t)

foA-lu(t) — A -2 exp (- ts )u(s)ds,	 0<t< 1.

Therefore, setting A = 1, we see that for every u E L 2 (0,1) there exists an element
v E L2 (0,1) such that (I + J)v = u. This implies that R(I + J) = L2 (0,1). Thus
the proof is complete.

By Lemmata 2 and 3, we see that J is m-accretive (e.g. Tanabe [26]).

LEMMA 4. J : L 2 (0, 1) —^ L2 (0,1) is m-accretive.

Consequently we can define the fractional power J(a) of J for 0 <c < 1 by

sin 7r
J(a)u =	

a
10"o A1(AI + J) - 'JudA, u E D(J) = L2 (0,1)

7r 
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(§3 and §4 of Chapter 6 in Fattorini [8]). For fractional powers of closed operators,
we further refer to Henry [16], Tanabe [26]. In the context of the Abel integral
operator, we refer to §5 and "Notes to §5.7" in §9 in Samko, Kilbas and Marichev
[25]. Let us prove that the definition of J(a) is equivalent to that of Ja, the classical
Abel integral operator. That is,

LEMMA 5. (J(a)u)(t) = (Jau)(t), 0 <t < 1, for u E L2 (0, 1), 0 < a < 1.

Proof. By (2.3), for 0 < t < 1, we get

(Al + J) -1 Ju(t) = u(t) - A(AI + J) -lu(t)

= A fo e	 _
	-1 	exp - ts )u(s)ds,

so that by the change of variables 77

sin-7ra
	Aa_1(AI+J)-1Ju(t)dA

Ir Jo
00	 t	 _

= sin  a 	A«-2 ( f exp (- t A s ) u(s)ds) dA
	0 	 0

	

t	
- 
\ \sin rira f u(s) U A0_ 2 exp (- t s IdA 

/
I ds

	Jo 	 o	 /// 

	sin Ira f t 	(F n-- e-7dn J u(s) 	 I (t - s)a-l ds
Ir	 o 

f(1 - a) sin ira
 f t u(s)(t - s)a-lds.

	I 	 Jo

Now the well-known formula f(1 - a)I'(a) = Sp a yields the conclusion.

Thus the fractional power J(a) coincides with Ja, and henceforth we write J"
for denoting the fractional power of J on L 2 (0,1).

For later use, we further characterize the norm in X_ß, ß > 0. Let us define
an operator S: L2 (0,1) —> L2 (0,1) by

(Su)(t) = E /j 1 (u , 0n)L 2 ^n(t),	 u E L2 (0,1).
n=1

Obviously IIuIIx_, = II SuII L2 and D(S) = L2 (0,1). Then

LEMMA 6. S is m-accretive in L2 (0, 1).

Proof.	 Since (Su, u)L2 _ > =
00

ii l I (u, ) j 2 >_ 0 for all u E LZ (0,1),
by the orthonormality of {0n } nEN, it follows that S is accretive in L 2 (0,1). Next
we have to prove that R(AI + S) = L2 (0,1) for some A E C with Rea > 0.
Since S is bounded from L2 (0,1) into L2 (0,1), we can take a sufficiently large
A > 0 such that - IISII < 1. Here and henceforth IISII denotes the operator norm of
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S: L2 (0,1) —* L 2 (0,1). By the Neumann series, I + I S is surjective from L 2 (0,1)

onto L2 (0,1), namely, 1Z(AI + S)L2 (0,1) = L2 (0,1) for such A > 0. By Proposition
2.1.4 in Tanabe [26], S is m-accretive in L 2 (0,1).

By Lemma 6, we can define the fractional power S«, 0 < a < 1, which is
explicitly given by

LEMMA 7.

00

S`x1 _	 ANn«(u 4 n)L 2 cl n	 u E L2 (0, 1).
n=1

Proof. By [26], we see that

S ,«u _ sin7ra /°° A«_
1 (AI + S) 1 SudA

ir Jo

for all u E D(S) = L2 (0, 1). By the definition of S, we have

00

(AI + S) -1 Su = 2 A
+ 

1 (u, 0n)L-0n, A >0,
n=1

so that

sin 7ra

Jo

/ °° A«_1(AI + S)
-1 SudA

ir
00 

sin ^a 00  ^ ^a-1(1 + Aµn) -ldA (u,^n)L2^n
n=1

-	 sin ira 	f	 ,,1

	Fln« J 	— ^)«-1—«d 	 (u, 4'n)L2n,
n=1

by the change of variables ? _ (1 + Aµ) 1 . The integral occurring in this sum
is equal to B(a, 1 - a) = Sinn« See, for example, Abramowitz and Stegun [1] for
properties of the beta function. We have completed the proof of the lemma.

Combining Lemma 7 with (2.2), we get

(2.4)	 IIS«uIIL2 = IIuIIx_^,	 u E L2(0,1), 0 < a < 1.

Our succeeding arguments are carried out within the Hilbert scale {Xp}ß E R,
but another characterization of the spaces Xß, ß > 0, in terms of Sobolev spaces,
may be useful, for example, in order to specify the boundary conditions which
U E X0 should satisfy at t = 0 and t = 1.

Henceforth HÁ(0,1) and Hó (0, 1) denote the usual Sobolev spaces for ß >
0. For details, the reader may consult Adams [2] or Lions and Magenes [21], for
example. As norm in H9 (0,1) with q E N we simply take

IIfIIH9 = (IIuIILZ + IIDg	
1^2

UIIL2)
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in place of the more complicated expression

q 	1/2

IIuIIL2 + E IIDk uIIL2
k=1

This is allowed by the interpolation inequality (e.g. Theorem 4.14 in [2]). For ß =

m + -y with m E N and ry E (0, 1), the norm in H(0, 1) is defined as follows (e.g.

[2]):

uIIHß = (IIuIIHm + IDmuIH7)
li2

where

vl2ry —	 1 	 IV(t)—V(S) I2 dtds.i
 f l

 It — sI l-F2ry

Moreover, for all q E N, there exists a constant C1 = C1 (q) > 0, independent of u,

such that

(2.5)	 <_ IItIIH9 <_ C1IID'uIIL2

for all u E Hó(0,1) (e.g. Corollary 4.16 in [2]). Therefore we adopt IID°uIIL2 as
norm in Hó (0,1). In particular, Hó (0,1) = {u E H 1 : u(0) = u(1) = 0} and

IIuIIHo = IID1uII L2•
For /3> 2, the norm IIuIIxp determines the asymptotic behaviour of the Fourier

coefficients (u, On ) L2 as n -3 oo, which automatically implies that u must satisfy
boundary conditions and belong to a Sobolev space. In fact, we establish

LEMMA 8. (i)

1
XQ=HQ (0 , 1), 0 < 3 <2

1
X112 = {u E H 2 (0,1) : f (1— t) —I I u(t)I 2 dt < oo}

0

X,3={uEHß(0,1): u(1)=0}, 2 <ß<1.

Moreover there exists a constant C = C(ß) > 0 such that

C—l II uII xa <— II'II Hß < CIIuIIxp,	 u E X0 ,

if/3 E [0,1] and ß # 2 .
(ii) Let o m + 2, m E N. Then

Hó(0,1)cX0

and there exists a constant C = C(,0) > 0 such that

IIuIIxß <_ CIIuIIHS,	 u E Hó (0, 1).

We prove this lemma in Appendix I.
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3. Isomorphism between X_a and L2 (0,1) by Aa

In this section, we establish

THEOREM 1. Let K satisfy the condition (1.2) and 0 < a < 1. Then there
exists a constant C = C(a) > 0 such that

C-1 IIuIIX_. s IIAauIIL- <_ CII uII X_a, 	 u E L2 (0,1).

REMARK. Identifying the space L 2 (0, 1) with its dual, we consider the triple

Hó(0,1) CL2 (0,1) c (Hó(0,1))'

(e.g. [21]). Here (Hó (0,1))' denotes the dual of Hó (0, 1). Then since

Ho(0,1)=H- (0,1)	 if 0<a<
1

(Theorem 1.11.1 in [21]), according to the usual notation, we have

X_a = H-a(0,1)	 if 0 a < 2,

we can restate the conclusion of Theorem 1 as

C-I IIuJIH-- <_ IIA.uIIi < CIIuIIH--, u E L 2 (0,1)

provided that 0 < a < 2. However, if 2 < a < 1, then Lemma 8 implies that
X. H°'(0, 1), so that X_a and H-°(0,1) do not coincide for 2 <a < 1.

For the proof of the theorem, we first show

PROPOSITION 1. There exists a constant C = C(a) > 0 such that, for 0 <
a<1,

C-'IIuIIx_. < IIJauIIL2 <CIIuIIx_^,	 u E L2 (0,1).

REMARK. In the case of 0 <a < 1/2, we can directly prove this proposition
by Fourier transform since X_, = H-"(0,1) by Lemma 8 (i).

Proof of Proposition 1. By Lemma 1 in §2 and (2.4), we have IIJuIIL2 =

II SuII L2, u E L2 (0, 1). By Lemmata 4 and 6, we can apply the Heinz-Kato inequality
(e.g. Theorem 2.3.4 in [26]), so that D(J) = D(S') for 0 < a < 1 and there exists
a constant C = C(a) > 0 such that

C 1 IISauIIL2 5 IIJ"uJIL2 < CII S'uII L2,	 u E V(J)

Since D(S') = L2 (0,1), noting (2.4), we have proved Proposition 1.
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Proof of Theorem 1. Let us define an operator L : L2(0 , 1) --+ L2(0, 1) by

sin Tra t	 t

(Ly)(t) = — - f {f (s —r)

x	 ((t — s)a-1 (K(t, s) — K(t, t)))ds }y(T)dr, 0 <t < 1.

Then similarly to Lemma 1 in D.D. Ang, R. Gorenflo and D.D. Hai [3], L and

(I — L) -1 are bounded from L 2 (0,1) to L2 (0,1). Moreover by Lemma 2 in [3] we

get

(3.1)	 Au = (I — L)J'u,	 u E L2 (0,1)

and

Jau = (I — L) — 'Aau,	 u E L2 (0,1).

See also the proof of Theorem 8.3.2 in [11]. Consequently by Proposition 1, for

u E L2 (0,1), we have

IIA.uIIL2 < III - LII II JauII L2 < CIII - LIJ IIuIIx-.

and

UII X _. < CSI J' uiI L2 < CII (I - L) -1 AOUIIL2 < CII (I - L) - III IIA«uI1L2.

Thus the proof of Theorem 1 is complete (trivilally, by II (I — L)-1 1l 0).

4. Upper and Lower Estimate for Singular Values

Since Aa is injective and compact from L2 (0,1) to L2 (0,1) (e.g. Theorem 4.3.3

in Gorenflo and Vessella [11]), the inverse A. 1 is not continuous with respect to the

topology of L2 (0,1). That is, there exists a sequence {x n }fEN in L2 (0,1) such that

IIxnhIL2 = 1, n E N, but IIAaxn,IIL2 --> 0 as n — oo. This means that the problem

of solving Au = f with respect to u E L2 (0,1) for a given f E L2 (0,1), is ill-

posed. Let us recall that (A*Aa ) 1 /2 : L2 (0,1) —* L2 (0,1) is a selfadjoint compact

operator. Its eigenvalues {s,, (Aa )}nEN, enumerated in decreasing order with taking
account of their multiplicities, are called the singular values of the operator A,:

sl(A.) > s2(Aa) > ......, 	 lim sn(Aa) = 0.
n—^oo

For the discussion of ill-posedness, the knowledge of the properties of the sequence
of the singular values is useful. For general presentations, the reader may consult
Baumeister [4], Chapter 4 in Colton and Kress [5], Hofmann [18], Kress [19], Louis

[22].
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For several types of Abel integral operators, Gorenflo and Vu Kim Than [10],
Vu Kim Than and Gorenflo [27], [28], give explicit forms of singular values with
corresponding eigenfunctions in weighted L 2-spaces. For the Radon transform, see
Natterer [24]. However, for concrete ill-posed problems, it is in general not only
extremely difficult to determine the singular values, but also is not easy to give
even upper and lower estimation or asymptotic behaviour. For one-sided upper
estimates, we refer to Dostanie [6], Faber and Wing [7], Hille and Tamarkin [17],
Gorenflo and Yamamoto [13], Yamamoto [30]. For determination of the principal
term in the asymptotic behaviour of singular values of Abel integral operators, the
reader may consult Vu Kim Than and Gorenflo [28], [29] which are most closely
related to our result:

THEOREM 2. Let K satisfy the condition (1.2) and 0 < a < 1. Then there

exists a constant C = C(a) > 0 such that

	

C- ln-° < s(A) <Cm-a ,	 n E N.

REMARK. We should compare this theorem with Theorems 2-4 in Vu Kim
Than and Gorenflo [29]. There, for a more general Volterra integral operator
(Lu)(t) = (t-QAau)(t) where the kernel function K satisfies extra conditions, it
is proved that

C-ln-` s(t- ' Aa ) < Cn-"

if a > 0 and 0 < ß < Z (Theorem 2). Moreover, under a stronger condition on K
and suitable restrictions on a and ,Q, they prove

sn(t-0Aa) = (n7r) -"(1 + o( 1 ))

(Theorems 3 and 4). By our method, we cannot determine the principal term as
precisely as these authors .

Proof. The keys are Theorem 1 in §3 and a comparison property of singular
values (e.g. Lemma 2.46 in Chapter 2 in Hofmann [18]): Let H1 , H2, H3 be separable
infinite-dimensional Hilbert spaces, A : H1 —p H2 be a linear compact operator
such that dim 7Z(A) = oo, and let H1 C H3 such that the embedding E: H1 —* H3
is a compact operator with singular values s, (E), n E N. If there exist constants
C2,C3 >0 such that

	C 2IIxIIH3 < IIAXIIHZ < C3IIxIIH3,	 x E H1 i

then

C2sn,(E) < sn (Aa ) < C3s^,(E),	 n E N.
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To proceed further we state

LEMMA 9. Let ß > 0. The embedding E0 : X0 —* X_ß is compact. Moreover

	s l (EQ) = ((n — ^
) 

^) a 	n E N.

Proof of Lemma 9. For the compactness, see, e.g. Lemma 5.1 in Baumeister
[4]. Trivially,

E,3On =	 Tin E N ,

and from the facts that {Cn,}nEN is an orthonormal basis of Xo and {/t n } nEN is

one of X_ß it follows that {µn ^Q , On,, a qn } nEN is a singular system of Eß. Thus the
proof of Lemma 9 is complete.

Now the proof of Theorem 2 is straightforward. In the comparison property of
singular values, we set Hl = H2 = L2 (0,1) and H3 = X_« and we apply Lemma 9
to complete the proof of Theorem 2.

5. Conditional Stability

Because of the compactness of A« : L2 (0,1) —^ L2 (0,1), we cannot give an
upper estimate of IIuIIL 2 by IIA«tIIL 2 for all u E L2 (0,1). However if we assume
that u lies in a compact subset of L 2 (0, 1), then we can restore the continuity of
A. This is meant by the notion of the conditional stability, here of the problem
A«u = f, and it is important to discuss the order of the restored continuity. In this
section, assuming u to lie in a bounded set in Xq , q > 0, we derive such orders:

THEOREM 3. Let 0<c<  1. For given q > 0 and M>0,  set

UM, q = {u E Xq : IIhijXq < M}.

Then there exists a constant C = C(q) > 0 such that

IIUIIL2 < C(q)M«/(a+«) II A«uII (q+«^,	 U E UM,q-

REMARK. Let 0 < q < 1 and q 2. By Lemma 8 (i), we can replace the
definition of UM,q in this theorem by

	{uEH4 (0,1):IIuf[Hq<M},	 0<q<2
UM,q =	

-

t. {uEH9 (0,1):IIuIIHq <M, u(1)=0}, 
1
 <q<1.

Moreover, by Lemma 8 (ii), if q # m + 2, m E N, then we can similarly replace

U.,q by

üM,q={uE Hó (0,1): IIUIIHs <M}.



148	 R. GORENFLO and M. YAMAMOTO

Proof. The proof is based on the the argument in p. 100 of Baumeister [4].
That is, by the interpolation inequality (e.g. Theorem 5.3 in [4]), we see that

IIuIIL 2 < IIUIIX 
(9+a)

 II^IIX (,+a),	 IL E Xq .

Noting that u E UM, q , we apply Theorem 1 in §3, so that the proof is complete.

Notice for example that u E UM, 1 implies u(1) = 0. In cases of q = 1 and
q = 2, we should compare this theorem with Theorems 8.3.2 and 8.3.4 in Gorenflo
and Vessella [11], where no boundary conditions at t = 0, 1 such as u(0) = u(1) = 0
are assumed for u. The advantage of this theorem is, however, that we can derive
conditional stability also for "nonsmooth" functions which are not covered by the
above-mentioned theorems in [11].

Example. For given M > 0 and N E N, let us set

N

VN,M = E UjX[¢„bi ] : ILj I < M, 0 < aj < bj < 1 , 1 <j < N
j=1

where X[a,b] is the characteristic function of the interval [a, b]. Let us estimate

IIX[a,b] IIX,, for 0 <q < 2. By (2.2) we have

0o 	(jb 	
2 1/2

X[a,b] IIX q 	 Eµ^9 	 cos µntdt)
1 

1/2

_ V	 /ßn9-2 (sin µnb - sin II,na) 2 I
n=1	 l

1 2q-2 1/2
<2v^e 1^(n_2)	 =C(q)<oo.

nL- 1	 J

Here we note that C(q) <00 by 2q-2 < -1, and C(q) is independent of a,b E [0,1]

andC(q) -pooasgr 12•
Thus for fixed q E (0, 2 ), we see that X[a ,b] E Xq and IIX[a.,b] II x,, is uniformly

bounded for all a, b E [0, 1]. Therefore

U1 - u2II Xq < 2MNC(q)

if u1, u2 E VN,M, so that Theorem 3 is applicable: for q E (0, 2 ), there exists a

constant C(q) > 0 such that

Ilul - U2IIL2 < C(Q)Ma/i4+a) IIAaul - Aau2IIL (q+a
)	 ul, u2 E VN,M.

In particular,

ha,, b1] e [a2, b2]I1/2 < 5 (q)IIAax[.1,b,] - AcX[n2,b2]IIG(q+a)



Linear Abel Integral Equations	 149

if 0 < a l <b1 < 1 and 0 < a2 < b2 <_ 1. Here [al, bl]e[a2i b2 ] denotes the symmetric
difference between [a l , bl ] and [a2, b2], namely, [al, bl] e [a2 i b2] = ([al, bl] \ [a2, b2]) U
([a2, b2 ] \ [al, bl]), and I - I is the sum of lengths of intervals.

Now what is the meaning of conditional stability within our framework if for

u E H9 (0,1) we cannot assume any boundary conditions at t = 1? Unfortunately
for general u E H(0, 1), Theorem 3 cannot give results as good as those presented
in Theorems 8.3.2 and 8.3.4 of Gorenflo and Vessella [11] for special cases q = 1
and q = 2. It yields, however, an interior estimate.

THEOREM 4. Let 0 < a < 1 and e E (0, 2). Then for q > 0 there exists a
constant C(q) > 0 such that

IIuIIL2 (E,1—E)	 C(q)E—I9^-1Ma^(9+a)IIAauIIL
2
(9+a)

provided that u E H4 (0,1) and IIuIIH9 < M. Here [ • ] denotes the greatest integer

not exceeding q.

Proof. First we state a lemma that we shall prove in Appendix II.

LEMMA 10. Take a function x E C°°(0,1) and set ii(t) = X(t)u(t), 0 <_ t < 1
for u E H9 (0,1). Then there exists a constant C4 = C4(q, x) > 0, independent of

u, such that

IIuIIH9 < C4(q,x)IIuIIH9•

Let us now carry out the proof of of Theorem 4. We set

	l=[q]+1,	 x(t) = t 1 (1 — t) 1 .

Then (Dk5)(0) = (Dk5)(1) = 0, 0 < k < [q]. Let i = xu for u E H9 (0,1) satisfy

I I u I I H9 < M. Then by Lemma 10, we see

(5.1)	 ü E Hó(0,1),	 (IuIIH, < C4(q)M.

On the other hand, by integration by parts, we have

(Jii)(t) = J(xu)(t) = x(t)Ju(t) — f
o
tJu(s)(Dlx)(s)ds.

By induction, noting that (Jku)(0) = 0, u E L2 (0,1), k E N and (D21+ 1 x)(t) = 0,

0<t<1,weget

21
(5.2)	 (Jii)(t) = E(-1) k (Dkx)(t)(Jk+l u)(t), 0 < t < 1.

k=0

Since J : L2 (0,1) —* L 2 (0,1) is bounded, the relation (5.2) implies

IIJuIIL 2 < C5IIJuIIL2•
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Let us define B : L2 (0,1) —* L 2 (0,1) by (Bu)(t) = x(t)u(t), 0 < t < 1. Then B is
bounded from L 2 (0,1) into itself. Moreover, since J is an m-accretive operator in
L2 (0,1), we can apply the Heinz-Kato inequality (Tanabe [26]). Therefore we get

J'uII L2 = IIJaBuIIL2 < C6(a)IIJa uIIL2 ,	 u E L2 (0,1).

On the other hand, by (3.1),

Aa1 IIL2 = 11 (1 - L)J`Y uII L2 ç III - LII IIJ` iilIL 2

and

J`YuIILz = II(I - L) -1 A«nIIL2 < II(I - L)-111 IIA«uIIL2

follow, so that

A«üII L2 < C6(a)III - LII IIJauIIL2 < C6(a)III - LII II(I - L) -1 II IIA«UIIL 2 .

Moreover by (5.1) and Lemma 8 (ii), we can apply Theorem 3 to obtain

UIIL2 < C(4)M' /(e+«) II Aa 
I (e+^)

< C(4)(C6III — LII II(I — L) -1 II )e/(e+«)Malle+-) II A,uII (v+«)

Recalling that ii(t) = t 1 (1 - t) 1 u(t), 0 < t < 1, we see that

L(t)I i Eß (1 — E)'Iu(t)I ^ 2 -1 cl Iu(t)I,	 E < t < 1 — E,

and so

I Iu1IL2(o,1) > 2—'E/ IIuIIL2 (E,1—E)'

Thus the proof of Theorem 4 is complete.

6. Tikhonov Type Regularization

As we have already observed, the problem of determining u from the equation

A«u = f,

f E L2 (0,1) given, is ill-posed. We now discuss recovery of u E L2 (0,1) from an
approximate equation

E L2 (0,1),

which means that instead of the true right hand side we have at our disposal only a
perturbed right hand side 0, the perturbation happening within L 2 (0,1) and being
bounded by the "noise level" 5 > 0 as follows:

IIf — g1IL 2 <5.
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As a-priori information about the true solution u, we assume

(6.1)	 u E Xq, jjujjx9 < M, q > a,

with given positive numbers M and q. The number q contains information on the
smoothness (or regularity) of u.

Our Tikhonov type regularization method for recovering u consists of minimiz-
ing the functional

A.v -0IIL2 +yII2'112

by appropriate choice of v in Xi,.
Here p > 0 is fixed and the positive number y is the regularization parameter. It

is known (see e.g. Baumeister [4], Groetsch [14]) that there exists a unique minimizer
u6 '7 'P for given 0 E L 2 (0, 1). The next question then is the convergence of uó ' 7 'p
towards the true solution u as the noise level 5 tends to zero and y is properly
chosen in dependency on 6 and M. Of course, we want this convergence to be as
fast as possible. There are several possible strategies to achieve this aim (see e.g.
[4] and [14]). We follow the idea of Natterer [23] (see also §3 of Chapter 6 in [4]) to
get the convergence rate.

THEOREM 5. Assume (6.1) and take

_	 2(c+r)/(a+q)

p> q 2a 	7=c7 \M/

with a constant c7 > 0. Then

^Hu — u5' ''llL2 = 0 (6g1(a+q)Ma1(a+q)1

ash-40.

COMMENTS. This theorem gives the optimal convergence rate

0 (5g1(a+q) M1('))

by the proposed choice of -y. The larger we can take q (that is, the more we know
the degree of smoothness of u), the better this rate is. However, the exponent
cannot reach the ideal ("best thinkable") value 1.

Proof of Theorem 5. This theorem is, by Theorem 1, an immediate conse-
quence of Natterer's Theorem 1 in [23] (or of the arguments presented in Baumeister
[4], Section 6.3). This ends the proof.

If q > 2, then u E Xq , by Lemma 8, implies that u(t) must vanish at the
boundary t = 1. What can be said about the convergence of the regularized solutions
u''7 'P if u E H(0, 1) but u O Xq ? In this case, as in §5, our method does not give
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the best result. As for overcoming the constraint of the zero boundary condition at
t = 1, we can, in the special case q = 1, refer to Dang Ding Hai and Dang Dinh Ang
[15] and to Gorenflo and Yamamoto [12]. Now, by a method different from theirs
we shall derive a local estimate.

Let us set

l=[q]+1,	 X(t)=t1(1-t)l for O<t<1

and

21

R1 = (I - L) E(- 1)kDl-"(DkX Jk+1-"(I - L) -1 0)•
k=o

Here and henceforth we define the operator DQ of fractional differentiation by

(6.2)	 Dßv = DJ'-Av, for 0 <3 < 1,

as long as the right hand side is well-defined. Concerning the operator I - L that
is a bounded operator from L 2 (0,1) onto itself, the reader should recall formula
(3.1), namely, A" = (I - L) J". In order to obtain convergence rates of regularized
solutions in a compact subinterval of (0, 1), we modify the regularizing functional,
so that we have to minimize

1IA"v - R1 II i2 + 7IIvPI(P

by appropriate choice of v in Xi,. We denote the uniquely existing minimizer by
6,7,pUI

THEOREM 6. Assume

u E H4 (0,1), IUhIH9 c M, q > a,

with given numbers M > 0 and q > a, and take

-
	 2(a+p)/(cY+q)

p> q 2a '	 y- c7 \ I )

(as in Theorem 5). Then for every e E (0, 2), we have

, y , lf
II	 II
u - l	it	 = o (E- Iqt-16g1+q)M"/("+q))

L2 (E,1 -)	 J

as h—+ 0.

Proof. Set A"u = f and ii(t) = x(t)u(t) = t l (1 - t) lu(t) for 0 < t < 1. By

(6.2) and the semi-group property of the powers of J, we have

Dl-"J = (DJ")(J l-"J") D(JaJ l-")J" = DJJ" = P.
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Hence (5.2) implies

2l

Jaü = E( -1 ) kD l-Q (DkXJk+l u)
k-o
2l

= E(_ 1 )k D l-a(D k X Jk+1-a(I - L)-1f)•
k=o

For the last "=" we have used

Jk+lu = Jk + l-c(I - L) -1 (I - L)J«u

= Jk +1-c(I - L) -1 A,,u = Jk+ l-a (I - L) -1 f.

By (3.1) we now see that

2l

Aaü = (I - L) (-1) k D l-^(DkXJk+ l-"(I -
k=o

so that

2l

A„ü - RIO = (I - L) E(-1)kD1-«(DkX Jk+l-a(I - L) -1 (.f - 0))•
k=0

Since I - L is bounded, we get

21

II A.ii - RIOII L2 < C8	 II Dl-«(DkX Jk+^-«,)IlL2

k=O

with = (I - L) -1 (f - 0). For the estimation of the terms

Di-«(DkX Jk+i -aV))JIL2,	 0 < k < 2l,

we use the Leibniz formula for the fractional derivative (see e.g. (17.11) in [25]),
and we obtain

D1-a ((DkX)(t)(Jk+l-« ,0)(t))
= (Di-« Jk+1-c,,)(t)(DkX)(t)

-	

1 	t
I (-a - 1) j

(t  - s)a-2(Jk+1-«0)(s) ((DkX)(t) - (DkX)(s)) ds

= (JkV))(t)(DkX)(t)

-	 1	 f l (t
I'(- 1)	

- s)a-2 (Jk+1-«
b)(s) ((DkX)(t) - (DkX)(s)) ds.	a 	 o

For the last ”=" we have used (see (6.2))

Di-a Jk+i -« = DJaJk+i -« = DJk+1 = Jk.
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By x E C°°[0, 1], we obtain

D1-a ((DkX)(t)(J
k+1 a

^)(t))

< C8(
(Jk IoD(t) + 

J o
t (t - s)a-1 (Jk+1-a

I0I)(s)ds)
\

<c8 1(jklol)(t) + r(k 
+11— a) f t(t — s)a-1 (f ' (s — 77) k-aI,P(q)Idq) ds}

t= C8 {(Jk loI)(t) + r(k+
11— a) lot I^G(^)I (17(t— s)a -1 (s —77)k-ads) d7}

	= CS {(JkI
a	 t

	^GI)(t) + 
B(a,k+1- )

 r(k+ 1— a)	 (t — ^) I)Id^}

<CC(Jk +J)I&I(t)•

To obtain the last "=" we have substituted 	 9 in the integral. Now we find

D1-a(DkXJk+1-a,^)IIL2 <— C9II^GIIL2,

because Jk and J are bounded operators from L 2 (0,1) into itself. Consequently,
since (I - L) -1 is also bounded and If - 0IILZ < 6, we obtain

IIAaii — RI4II Lz < (21 + 1 )C8C91I^GIIL2
_ (21 + 1 )C8C911(I—L) 1 (.f — )IILZ <C1011f —0IIL2 <C105.

Moreover, by Lemma 10, we get ü E Hó(0,1) and IIuIIx9 < C4 (q)M, and applying
Theorem 5 with u and 0 replaced by v, and Rjçb we find

ii — 4 ,7,P
IIL 2 = O 1 6q/(a+q)Mala+q)1 .

We complete the proof of Theorem 6 now by recalling that ü(t) = X(t)u(t) _
t [9 l +1 (1 — t) [9» lu(t) for 0 < t < 1.

Appendix I. Proof of Lemma 8

Proof of the part (i). Let

1
µn = n— 2 7r, A =mr,	 nE N,

x(t) = cosµn,t =	 0n (t), yn (t) =sinA,.,t,	 0 < t < 1, n E N.

As is easily seen, {µn : n E N} U {An : n E N} is the set of all the eigenvalues of

(D2u)(t) = -.\u(t),	 -1 <t < 1

1	 u(-1) = u(1) = 0
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and xn and yn are eigenfunctions respectively for pn and An, n E N. Similarly to

(2.2), we see that

(1) B - {xn :nEN}U{yn :nEN}

is an orthonormal basis in L2 (- 1, 1).

Now for ß E R, let us form a Hilbert scale {Y0}0EI over B similarly to {Xp}pE R.

Let ,0 E R. In span B, we define scalar products and norms by

00	 00

(2) (u, v)Yp =	 ILnß(u xn)LZ (v, xn)L 2 +	 Anp(u, yn)LZ (V , yn)L 2

n=1	 n=1

II'IIYY = (u,u)12 ,

for all u, v E span B. The completion of span B in the norm II Il Ya is denoted by

Yß. By (1), we see

Yo = L2 (- 1, 1).

Let us define an operator —A in L2 (- 1, 1) by

(—Au)(t) = (D2u)(t),	 —1 < t < 1

and

D(—A) = {u E H2 (- 1, 1) : u(-1) = u(1) = 0}.

Then, as is known (e.g. §3 in Chapter 1 of Henry [16]), the fractional power A7 ,

ry > 0, is well-defined and

00	 00

AQI2u = E Pon(u, xn)L 2 xn + E ) (n, yn)L2yn, u E D(AQ/2 )
n=1	 n=1

Therefore by the definition of (2), we see that

(3) D(AR/2) = Ya,	 Q ? 0

and

(4) IIAA /2uhIL2(-1,1) = IIuIIrß,	 U E Yp.

On the other hand, by Fujiwara [9], we have

D(AO/ 2 ) = Ha( -1, 1), 0 < ß < 1
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(	 r 1

D(AV4) _ (u E H 1 / 2 (-1, 1) : J (min{1 — t, 1 + t}) -1 lu(t)I 2 dt < oo }
l	 1	 JJJ

= E° ' 1/2 ( -1 , 1 ),

D(A"/ 2 ) = Hó (-1, 1), 2 <i3 < 1,

and for ß 54 2, there exists a constant C11 = C11(ß) > 0 such that

c111 1IuIIHß(-1,1)	 IIAR/2UIIL2(-1,1) 	 C11IIuIIHß(-1,1),	 u E D(A 2 )

Therefore we have

	Yp=HO(-1,1),	 0<ß< 1

(5) Yi/2 = E°"/(-1, 1),

	Yp=Hó(-1,1),	 2 <ß<1

and for some C11 = Cl1(/3) > 0, we get

(6) C11IIuIIYß <- IILIIHß(-1,1)<_ Ci11 IIuIIYp, U E Yß , ß	 2

Finally we define an isomorphism L from Xp onto a closed subspace of Yß:

	

(Lu)(t) = Ju(t),
	 0 < t < 1

ll u(-t), -1 <t<0.

That is, Lu is an even extension of the function in (0, 1) to one in (-1, 1). Then we
see: for ß > 0, u E Xß if and only if Lu E Yß, and

(7) IIuIIXf =	 IILuIIyy ,	 u E XQ .

In fact, since Lu is an even function, we have (u, yn )L2(_ 1 , 1 ) = 0, n E N, so that

IILuIIY, = Eµna I(Lu,xn)L2(-1,1)1 2
n=1

00

= 2	 ^npl (u , On)L z (°,1)I 2 = 2 11uhIXp.
n=1

Further we need

LEMMA 11. (a) For 0 < ß < 1,

(8) II1IIH3(°,1) < IILuIIHI(-1,1) <_ 2 11ullH3(°,1), 	 u E H(0, 1).
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(b) We have

f 1
	(min{1 — t, 1 + t}) 	 = 2 fo 1 (1— t) -1 Iu(t)I 2 dt.

i 

Proof of Lemma 11. The part (b) is easily seen. Let us prove the part (a).
The cases ß = 0 and ß = 1 are readily verified. Let 0 < ß < 1. Then we have

Lu Il 2ira(_1,1) = II Lu IIi 2 ( -1 , 1 ) + I Lu I Hp (- 1 , 1 )

ÎL Hß(o,i) = IIuIIL2(o,1) + IulHO(0,1)^

VI ß(_1,1) = f j f  I v(t) +zpldtds
 It - Si

vI Hp 4,1	
3 ô

1 fo1  y(t)—vs) I2 dtdS	( ) — 	 It — SI1+20

(e.g. Adams [2]). Therefore IIkIIHß(o,1)	 IILuIIHs(-1,1) is straightforward. For the
second inequality, since IILuhIL2(_1,1) = \/IIujjL. 2 (o,1), it is sufficient to prove

ILuIHP(_1,1) < 2IuIH,3(o 1).

Noting the definition of Lu, we have

z
LuI Hß(-1 1)

(10 1 Jo 1+ J0 Jo l + I	 +Joi^oi/ \ILItt) slLu(s)I2
 dtds 1+2(3

= 2 I u IHA(o>1) + 2 I 1 I 1 I 
u( t) -

 sI +2pI2 dt ds.

Here we get

f
l f l IU(t) —u(S)I 2

 It + SI1+2a	
dt ds —

= f l —U(S)I 2 It—SI 1+2ß( % 1

 Jo

Iu(t)

I t — S I1+2a	 It + 
81l+2ß d ) ds

<	 f 1

Jo

(fl Iu(t) —u(S )I2 dt f ds
SIl+2ß	 /It —

so that

and

with

and

Lul2rra(-1 i) < 4IuIHO(o 1).
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Thus the proof of Lemma 11 is complete.

Now let us complete the proof of Lemma 8 (i). For ß # 2, the estimates (6)-(8)

imply the estimates in the part (i). Finally we have to prove the relations between

X0 and the Sobolev spaces.
First let 0 < ß < 2. By (5) and (7), u E Xß if and only if Lu E Hß(-1, 1),

and by (a) in Lemma 11, we see that u E X0 if and only if u E H(0, 1). Second,

let 0 = 2. By (5) and (7), u E Xi / 2 if and only if Lu E E° ' 1 /2 (-1, 1), which, by

Lemma 11, is equivalent to

u E H 1 / 2 (0,1), J (1 - t) -l lu(t)I 2dt < 00.
0

Finally let 2 < 0 < 1. By (5) and (7), u E X0 if and only if Lu E Hó ( -1, 1),
namely, Lu E HQ(-1, 1) and (Lu)(-1) = (Lu)(1) = 0, which is equivalent to

U E {v E HQ(0,1) : v(1) = 0} by Lemma 11. Thus we have completed the proof of

the part (i) of Lemma 8.

Proof of the part (ii) of Lemma 8. The cases 0 <_ ß < 1 are already proved

in the part (i). Let 1 < ß < 2. First let u E Hó (0, 1). Then, since u(0) = u(1)

(D 1 u)(0) = (D 1 u)(1) = 0, by integration by parts, we have

	(u, cn)L 2 = I (D2u,	 çbn)L 2 ,	 n E N,
n

so that

	IIu X2	 14-I(D2u , On)L 2 I 2 	= JID2uIIL2,	 u E Hó (0 , 1 ),
n=1

by (2.1). That is, noting (2.5), we obtain

	IIuIIx2 < C1IIUIIH2,	 u E Hó (0, 1).

Therefore E : Hó(0,1) -* X2 is well-defined and bounded. Moreover, by the part

(i), E: Hó (0, 1) -+ Xl is also bounded. We denote the intermediate space between

the Hilbert spaces Hl and H2 by [Hl, H2]9, 0 E [0, 1] (e.g. Definition 1.2.1 in Lions

and Magens [21]). If 0 # 2 and 0 <0 < 1, then

[Hó (0 , 1 ),Hó (0 , 1 )]e = H ° (0,1)

(Theorem(Theorem 1.11.6 in [21]). Furthermore by the definition of Xß, we can directly see

that

	[X2, X1]e = X2_a,	 0 < 0 < 1.

Consequently by the boundedness of E : Hó (0, 1) - X2 and E : Hó (0, 1) -* Xi,
we can apply Theorem 1.5.1 in [21], so that also E : Hó -B (0,1) -* X2_o is

bounded if 0 E [0, 1] and 0 # 2. For Q > 2, we can proceed similarly. Thus the
proof of Lemma 8 is complete.
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Appendix II. Proof of Lemma 10

First let q E N. Then for some constant C12 > 0 which is independent of u but
dependent on X, we have

uIIH9 = (IIXU ILZ + IID 9 (Xu)I Lz) < C12 (IIuIIL 2 + E II Dku L 2

k=1

C12IIUIIHv.

Next let q ¢ N, that is, q = m + y where m E N and 0 <'y < 1. Then

III H9= (IIi lL2 +II Dmu ilL 2 +I Dmu IH7 )

(e.g. Adams [2]). Setting Xk(t) = (Dk X)(t) and um_k(t) = (Dm-ku)(t), 0 < k < m,

we get

m

i 2	 2
D

m 
2^I Hry < C13	 IXkUm-kIH7.

k=0

On the other hand, for 0 < k < m, we have

Xkum-k 1 2 = I l
 J 

1
IXk(t)um-k(t) - Xk(S)um-k(S )1 2 dtds

 0 It - SI1+2ry

< C13 J 1
 f l IXk(t)1 2 JU,n_k(t) - um-k(S)12 dtds

0 	 It - SI1+2ry

+C13 J 1 (f '1 IX i(t) SIX+(8)I2 dt
) 

I26m-k(S)I2dS
0 `f0

1 1 k m-k (t) - um-k (S) I2 dtdsCla Jo Jo	 It — sIi+27

(fo1+ C14 J 1 It - si 1-27dt I Ium-k(8)I2ds by Xk E C°° (0 , 1 )

1
< C14IDm-kuIH7 + 

Ci4
 y fo I um-k(s)I 2 ds

< C15IIUI1 2

At the first inequality, we have used

IXk(t)um-k(t) - Xk(S)um-k(S)I 2

= IXk(t)(um-k(t) - Um-k(S)) + (Xk(t) - Xk(S))u+n -k(S)I 2

< 2IXk(t)(Um_k(t) - um, -k(S))I 2 + 2 1(Xk(t) - Xk(8))um-k(S)I 2 ,

and at the last inequality, II u IIHm-k+, < C15II u I(Hm+'. Therefore we obtain

Dm u1 2 , < C16IIuI'2
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so that we have

uII H9 < c16(IIuIIL 2 + IIDmuIIL 2 + II'IIH9) < 2Ci16IluIIHa ,

which is the conclusion of the lemma.
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