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A new implicit Runge-Kutta-Nyström method with variable coefficients is developed for
solving the periodic initial value problem of the differential equation y" = f (t, y). The
proposed method, whose coefficients are functions of the frequency and the stepsize, in-
tegrates exactly the equation, if the solution is a periodic function with a single Fourier
component and the frequency is known. On the other hand, the order of accuracy of the
method is shown to be 4 for the case that an estimated frequency, instead of the exact
one, is applied to evaluate the coefficients, as well as for that the solution is non-periodic.
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1. Introduction

An important class of initial value problems which can arise in practice consists
of problems whose solutions are known to be periodic. A number of numerical
methods for this class of problems have been developed (see e.g. [1], [5], [7], and
[8]). Only few of them, however, take advantage of special properties of the solution
that may be known in advance. If the frequency of the solution, or a reasonable
estimate for it, is known in advance, then the methods which take it as a priori
knowledge are advantageous.

The purpose of this paper is to construct the 4-stage implicit Runge-Kutta-
Nyström method which takes the frequency of the solution as a priori knowledge.
The Runge-Kutta-Nyström method proposed here, whose coefficients are functions
of the frequency and the stepsize, gives the exact solutions of the initial value prob-
lems, if the solutions are periodic and their frequencies are known in advance. On
the other hand, if the solutions are not periodic, then the order of accuracy of
the method is shown to be 4, when the coefficients are real and analytic functions

of v = wh. Moreover, we analyze the two errors, phase and amplification errors,
of the Runge-Kutta-Nyström method for the case that the exact frequency is un-
known. We discuss further the fixed coefficients implementation which reduces the

computational cost.
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2. Trigonometric Runge-Kutta-Nyström (TRKN) Method

2.1. Trigonometric order

Let us consider a special class of second-order initial value problem of the form

y
" = f (t, y), y(to) = C, y'(to) = i7.	 (1)

For solving equation (1), instead of applying conventional Runge-Kutta or linear
multistep methods to the equivalent 1st-order system, which has the dimension
twice that of equation (1), the direct application of the Runge-Kutta-Nyström
method to equation (1) is more efficient, particularly when the equation is stiff
and therefore implicit methods are necessary to solve it.

The Runge-Kutta-Nyström method takes the form

s

Yn+1 =yn -^hyn^-- h2 Ebjf(tn-}-cjh,Yj),	 (2)
j=1

Yn+i = Yn + h ^bjf(tn + cjh,Yj),
j=1

s

	Yj = yn +cjhyn' +h2 	ajkf(tn+ckh,Yk), j = 1,2,...,s.
k=1

As in the case of Runge-Kutta methods, this can be represented in the Butcher
array

C1	 all	 a12	 ...	 als

C2	 a21	 a22	 •••	 a28

	

cs asl ast	 ass

bl 	j2 	...	 bs

b l	 b2 	...	 bs

Although various Runge-Kutta-Nyström methods have been proposed (see, e.g,
[3]), none of the methods have been developed for the specialized situation that the
solution of the problem is periodic and the frequency is known. For such problems, it
is appropriate to discuss the accuracies using the notion of the trigonometric order,
which was first introduced by Gautschi [1] for linear multistep methods. Accord-
ing to Gautschi [1] we describe briefly the trigonometric order of linear multistep
methods. Consider the linear multistep method

	k 	 k

E ajyj = h E 0i fj,	 (3)
	j=0	 j=0
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for solving the first order equation y' = f (t, y). If the difference operator

k

L[y(t); h] :_{ajy(t + jh) — hßjy'(t + jh)} 	 (4)
j=0

associated with the multistep method annihilates trigonometric polynomials up to
degree r, i.e.,

L[cos(qwt); h] = L[sin(qwt); h] = 0, q = 1, ... , r,

L[cos((r + 1)wt); h]	 0, L[sin((r + 1)wt); h] 54 0,

then the linear multistep method is said to be of trigonometric r. For the Runge-
Kutta-Nyström method, the trigonometric order is defined in an obvious manner
analogous to that for the linear multistep method.

DEFINITION 2.1. An s-stage Runge-Kutta-Nyström method is said to be of

trigonometric order r relative to the frequency w, if all the relations

s

y(t + cjh) = y(t) + cjhy'(t) + h2 E ajky"(t + ckh), j = 1, ... , s + 1,

s
	 k=1	 (5)

y'(t + h) = y'(t) + h	 bky"(t + ckh)

k=1

are satisfied by the functions y(t) = cos(mwt) and sin(mwt) (m = 1, . .. , r), and

not satisfied by y(t) = cos((r + 1)wt) and sin((r + 1)wt), where we set as+l,k = bk

(k = 1, ... , s) and cs+ l = 1. In addition, if the method is of trigonometric order > 1,
we will call the method trigonometric Runge-Kutta-Nyström (TRKN) method.

Hereafter we are only concerned with the method of trigonometric order 1,
and examine the order of accuracy of the method, when the coefficients, which are
the functions of v = wh, are real and analytic in the neighborhood of v = 0. The

order of accuracy of the TRKN method is also important in the sense that it tells
us at what rate the numerical solution converges to the exact solution, when the
solution of (1) is not periodic, or when the solution is periodic but the coefficients
are evaluated using an approximate frequency.

2.2. Order of accuracy of TRKN method
The order of accuracy of the Runge-Kutta-Nyström method is defined to be

p = min{pl, p2 } for the integers Pi and p2 satisfying

y(t.+i) — y.+i = O(hP ,+ l
),	 y (tn.+i) — yn+i = O(hn 2 + 1

),	 (6)

where yn+l and y'' +1 are the numerical solutions given by the method under the
conditions that y,, = y(t) and y, = y'(t). The order condition for conventional
Runge-Kutta-Nyström methods has been thoroughly studied by Hairer and Wanner
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[2] and Hairer, Norsett and Wanner [3]• Here we will show that the order of accuracy
of the TRKN method is at least 2.

We assume here that the abscissae c 7 are independent of w, and that the
coefficients alk and bk are real functions of v = wh and analytic in the neighborhood
of v = 0. Let the Taylor series expansions of the coefficients be

alk = a^ k^ + a^ k^ v + a^ ki v2 +

bk = bko) + b$» v + b (2) v2 + •••.

Then for these expansions we have the following lemma:

LEMMA 2.2. For the coefficients alk and bk of the TRKN method, there exist
the relations

S	 ll

a3kCk1— í( c2í-1)' 
1=1, 2, j=1,2...,s+1,

k=1
(7)

:bko) ck 1 — ,	 1=1,2.
k=1

Proof. First we show the relation on alk . The substitutions y(t) = cos(wt)
and y(t) = sin(wt) in the first of (5) yield

°°	 s1 — cos(c3 v) _	 (l) l
v2 	E Ea^ k v cos(ckv),

1=0 k=1
j = 1,...,s + 1,	 (8)

°°	 Scnv — sin(c^ 	_v) 	(l) l
v2 	alk v sin(ckv),

1=0 k=1

which means that alk = 0 for odd 1. Expanding cos(c^v) and sin(cjv) into the
Taylor series, and collecting the same powers of v, we have

Ao, + Al,^v2 + A2,7v4 +... = 0,	
(9)

Bo,^v + B1,^v3 + B2,^v5 +... = 0 ,

where A,,,,,j and B,,,,,j are the constants given by

	( - 1)m c2m+2	 m s 

l

/_1)l 
(2m-21) 21

Am,j = l (2m+2)! —	 (21)! ask	 eck'
1=0 k=1

(10)
	( - 1)m e2m+3	 m s	 (-1)l 

(2m-21 21+1

Bm,j = (2m+3)!   — 	 (21 + 1)! ask	) ck
l=o k=1

The first relation of (7) is derived from Ao, = 0 and Bo, = 0.
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Next we show the relation on bk in the same way. The substitutions y(t) _
cos(wt) and y(t) = sin(At) in the second of (5) yield

S 00	sin v =	
bjv' cos(ckv),

v
k=1 1=0

$
(11)

00
	1 — COS II =	

> b$ v' sin(ckv),

k=1 1=0

from which we have bkl) = 0 for odd 1. As before, expanding cos(ckv) and sin(Ckv)
into Taylor series and collecting the same powers of v, we have

CO+C1í 2 +C2V4 + ... =0,
12

Dov+D1v3+D2v5+•••=0,	
( )

where Cm and B,,,, are the constants given by

^	 s

Cam`	 —

	( -1 )m	 i	 ( -1)^ bi2m-2I)c21
'

	

(2m + 1)!	 (2l)! k	
k

1=0 k=1
(13)

	

_ ( -1 ) m 	m s 	(-1)t b(2m-2í) C21+1Dm
	(2m+2)! —	 (2l+1)! k	 k

L=0 k=1

The relation on bk is derived from Co = 0 and Do = 0. 	 n

To analyze the local error, it is convenient to associate the difference operators

8

L^ {y(t); h} := y(t + c^h) — y(t) — cj hy'(t) — h2 	ak^y"(t + cjh),	 (14)
k=1

j = 1,...,s+1,

M{y(t); h} := y'(t + h) — y'(t) — h	 y"(t + ckh),	 (15)

k=1

with the TRKN method, where y(t) is assumed to be not necessary periodic but suf-

ficiently often differentiable. If y(t) is the solution of (1) then between the operators

and the local errors there exist the relations

Tj := y(t + cjh) — Y? = Lj {y(t); h}

t aik(f(t+Ckh,y(t+Ckh)) — f(t,Yk)),+he  	 j = 1,2,...,s+ 1,
k=1	 (16)

T' := y'(t + h) — y' +l = M{y(t); h}
s

+hEbk(f(t+Ckh,y(t+Ckh)) — f(t , Yk)) ,

k=1
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where we set Ys+l = yam,+l. We have therefore the inequalities

lT^I <— (1—h2L Iajil) -1 (ILi{y(t);h}I +h2 L^jaikI ITkI),
k j

	ITs+lI < ILs+l{y(t);h}I +h 2 LEIbkI TkI,	 (17)

s

IT'I < IM{y(t);h}I +hLEIbkI ITk1,

where we assume that function f (t, y) satisfies the Lipschitz condition with respect
to y, and L is the Lipschitz constant. Using the inequalities we will analyze the
orders of the local errors.

Let p and v denote the orders of local errors Tj and T', respectively, i.e.,

Tj = O(hpi),	 T' = O(ha )

Note that pl and p2 in (6) can be expressed in terms of p and Q as

Pi = Ps+1 — 1,	 P2 = Q — 1.	 (18)

Moreover, let A and p denote the orders of operators L and M, respectively, i.e.,

L^ {y(t); h} = O(h"^ ), 	 M{y(t); h} = O(h)

Then we find from (17) that

pj =min Aj , kin {Pk } + 2 }, j = 1, 2, ... , s + 1,

<k<s	 JJJ	 (19)

or = min{µ, min
1<k<8

{pk} + 1}.

We have immediately from (19) that pj < A for all j, so that

min{pj } < min{A^ }.
J	 7

For the minimum of p^, denoted by pm , we have

min{pj} = p, _ Am ,

since if this is not the case we have from (19) the contradiction that

Pm = in{Pk}+2> pm +2> pm .
k m

The fact that mini { pj } = A9,,, together with mini { pj } < mini {A^ }, imply

	

min {pj} = min {A}.	 (20)
1<j<$+1	 1<j<s+i
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Next we will analyze the orders of operators L and M using the result.
Assuming that the Taylor series expansion of y(t) and those of the coefficients

alk and bk have a common interval of convergence, and using the results of Lemma
2.2, we have in the interval

00	 t+l	 S 00

Lj{y(t); h} _ 	(i — i)!l)i l(l + 1) — E E a(km)ck loam ht+1
y(t+1)(t)

l=1	 k=1 m=O

2 S

= 2 — E( a(k) + a (k) v2 _}....) h2y(2)(t)
k=1

3	 S

+ 2c^3 — ^(a^o) ck + ackv2 + . . .) } h3 y ( 3)(t) + .. .

/ s	

)

k=1

	_ _	
ask) v2h2y (2) (t) —	 afl)ck

k=1	
) v2h3y(3)(t) +...
	 (21)

k=1

	M t h} _ 
	 1	 S— b (2m) c1 l v2m ht y (t+ 1 )(t){yO,	 tt-1 (l — 1). l	

k=1 m=O

_ (1 — ^(bk°) + b(2) v2 + ...) 
1 hy(2)(t)

Il	 k=1	 J

1	 3
+ 2 —	 (b(c) ck + b^Z) ckv2 + ...) h2y (3)(t) + .. .

k=1

_ — (É )b(2) v2hy (2)(t) — 1 É b(2)ek v2h2y(3)(t) +.... (22)
k=1	 \k=1

This means that the orders of L^ {y(t); h} and M{y(t); h} are at least 4 and 3,
respectively, i.e., ) > 4 and p > 3. Therefore we have from (19) and (20) that
p^ > 4 (j = 1, ... , s + 1) and a > 3, so that p 1 > 3 and p2 > 2 in (6). We have thus
proved the following theorem:

THEOREM 2.3. Let p be the order of accuracy of the TRKN method, then
p> 2.

Although Theorem 2.3 shows that the order of accuracy p of any TRKN method
is at least 2, it is not clear that the method can have p > 3. Next we will show that
p = 3 and 4 can be attained by imposing additional conditions on the coefficients,
and present the method that has p = 4. First we will prove two lemmas.

LEMMA 2.4. For some integer q > 0, if the coefficients ajk of the TRKN
satisfy the condition

S	 2t+2c
^a^kckt= 

(21+1)(21+2)'
 1=0,1,...,q-1,	

( 
23

)

k=1
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then

s	 2q+2
^` (0) 2 q  _	 C^

L• a^kck —
k=1	

(2q+1)(2q+2)

Similarly, if for some integer q> 0

s	 C21+3
a^kckl+l _

(21 +2)(21+3)' 
l = 0, l ... q — 1,	 (24)

k=1

then

	s 	 2q+3
(0) 2q+1 =	 C7

ajk ck 	(2q + 2)(2q + 3) .
k=1

Proof. We will show only the first part of this lemma, since the second part
can be proved in a straightforward manner. It is easily seen that (23) means

s	 (0) 2t	
C21+2

	^ a^kck	 (2-1	
)(21+2)' 1=0,1 ...,q-1,

k=1

a(2r-) c21 = 0 k> 0	 l= 0 1	 1	j k	 k	 ^...^q — ,
k=1

so that the value of A,,,,,j , which is defined by (10), at m = q is given by

Aqj	

(_1)gC2q+2 — q 
(-1)1 (2_2l) 21

(2q+2)!	
1=0 

(21)l
 k=1

 ^k	 k

(_1)qc +2 	(-1)q

	

—	 8 (0) 2q
(2q+2)!	 (2q)!	 ask ck

k=1

The first assertion thus holds, since Aq,j = 0. From Bq ,j = 0 we can also show that

	

the second assertion holds. 	 •

The next lemma can be proved in the same way.

LEMMA 2.5. For some integer q > 0, if coefficients bk satisfy

s	 21	 1

U bkck 	2l+ 1' l = 
0,1,...,q — 1,

k=1

then

bk0) ckq =
k=1	 2q + 1
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Similarly, if for some integer q > 0

^

3 	21+1 = 1

bkck
	21+2' l=0,1 ... q-1,

k=1

then

E b(0)c2e+1 — 1

k=1	 2q+2

The next theorem provides a sufficient condition for the TRKN method has
order of accuracy > 3.

THEOREM 2.6. In addition to condition (5), if we impose the condition

bk = 1,	 (25)
k=1

on bk, then the order of accuracy p satisfies p > 3.

Proof. From the result of Lemma 2.5 we have

bkp) ek =

k=1
3

Applying the result and that of Lemma 2.2 to operator M, we can find that the
order of operator M is at least 4, i.e., µ > 4, so that we have from (18) and (19)
that or > 4 and p2 > 3, since in this case a d 's remain fixed. Thus the assertion
holds. •

The next theorem provides a sufficient condition for the existence of the TRKN
method of order of accuracy > 4.

THEOREM 2.7. In addition to condition (5), if we impose the conditions

s	 3	 1	 s	 1

E bk = 1,	 > bk = 2,	 > bkck = 2,	 (26)
k=1	 k=1	 k=1

on bk and bk, then p > 4.

Proof. It suffices to prove that operators L3+1 and M are of orders at least
5. First we show p3+1 > 5. From the result of Lemma 2.4 for j = s + 1, we have

s (o) 2 _
E bk ck 3.4
k=1
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This result and that of Lemma 2.2 lead to ps+l > 5, since

Ls+l =	 1— cs-• bleck h3 y (3) (t) +  	—
	 bleck h4 y (4) (t) + .. .

2 3 k^ 	 k=1

b(2)ck v2 h3 (3) t  	 b(2)c2 v2 h4 (4) / t—	 k	 y () - 2	 le k	 y 1)+...

	k=1	 k=1

Next we show p > 5. From the result of Lemma 2.5, we have

bkc)ck = g'	 bk Ck = 41
k=1	 k=1

and therefore

M	 2 3 _	 bkc2

) 

h3 y(4 ) (t) + 31 4 _ > bleck h4y ( 5) (t) + .. .

k=1	 k=1

= 2	 bk2)Ck^ v2 j1 3y (4) (t) _ 3^ 
(EC) v2 h4 y (5) (t) + .. .

	k=1	 lek =11

The assertion of the theorem thus holds.	 n

Next we will propose the implicit TRKN method of trigonometric order 1
satisfying condition (26). In order to construct such a method it is necessary that
s > 4, since there exist four equations to be satisfied with bk's. Here we propose
the 4-stage implicit TRKN method of this class, which will be called TRKN41.

We can easily see from the discussions above that the condition

4	 4

bk2) Ck =	 b(2)Ck fl
	

(27)
k=1	 k=1

is necessary for TRKN41 to have p> 4. We will make it clear in the later section
that this condition does not hold for TRKN41, i.e., the order of accuracy of the
method is exactly 4.

3. Derivation of TRKN41 Method

3.1. Coefficients of TRKN41 method

If we write down condition (5) for s = 4 and r = 1, then we have
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4

cos(civ) — 1 + v2 E aij Cos(cjv) = 0, 	 i = 1, ... , 4,
j=1

4

sin(civ) — cv + v2 E aij sin(cjv) = 0,	 i = 1,... , 4,
j=1

4
cosy — 1 + v2 E bj cos(cjv) = 0,

'4 1 	(28)

sin v — v + v 2 	bj sin(cj v) = 0,
j=1

4
sin v — v E bj cos(cjv) = 0,

j=1
4

cosy — 1+vEbjsin(cjv) = 0.
í=1

The coefficients bj 's are uniquely determined by conditions (26) and (28), if cj's are
different from each other, since there exist four equations for four unknowns. For
cj's it will be natural to take the equally spaced abscissae such that

cl = 0, C2 = 1/3, c3 = 2/3, c4 = 1.	 (29)

In our case, this choice of cj's leads to that a 1 j = 0 (j = 1, ... , 4), and therefore we
can reduce the total cost of evaluating stages, since the 1st stage becomes explicit.

For other aij (i > 1), on the other hand, there exist only two equations for four

unknowns, so that we set aij = 0 except for ail and aii; this choice of asj's enables

us to evaluate the second, third and fourth stages in parallel after the evaluation
of the first stage, if parallel computers are available.

For bj's, there exist three equations for four unknowns, so that we take b 4 as

a free parameter, say b4 = a.
We show the coefficients derived in this way, which are analytic at v = 0,

together with their power series expansions. These expansions are useful to avoid the
losses of significance by cancellation which arises in the evaluations of the coefficients

for small v.

—6Cos( 3)+ 2vsin (3) +6Cos(3)—vsin( 23) - 2Cosv+2
bl =

2v (5 sin (3) — 4 sin (3) + sin v)

1	 1 	2 	1 	4 	31 	6

8 + 1440 v + 18 4440 v + 587865600 v +	
(30)

b2
_1	 _3	 1 2 	4 	 6

2 — b1 8 1440 v — 181440 v 
587:5600 V
6 	 + ..	

(31)

b3 = b2	 (32)

b4 = bl	 (33)
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cos (3) + (2a — 1/2)v sin (3) — cos ( 23) — aysin (3 )_bl

2v sin (3) cos (3) — 1)

—8a+11
 + 1440 v2 + 181440 v4 + 587865600 v6 + • • •

(34)

b
2

(1	 av2 )sin(3)+((—a + 1/2)v 2 -1)sin(3)+vcos()+(av z

=

+1)sinv—v

2v2 sin (3) (cos (3) — 1)

_ 12o+1	 —240a+1 2 	168a-1 4 	3360a+1 6

+	 v +	 v	
+ (35)

4	 2160	 163296	 881798400v

b
 3

— ((a-1f2)v 2 +1)sin(3l—vcos(3)+(av 2 +1) sin(3)— (ave +1)sinv + v

2v2 sin ( 3)	 cos (3) — 1)

_ —24a+1	 96a-1 2 	—1680a+1 4 	960a-13 6

—	 8	 +	 864	 v +	 v +	
+

1632960	 251942400v
(36)

b4 = a (free parameter) (37)

—v cot ( L ) +3
a21 3=

3v2

_	 1 	 2 	 4 	1	 6

27 + 3645 v + 688905 v + 31000725 v +
(38)

—3 sin (3) + v
a22 =

3v2 sin (^ )3

_	 1 	7 	2 	31 	4	 127 	6
54 +

 29160 v
 + 11022480 v +

 3968092800 v + • • • (39)

—2vcot( 23)+3

a31 3v2
4	 16	 128	 256	 6V+

	+
	 + • • •

27 + 3645	 688905 '' 	31000725v'
(40)

a32 = 0 (41)

—3sin(3)+2v
a33 =

3v2 sin ( 23 )
	_2 	14 2 	124 4 	254 	6

27 + 3645 v 
+688905 v  

+ 31000725 
v + • • •	 (42)

—v cot v + 1
a41 =	 2v

	1	 1 2 	2 4 	1 	6

3 + 45 v + 945 v + 4725 v +
	 (43)

	a42 = 0	 (44)

	

a43 = 0	 (45)
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-sinv+v
a44 =

v2 sin v

6 + 360	

__

2 + 15120 v4 + 60 800 v
° +...	 (46)

From the expressions above we have

4	 1
2 2bk ck

 = 3240 0 '
k=1

therefore M = O(h 5 ), which means that TRKN41 has p = 4.

3.2. Numerical example
The following examples show the power of TRKN41 for periodic or approxi-

mately periodic problems.

Example 3.1. Let us consider the equation

y"(t) = -y(t) + = cos t,	 (47)

y(0) = 1, y'(0) = 0,

whose solution is given by

y(t) = cos t + 0.5et sin t.	 (48)

We integrate this equation from t = 0 to 10 by TRKN41 with w = 1 and a = 0, by
using the double precision IEEE arithmetic. The errors at t = 10 for various values
of e are shown in Table 1.

Table 1. Errors at t = 10 of TRKN41 with w = 1 and a = 0.

e h = 0.200 h = 0.100 h = 0.050

10-5 -4.108e-10 -2.378e-11 -1.317e-12

10-4 -4.108e-09 -2.379e-10 -1.315e-11

10-3 -4.108e-08 -2.379e-09 -1.314e-10

10-2 -4.108e-07 -2.379e-08 -1.314e-09

10 -1 -4.108e-06 -2.379e-07 -1.314e-08

The first term on the right-hand side of (48) can be represented exactly by
TRKN41 for any stepsize h > 0, but the second term, which is proportional to E, can

never be represented exactly. Therefore, the errors of the method are proportional
to e, as shown in Table 1.

Example 3.2. Let us consider the well-known two-body problem (see [4] or

[6]):
ii	 2	 2 3/2	 Fl	 2	 23/2	 49	Yi = -Yi/(yi +y2) ,	 y2 = -Y2/(yi +y2)	 (49 )



38	 K. Oznwn

l+e
yi(0) = 1 - e, y(0)=0, Y2( 0) = 0, y2(0) = 1-e

where e is an eccentricity. The exact solution of the problem is given by

yj (t) = cos u - e,	 y2 (t) = 1 - e2 sin u,	 (50)

where u is the solution of Kepler's equation

u = t + e sin u.

When e = 0

yl (t) = cost, y2 (t) = sint,

so that the method with w = 1 is expected to be particularly accurate for the
problems with small e. Here we integrate equation (49) from t = 0 to 20 for e =
0, 0.01, 0.1, and 0.5, by using TRKN41 with w = 1. We evaluate the maximum
errors

O max  (Iyi,^,. - yi(nh)I + IY2,n - y2(nh)I ),

where yl,n and Y2,n are the numerical approximations to yi (nh) and y2(nh), re-
spectively. The results are compared with those of the 2-stage Gauss Runge-Kutta
method (see Table 2, 3).

Table 2. Maximum errors of TRKN41 with w = 1 and a = 0.

h =0.200 h =0.100 h =0.050

e =0.00 1.209e-14 4.638e-14 2.169e-13
e =0.01 9.668e-05 6.210e-06 3.919e-07
e =0.10 7.646e-04 6.030e-05 4.150e-06
e =0.50 3.003e-01 6.445e-03 1.486e-04

Table 3. Maximum errors of the 2-stage Gauss Runge-Kutta method.

h =0.200 h =0.100 h =0.050

e =0.00 5.839e-04 3.658e-05 2.290e-06
e =0.01 5.939e-04 3.623e-05 2.266e-06
e =0.10 8.345e-04 5.238e-05 3.278e-06
e =0.50 2.121e-02 1.493e-03 9.551e-05

As the tables show, TRKN41 always yields the exact results for the problem
with e = 0.00; the values corresponding to e = 0.00 in Table 2 must be the accumu-
lations of roundoff errors. In addition, as has been expected, for the problem with
e = 0.01, the results by the TRKN41 are more accurate than those by the 2-stage
Gauss Runge-Kutta.
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4. Phase and Amplification Errors of TRKN41

From the point of view of algebraic errors, the result given by TRKN41 will
be satisfactory for any periodic problem, even if an inexact value of w is used to
evaluate the coefficients, since the order of accuracy of the method is proved to be 4.
However, it is often the case that high accuracies in the phase and/or amplitude of
the solution are required, when the solution is periodic. In this section we investigate
the orders concerning the two errors, the phase and amplification errors, when an
inexact value of w is used to evaluate the coefficients. Hereafter, we denote the
coefficients of the Runge-Kutta-Nyström method by ai^(v2 ), i (v2 ), and b(v2 ) to
emphasize the dependences on v 2 .

Let us consider the test equation

—W2Y, Y(0) = yo, y'(0) = yo,	 (51)

where the exact solution is given by

r

y(t) = y0 cos wt + y0 sin wt.
w )

Here we assume that we can never know the exact frequency w, but know an
estimate, say w. If we integrate the test equation by TRKN41, whose coefficients
are evaluated by using w, then the numerical solution satisfies

hy^
) 

= Rn(v 2 , v2 ) h /	 (52)
yo

where

1
R(v2 , v2 ) = P — v2 b

T

T (v2 ) I (I + v2 A(v2 )) -1 V	 (53)
(	 )

all a14 1 cl
1 1 Ii o\ _ _ 1 c2p =1 ,0 1 I 0 1 A= V— 1 C3 

a41 " ' a44 C4 )

v=wh, v=wh,

b(v2 ) = (b1(v2 ), b2(v2 ), b3(12 ), b4(v2 ))T ,

b(v2 ) = (1(l2), ó2(v2 ), ó3(v2 ), b4(v2))T.
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Notice that the amplification factor R(v2 , 112 ) satisfies

cos z,	 v-1 sin v
R(v2 , v2 ) _	 (54)

—v sin v	 cos v
 ) ‚

since the method gives the exact solution for (51) if v = v.
Assuming that the eigenvalues of R(v2 , 112 ), say Al and A2, are complex con-

jugate for small h, then we have

IÁ11 2 = IÁ21 2 = det R(v2 , v2 )

Re(A i ) = Re(A2) = 1 traceR(v2 , v2 )

Therefore, the quantities q(v2 , 112 ) and O(v2 , 112 ) defined by

	o(v2 , v2 ) = 1— {det R(v2 , v2 )} 1/2 ,	 (55)

traceR(v2 , v2 )
(v2 , 112 ) = v — arccos	 (56)

2 {det R(v2 , v2 )} 1/2

denote the amplification and phase errors, respectively. According to van der
Houwen and Sommeijer [8] we define the orders of these two errors:

DEFINITION 4.1. For TRKN41, assuming 0 <_ v/v < oc, if q(v2 , v2 )
0(h9+ 1 ) and O(v2 , 112 ) = O(hr), then the method is said to be dissipative of
order q and dispersive of order r.

We will analyze these two orders. Let us denote R(v2 , 112 ) by

R(v2 , 112 ) = P — v2Q(v2 , v2 ),	 (57)

where

T 2

Q(v2 , v2 ) = 
tbT(i72 ))

 (I + v2 A(v2 )) -1 V

Then q^j , the ijth element of Q(v2 , 172 ), is given by

1 — v2a21	 1 — v2a31 	1 — v 2a41
q11 = bl +b2 1±2 	 +b31+2 	 + b4 1 + v2 a44

	

— 1 w2 h2 + w2 (80a(w2 — W2 ) + 5w2 — 2w2)
 h4 + 0(h6 ) ,	 (58)

2	 24	 2160	 ( )'	 ( 

	b2 C2 	 b3C3	 b4 C4
q12	

1 + v2a22 + 1 + v 2a33 + 1 + v2a44
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1 + —5w 2 (24a + 5) + 2W2 (60a — 1)
 h2 	(59)

6	 3240
+ 35w 4 (600a + 17) — 70w 2w2 (294a + 5) — 23 4 (210c + 

1 h + 0(h6 ),
1224720

	

1 — v2 a21	 1 — v2 a31	 1 — v2 a41
q21 = bl + b2 1 + v

2 a22 + b3 1 + v2a33 +b41+2   va44

	

2	 2(	 2	 21 — h2 + w 55w —
240

 28W ) 
h4 + O(h

s )	 (60)

	

b2c2	 b3c3	 b4c4
q22 = 1 + v2 a22 + 1 + v2 a33 + 1 + v 2 a44

1 w2 h2 + w2(95w2 
_68 

	 h4 + 0(h6). 	(61)

2 24	 19440

Using from (57) to (61), we have

1 — det R(v2 ,f12 ) _ (q11 +q22 — g21)v 2 — (g11q22 — g21q12)v
4

1 w4h4 + (360a(w 2 — w2 ) — 95w 2 + 41w32 ) 4h6

	

12	 9720

— w4h4 — 60a(w 2 — w 2 ) — 1Ow2 +W2 w4h6 +O(h8)

12	 1620
2

= 7 {()_1}W6h6+0(h8), (62)

which leads to that

1— {detR(v 2 ,v2 )} 1/2
 = 3888(e

2
 — 1)w6 h6 +O(h8 ),	 (63)

where we set tc = w3/w. Thus we have proved the following theorem:

THEOREM 4.2. TRKN41 with the coefficients evaluated at w is dissipative of
order 5, if w w.

Next we consider the phase error of the numerical solution by TRKN41 method.

At first we set

1 traceR(v2 , v2 )
cos v =	 2 112

{det R(v
2
 , v ) }

Using from (57) to (61), we have

1 traceR(v2 ,v2 ) = 1— 1 V2 (gll +q22)

= 1 — 2w2h2 + 24w4h4

— 1
19440

 {360a(1 — rc2 ) + 70 — 43rc2 } w6h6 + O(hs), (64)
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and using this and (63), we have

cos l7 = 1 - 
1 w2h2 + w4h4 - 120a(1 - ßc2 ) + 35 - 26,ç2

 W6h6 + O(h8), (65)
2	 24	 6480

which leads to that

Cos v - cos v = 3240 (60a + 13)(1 - k 2 )w 6 h6 + O(h8 ).	 (66)

Taking into account the expansion

v—L= — 1 (Cosy— cos)
+ Cosa (Cosy—CosV) 2 +•••,	 (67)

sin v	 2 sin v l

we have

z/^(v2, v2 ) = - 3240 (60a + 13)(1 - Kc2 )w 5 h5 + O(h7 ).	 (68)

In this expression, if a = -13/60 the order of O(v 2 , v2 ) is improved by 2, and then
the result, which is derived by tedious manipulation, is given by

= 
272160(296 - 103ic 2 )(1 - ,c2 )w7h7 + (h9 ).	 (69)

Thus we have proved the following theorem:

THEOREM 4.3. TRKN41 with the coefficients evaluated at w is dispersive of

order 4 and 6, if a # -13/60 and a = -13/60, respectively.

Example 4.1. Let us consider the equation

y" = -(1 + 0.01y2 )y + 0.01 cos 3 t,	 (70)

y(0) = 1,	 y'(0) = 0,

Table 4. Errors E of TRKN41 with a = 0 and a = -13/60.

a=0	 a=-13/60

-log2 (h/ir ) E (loge EI) E (loge IEI)
2 -1.87e-02(-5.74) 1.07e-02(-6.54)
3 -1.54e-03(-9.35) 3.15e-04(-11.6)
4 -1.07e-04(-13.2) 7.86e-06(-17.0)
5 -7.Ole-06(-17.1) 1.46e-07(-22.7)
6 -4.47e-07(-21.1) -1.05e-09(-29.8)
7 -2.82e-08(-25.1) -3.70e-10(-31.3)
8 -1.77e-09(-29.1) -3.24e-11(-34.8)
9 -1. lle-10(-33. 1) -2.28e-12(-38.7)
10 -6.96e-12(-37.1) -1.62e-13(-42.5)

E := y, - y(tn,), where to = nh = 8.25ir
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where the exact solution is y(t) = cos t. Here we integrate the equation from t = 0

to t = 8.25ir by TRKN41 with a = 0 and a = —13/60, and evaluate the algebraic
errors, since it seems to be difficult to detect the dispersive order from numerical
experiments (see [8] and [91). The algebraic errors evaluated at the point t = 8.257r

for varying stepsize h = rr/2 i (i = 2, ... , 10) are shown in Table 4.
As mentioned above, although all the values in Table 4 are not the phase errors

but the algebraic errors, we can easily find that the higher dispersive order method,
the method with a = —13/60, gives more accurate results than does the lower
order dispersive method; the observed convergence rate of the algebraic error of the
higher dispersive order method is initially almost 0(h6 ).

5. Fixed Coefficient Implementation of TRKN41

If TRKN41 is implemented as a variable stepsize mode, then we must re-
evaluate the coefficients once the stepsize has been changed. This leads to a con-
siderable amount of work, if the stepsize is changed frequently. In order to avoid
this re-evaluation, we could fix the values of the coefficients, even if the stepsize
has been changed; we will refer to this implementation as "fixed coefficient mode."
It should be noticed that in this mode, although trigonometric conditions (5) is
invalid, condition (26) is still valid, since the latter condition does not include the
stepsize h explicitly. Note also that this condition is the order condition for conven-
tional Runge-Kutta-Nyström methods to have order 2 [3]. Therefore if the method
is implemented in this mode, then the method is not trigonometric but has order
of accuracy 2. Here we will consider in detail the fixed coefficient mode.

Let us assume that the coefficients of TRKN41 are evaluated at fixed v, say

vo. Here we denote by T(i 2 ) the local truncation error at t = t, 1 in this mode,

i.e.,

Tn(v02) '_ (y(tn+1) — yn+l, y ' (tn+1) — yn+l) T ^

where yn = y(t) and y = y'(tn ) are assumed. If we expand Tn (I70 2 ) into the power

series in h such as

Tn(v0 2 ) = t0n^(v0) + t1n) (vó)h + tán)(vó)h2 + ...	 (71)

then the coefficients tin) (vó) (i = 0, 1,...) must satisfy

t0 (us) = t1 (v0) = t2 (v0) = 0, for all vó > 0

and

t3 (v0) = t4n)(v0) = 0(VÓ), L0 —* 0,

since, the method is effectively of algebraic order 4, if the method is implemented
as "variable coefficient mode." The above result shows that although the order of
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accuracy of the method in the fixed coefficient mode is, in general, 2, it becomes

4 only when the coefficients are evaluated at iîo = 0. Therefore, w = 0 is the best
choice for the cases that the exact frequencies are unknown or the solutions are
not periodic; if we take W = 0 then v is always 0 for any stepsize h so that the re-
evaluation of the coefficients is unnecessary, even in the case of variable coefficient
mode.

In each of the power series expansions given by from (30) to (46), if we take the
first term as the value of the coefficient corresponding to v = 0, then the Butcher
array of the method corresponding to = 0 is given by

0	 0
1/3	 1/27	 1/54
2/3	 4/27	 2/27
1	 1/3	 1/6

-a + 1/8 3a+1/4 -3a+1/8 a

	

1/8	 3/8	 3/8	 1/8

This method is shown to be of order 4 also by the order condition derived from
SN-trees [3].

Example 5.1. Let us consider again the two-body problem (49). Here we solve
the problem with e = 0 for the following five cases:

1. Fixed coefficient mode:

• v= 0(w=0)
• v = 0.125
• v =0.25

Table 5. Errors of TRKN41 for the two-body problem (49) with e = 0.

loge h loge E
v =0 v =0.125 v =0.25 I=h v =2h

-2.00 -7.90 -8.31 -45.8 -45.8 -6.27

-3.00 -12.3 -45.9 -10.7 -45.9 -10.7

-4.00 -16.5 -14.9 -12.6 -44.5 -14.9

-5.00 -20.6 -16.7 -14.7 -43.4 -19.1

-6.00 -24.7 -18.7 -16.7 -44.4 -23.1

-7.00 -28.8 -20.8 -18.7 -44.8 -27.2

-8.00 -32.8 -22.8 -20.8 -41.8 -31.2

-9.00 -36.8 -24.8 -22.8 -41.5 -35.2

E := maxo<nh<2o(Iyi,. - yi(nh)I + IY2,m - y2(nh)I )



A Four-stage Implicit Runge-Kutta-Nyström Method 	 45

2. Variable coefficient mode:

• v= h(W=1)

• v =2h (w =2)

The errors for these two modes are shown in Table 5.

We can easily find from the table that the errors in the fixed coefficient mode
behave like 0(h4 ) only for the case v = 0.

6. Conclusion

In this paper we have proposed the implicit Runge-Kutta-Nyström method
with variable coefficients for solving the periodic initial value problem. The method
always gives the exact solution of the problem, when the solution consists of a
single Fourier component with known frequency. Moreover, for the method we have
analysed the errors in phase and amplitude. Finally we have investigated two types
of implementations: the fixed coefficient and variable coefficient implementations.
The order of accuracy of our method is 4 for the cases that the exact frequency
is unknown, and for the cases that the coefficients of the method are evaluated at
v = 0 and remain fixed. Higher trigonometric order Runge-Kutta-Nyström methods
and the stepsize control strategy for the present method will be treated in future
reports.
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