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A special class of Runge-Kutta(-Nystrom) methods called functionally fitted (or func-
tional fitting) Runge-Kutta (FRK) methods has recently been proposed by the author.
This class of methods is designed to be exact, if the solution of the equation to be solved
is an element of the linear space of given functions, which is called the basis functions.
The purpose of this article is to develop a functionally fitted Runge-Kutta method that
is cheap to implement. The method proposed in this paper is a three-stage explicit singly
diagonally implicit Runge-Kutta (ESDIRK) method, which requires one LU decomposi-
tion per step. This method is exact if the basis functions are properly chosen, and is
moderately accurate even if the choice of the functions is inappropriate, since the method
is shown to be of order 4 for general cases. An embedded pair of this type is also devel-
oped. Several numerical experiments show the superiority of the methods to conventional
ones for the particular case that a suitable set of the basis functions can be found.

Key words: functionally fitted Runge-Kutta method, ESDIRK, embedded pair, periodic
problem, step-size control

1. Introduction

Initial value problems of ODEs are very important tools in science and tech-
nology. When solving the problems, it is often the case that a priori information
on the solution and/or equation, such as the period of the solution or the dominant
eigenvalue of the coefficient matrix of linear equation, is available. For these cases,
if we could design a numerical method based on such information, then the method
would be very accurate for the problem. For example, if the solution of the ODE
is known to be a sinusoidal function with a small perturbation, then the special
method which is exact only for the trigonometric functions with that frequency will
be more accurate than general ODE methods.

Many special methods which are exact for trigonometric functions, exponen-
tial functions, or mixed-polynomials have been derived (see e.g. [2], [7], [10], [11],
[13], [14]). To be able to fit Runge-Kutta (-Nystrom) methods to any desired func-
tions, Ozawa [8], [9] has recently developed a technique to construct the Runge-
Kutta (-Nystrom) method that is exact on the linear space of given functions. When
the functions are polynomials, the method reduces to the collocation Runge-Kutta
methods. The method proposed by Ozawa, like collocation methods, is fully im-
plicit, so that its computational cost is extremely expensive compared with explicit
methods, and expensive with diagonally implicit Runge-Kutta (DIRK) methods.
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The purpose of this work is to develop a computationally cheap Runge-Kutta
method which are exact for given functions, by using the technique used in Ozawa
([8] and [9]).

2. Functionally Fitted Runge-Kutta Method

Consider the initial value problem

dy(t) = f (y(t)),	 t E (0, T],
dt	 (1)

Y(°) = yo,

and the s-stage Runge-Kutta method

yam.+i = yn. + h ^ bz .f (^'2 ),
i=1

Yi = y.+h^ai,jf(Yj),	 i=1,...,s,
j=1

for solving the problem (1), where h is a step-size, and yn is a numerical approxima-
tion to the solution y(t) at t = nh. Almost all Runge-Kutta methods are designed
to be exact when the solution y(t) are polynomials of a given degree or less. In
our approach, however, the Runge-Kutta method is designed to be exact not nec-
essary for polynomials but for the linear combinations of predetermined functions
{,,,L (t)}iit=1 . We call the functions {2(t)} ;L=1 the basis functions, and call the
resulting Runge-Kutta method a functionally fitted Runge-Kutta (FRK) method.

Here we show a procedure to determine the coefficients of the FRK. First of
all, we determine a set of basis functions {0m (t)} n=1 , taking into account the
information on the equation or the solution. Next, we give the sparsity pattern of
the Butcher array A = (ai j ); we consider only the case that the abscissae ci 's are
constant and different from each other. In accordance with the sparsity pattern, and
with the other requirements (if exist), we set some values (usually 0) to the specified
elements of the array. Here we denote by A i (i = 1, ... , s + 1) the set of subscripts
of these specified elements in the ith row. Finally, to determine the remaining
coefficients a i j (j E A\ Az ), where A -- { 1, 2, ... , s}, we choose (s — A i !) different
functions from the set of 0m (t)'s, and solve the following simultaneous equation:

a^,j0' (t+cjh)=
On(t+cif)—Om(t) —	

az,j^^(t+cjh),
jEA\ A ; 	jEA^	 (2)

where we use the convention as+l, j = bj , and denote by Ti C A the set of the
subscripts of the basis functions m (t) used in (2). For the uniqueness of the
coefficients a , 3 and bj , we assume .FZ J = s — ^AI, that is, the number of the
unknowns is equal to that of the equations for each i.
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For example, suppose we would like to design a three-stage explicit FRK
method, then after choosing 0 1 (t), 02 (t) and 03 (t), we must take a,,, = a1,2 =
a1,3 = 0, a 2,2 = a2 , 3 = 0, and a3,3 = 0, so that

A 1 ={1,2,3}, A2 ={2,3}, A3 ={3}, A4 =0,

F1=0, ^'2={1}, F3 = {1, 2}, F4 ={1,2,3},

and solve the simultaneous equations:

a2, i pi (t) =  
1 (t + c2 h) — 01(t)
 h

(t + c3 h) — <P ,,,Z (t)a3,1 'Pm(t) + a3 , 2 'p,,.^(t + c2 h) = 
"' 	h 	m=1,2,

b1 m(t)+b2'Pm(t+C2h)+b3 m.(t+c3h)=
,n,(t+h)—^,,,.(t) 	m=1 23

h

where cpm (t) _ 0;,,,(t). Note that any choices are possible for the sets .T2 and F3 ,
only if the conditions F2 1 = 1 and 1F3 1 = 2 are satisfied. The method obtained in
this example is exact for any constant multiple of 1 (t). In general, the method
obtained from (2) is exact for the elements of the linear space spanned by the
O,n (t)'s for m E n2+1 Yz , since each stage value Yi is exact for linear combinations
of O n (t)'s for m E F.

The coefficients a 2 ^ and bi determined in this way depend, in general, not
only on h, but also on t. We shall consider, however, the case that these coefficients
depend only on h; if the basis functions !,,,,(t) are polynomials, exponentials or
sinusoidal functions, then this is the case, as we will see later. As a result, it is
possible to take t = 0 in (2) without loss of generality.

In [8] and [9], Ai = 0 and Fz = A for all i, that is, there exist s unknowns in
each of the simultaneous equations, and all the functions Om (t) (m = 1, ..., s) are
used to determine these coefficients. Therefore, the resulting method is necessarily
a fully implicit one. For this case, Ozawa [8] has shown that the coefficients given
by using (2) are unique for all h and t E [0, T], if the Wronskian matrix associated
with cp,,,t (t) = 0',, (t)

W(t) -	 'P(l) (t)

	 ^sll (t)	 (3)

Pis 1^(t)
	 ss-1) (t)

is nonsingular at t = 0. Moreover these coefficients are analytic, if all of the
functions {Om (t)} =1 are analytic on [0, T]. Here we extend the result to a general
case:

LEMMA 1. Assume that we are given different constants d^ (j = 1, ... , r) and
different analytic functions ,L'm (t) (m = 1,...,r). Let a(h) be analytic function at
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h = 0. Then for the given d k and d1 (not necessarily different), the simultaneous
equation

r

r aj (h) V)m (dj h') _
 1pm (dk h )- IPm (0 ) - a(h) 0m(dl h), m = 1, ... , r,	 (4)

j=1

Wm(t) _ f m(t)dt

has unique analytic solutions a j (h) (j = 1, ... , r), if the Wronskian matrix associ-
ated with V'm (t)

W1(t)	 ... 1r(t)

1)(t)
l!(t)

WIb (t) = (5)

Wlr 	1)(t)
jr	

1)(t)

is nonsingular at t = 0.

Proof.	 Consider the matrix given by

1 (d 1 h)	 b1(d2 h) ...	 01(dr h)

2(d1 h)	 02(d2 h) ...	 'b2(dr h)

Pr(dl h)	 r ((12 h) •..	 Or(dr h)

Using the Wronskian matrix W,1 (0), we can find

1	 1 •••	 1

d l h	 d2h •••	 dsh

D(h) = W,^ (0) • ••• + O(h'')

(d1 h)r-1	 (d2 h)r-1 (drh)T-1 (6)

(r-1)!	 (r-1)! (r-1)!

=W,^ (0)•diag

\

l1,h, ..., ( h_ 1)! I •V+O(hT),

where V is the Vandermondematrix given by

1	 1	 •..	 1
d1 	d2	 ...	 dr

V =

dr-1 dr-1 ... d r-1
1	 2	 r

Since the assumption of this lemma shows that V and W,,,(0) are nonsingular, D(h)
is also nonsingular for small h > 0, and therefore c5 are uniquely determined for
that case.
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Next we consider the limiting case that h -+ 0. If D(h) 0, then we have from

Cramer's rule

	a (h) 	 det D^ (h)

det D(h)	
j = 1

, .. .  r,	 (7)^ 

where

j

	,0t(dt h)	 ... F1(h)	 ...	 bi(dr h)
'b2 (d 1 h) ... F2(h) ... ?2(dr h)

D(h)_	 ,	 j = 1,... r

'ir (d l h) ... FT (h) ... Or(1r1)

Fm(h) _ Wm(dz h )- Wm(0) 	 (h))m(dk h),	 m= 1, ... , r.

If we set

	W.	 d1
Fm (h) _	 f^ (h) O{,)(0),	 f3 (h) = j + 1 -c(h)d13,

then we have

1	 ...	 f0(h)	 ...	 1

	d 1 h	 ...	 f1(h)h	 •••	 d,h

D^ ( h) = W 	: 	 + C(h')
	(d1h)r-1 	... f

r-1(h) hr-1	
...	 (drh)T-1

	(r-1)!	 (r-1)!	 (r-1)!

I. T-1

= W,^ diag (1, h, ... , (rh- 1)! ) • V^ (h) + higher-order terms,

where

j
1	 ...	 f0 (h)	 ...	 1
d l 	...	 f1 (h)	 ...	 dr

T-1	 T-1d l 	... fr-i(h) 	... dT

which means that

det D (h) = det W,, • det V^ (h)	 n	1 	h'^ + higher-order terms.
7
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This shows that the orders of det D3 (h) are at least h ' 	 since f^ (h) = f^ (0) +
O(h), (h --> 0). On the other hand, we have from (6)

	

det D(h) = det W,/) • det V f	 1 	h 2 1 + O(h 2 1 +1)

Therefore the singularity at h = 0 in (7) is removable, and if we set

det V^ (0)

a^ (0) 	det V	
j 	 1,... r

then a^ are uniquely determined even at h = 0.	 n

Although this lemma corresponds to the case that AI = 1 in (2), it is straight-
forward matter to extend the result to the general case that IA  > 1.

3. Local Truncation Error of FRK Method

In general, the numerical results given by the FRK will have truncation er-
rors, except for the cases that the method is fitted to the problem (1) completely.
Therefore, we must evaluate the errors by using some measure. As a measure of
the errors we use the "order of accuracy" to evaluate the error. The definition of
the measure for the FRK is the same as is used for conventional methods. That is,
if the numerical solution given by the FRK satisfies

yi - y(h) = O(h'
+i ), y(0) = yo, h --^ 0,

for any sufficiently smooth solution y(t), then we shall call the integer p the order
of accuracy of the FRK. However, unlike the conventional case, we must consider
the errors in the situation that the coefficients ai, and bi also vary as functions of
h, when h -f 0.

To analyze the local truncation error of the FRK, let us introduce the following
quantities:

	B(q) = > bi
 cq-1 - 	 (8)

q
9

	9 -1 	i
CZ (q) =	 a2, C^	 - qC ,	 i = I.... , s,	 (9)

D(q) = 	 bi C (q),	 (10)

where a ,  and bi are the coefficients generated by (2).
In [8] and [9], for the case .A 2 = 0, Ozawa has shown

B(q) = O(hs+i -q)1q= ,...,s,

C(q)=O(hs+i- Q) 	 q = 1	 s i = 1 . s.
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For the present case, this result is straightforwardly extended to

B(q) = O(hrs+i +l — Q),	 q = 1,...,r s+l +

Ti+1—Q	
(11)

C'i( (]) — O(h	 )r	 q=1,...,ri,	 i=1,...,5,

where we set r i = ^J'z I (i = 1, 2, ..., s + 1). We express the errors at the stages and
step in terms of B(q) and Ci (q). First we consider the residuals at the stages and
step. Let y(t) be any sufficiently smooth function (not necessary the solution of
(1)), then

R = y(0) + h E bi y'(ei h) — y(h) = 	 (B(q) ((0))(Q-1),

(12)
9

Ri m y(0) + h 	ai,3 y (cj h) — y(ci h) _ E h Ci q (y (0 ))
(e-1) .

7	 Q>_1 (q-
1)!

Note that if y(t) = 0,,,,(t) these residuals vanish, that is,

hg B(qi (^Pm(0))(q-1) = 0,	 m E Fs+l
q>1

(q — 1)!

(13)
^ h9 CZ(q) ((0))(Q-1) = 0,	 m E .Fi .E (q - 1)i

This is also valid for the case that O m (t) are polynomials of some degree or less,
since then B(q) and Ci (q) vanish for the first several q's, and y^ (, 1) (t) = 0 for the
other higher q's. In any case, from (11) and (12) we have

R = O(hr+l)	 Ri = O(hp+l),	 (14)

where

p = min{r i },	 r = rs+l.
i

Next we consider the relation between the residuals and local errors of the FRK
method.

Let y(t) be the solution of y'(t) = f(y(t)), then the errors at the stages are
given by

ei=Y — y(eih)

= yo+ h^ ai,Jf(Y7) — (yo+h ^ai,^y (e^ h) —Ri

= h fy ^ai  (e^ +O(e^)̀ ) +Ri ,

therefore

e i = (1 — ai, i h fy) 1 (h fy E ai,^ (e^ + O(e^ )) + Ri) = O(hp+
1 )

J ^i
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For the error at the step, we have

E = yi — y(h)

=yo+hEbif(Y) — (Yo +hEbiy(ci h) — R)

= h E bi (f(Y) — f(y(ci h))) + R 	 (15)
i

= h fy > bi (Y — y(ci h) + O(e?)) + R.
i

Before evaluating E, we must evaluate the two quantities

bil'i =	 biyo+h	 biai,j.f() ,

biy(ci h) _	 biyo+hEbiay (cj h) — T,

where we put

T 
= E bi R

(q D(q) (y (0))(e -1).	 (16)

i	 q>1

For the order of T, if we assume

T = O(hT+ l ),	 (17)

then from (14) we have

T > p = min{ri }.
i

Thus

E=hfy Ebi a i , j (f(Yj )—y'(cj h))+(hfy )T+R+O(h 2P+3 )

= (h fy ) 2 Y' bi ai, j ej + (h fy ) T + R + O(h2P+3 ).

If the order of > i j bi ai j ej is that of the minimum of ej 's, then we have

E = O(hp+ l )

where

p=min{p+2, -r+1, r}. 	 (18)

Thus the order of accuracy of the method is given by (18).
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4. Three-stage FESDIRK Method

Let us consider the three-stage Runge-Kutta method given by the Butcher
array

0	 0

	c 2 a2 , 1 	a

C3 a3 1 a3,2 a	 (19)

	

b 1 	b2 	b3

Usually the methods of this type are called explicit singly diagonally implicit Runge-
Kutta (ESDIRK) method when the coefficients are constant, and we shall call it
functionally fitted ESDIRK(FESDIRK) method, if the method is FRK.

For the FESDIRK given by (19), we set

A l = {1, 2, 3}, A2 = {3}, A3 = {3}, A4 = 0,

F1=0, F2= {1, 2}, .7'3 ={1,2}, F4 = {1, 2, 3}.

Note that the a in the third row of the array is just the value that has been obtained
in the second row so that IF3 = 2. The simultaneous equations to be solved for
these coefficients are

a2,1cp (0) + a com (c2 h) =
'„n (c2 h h—O ^n (0)

m. 
	 ,	

m E F2,

a3,1com.( 0) + a3, 2 com(c2 h) = _m(c3 h h— ^m(0) — a gom(c3 h), m E F3 , (20)

	bi(p (0) + b2 (P.(C2 h) + b3 (p (C3 h) =
 ^'"`(h) h ^m(0) 	m E .F4 ,

where we assume that the Wronskian matrix

	(p1(t)	 (p2 (t)	 (p3 (t)

	

W(t) _ ((t) A(t) ( (1) (t)	 (21)

	

X (2) (t)	 P22) (t) P32) (t)

is nonsingular at t = 0. From the construction, it follows that the method is exact
when the solution satisfies y(t) E span{0 1 (t), 'P2 (t)}. For this case, we have

r2=r3= 2, r4= 3, p=2, r>2,

and
3

B(q) _	 bi C
9-1 _ = O(h4-9

),	 q= 1, 2 , 3 ,
i=1

3
	

q	 (22)_ 1	 c .
C(q) _ ^ai, j c 1  2 = O(h3-q ),	 q = 1 2

j=1	
4
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which leads to p = 3 from (18).
When h -> 0, FESDIRK approaches a constant coefficient method, which has

a key role in later considerations. Let a^ 0 and b ° bebe the constant terms of the
power series expansions of a i j and bi , respectively. Then relation (22) means that

3
^` b(o) c9-1 = 1 	 q=1 , 2 , 3 ,	(23)
i=1	 q

a (°) c4-1 =	
,	 q= 1, 2.	 (24)q

j=1

The relations (23) and (24), which are the so-called simplifying assumptions [1],
determine a^ 0 and b ° uniquelyuniquely as functions of c 2 . The results are:

(0)C2	 (°)	 C2
a2,1 = 2 , a22 - 2 (= a),

(o ) 36c - 120c + 134c - 60c2 +9

a3, 1 

_

	8 c2 (3 c2 — 2) 2

( 0 )	 24c3 - 50 c2 + 36 c2 - 9 	(0)
a3,2 

_

	8 c2 (3 C2 — 2)2	
' a3, = a,

b(°) = 6c-6c2 +1

6c2 (4c2 -3)'

b(°) =	 1
2	6c2(6c2-8c2+3)'

b (°) -
	

2(3c2-2)2

3 	3(4c2 -3)(6c2-8c2 +3)

Note that ai0 and b? are independent of the choice of m (t).

5. Fourth Order FESDIRK Method

We have obtained a three-stage FESDIRK method and have shown that the
method is of order 3. To raise the order of the method up to 4 we assume two
conditions.

The first condition is

fo

	__
t4-1•t(t -c2) (t-c3 ) dt	

0, q 1 ,

 #0, q>2.

We will consider the case later that this integral equals to 0 even for q > 2. From
this assumption we have

_ 4c2 -3

c3 	2 (3 c2 - 2) .
	 (25)
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Assuming (25), we have from [8]

3

B(q) =	 bi c9-1 - 1 __ O (hmax{5 4, 2})	 q = 1 ... 4,	 (26)
i=1	 q

so that r = 4 in (14), and we have, instead of (23),

3

^b
o} q-1 1	c 	 ='	

(-	 q=1,...,4,	 (27)

i=1	 q

which is the constant term of B(q).
The second assumption is

b2°l ai°) =b °  (1-c3 ),	 j = 1, 2, 3.	 (28)

It has been shown that this condition together with (24) and (27) is a sufficient
condition for the method (0)b(0)  ci ) to be of order 4 (see [1], [4]).

Next lemma shows that conditions (24), (27) and (28) guarantee 'r = 3 in (17).

LEMMA 2. If conditions (24), (27) and (28) hold, then

	D(q) = O(h4-e),	 q = 1 , 2 , 3 ,

so that T = 3 in (17).

Proof. Let the power series expansion of D(q) be

D(q) = D1°1 (q) + D (1) (q) h + D (2) (q) h2 + .. .

From the definition of D(q) in (10) and the property of C1 (q) given by (22), we
have immediately

D(1) = O(h2 ),	 D(2) = O(h),

or equivalently

D(°)(1) = x( 1 )(1) = 0,

D (°>(2) = 0.

Next we show that several terms other than the above vanish. From (24), (27) and
(28), we have for q = 1, 2, 3

D (°l (q)=^bi °i (aic^-1 q) -	 b^°i(1-c^)c^-1-q(q+1) = 0. (29)
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On the other hand, from (16) and (20)

(q D(g) (wm(0))(9-1} _	

\q=1
  

((0))(4-1} Dw
- q } (q)) by

g>1 (q — 1) ^	 v>1 	 (q — 1 )!	 (30)

=0,	 m=1,2.

Therefore, the condition that the coefficient of h 3 in (30) must be 0 can be written
with

<P(°) D2(1) + (Pil} D (1) ( 2 ) + 1 ^Pi2} D (°} (3) = 0,
2 	(31)

^P2°} D^2} ( 1 ) +Pa l} D (1} ( 2 ) + 1 ^() D (°) (3) = 0.
2

Since D (°) (3) = 0, which is given by (29), and the submatrix

^P1	 ^P2
^P1l) X21)

of Wronskian matrix (21) is nonsingular by assumption, then

D (2) (1) = 0,	 D(1)(2) = 0.

Summarizing the results obtained so far, we have

D (°) (1) = D (1) (1) = D (2) (1) = 0,

D (°) (2) = D ( ' ) (2) = 0,

D (°} (3) = 0.

It is clear from the discussion of this lemma that any other terms of D('} (q) never
vanish. Thus we have proved this lemma. 	 •

Since r = 4 has already been established, and T = 3 has been proved using the
above lemma, it is clear from (18) that p = 4. Thus we have the following theorem:

THEOREM 1. If the abscissae c2 and c3 satisfy the two conditions (25) and
(28), then the FESDIRK with the coefficients given by (2) is of order 4.

Hereafter we call the (F)ESDIRK obtained now (F)ESDIRK4. Next we must
obtain the values of c 2 for which condition (28) is valid. Let d^ be

d^ _	 bz°) a (
, 3 — b^°} (1 — c3 ),	 j = 1, 2, 3,

then from (23) and (24) we have

dj C4-1 —	 b(°} a2°) cjq-1 — E b^°} (1 — c ) c4-1

7	 i,j	 7
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= 1 	b( °) c9 — 1 + 1 = 0, for q= 1, 2,
4 	 q q+1

that is

d1+ d2 + d3 = 0,

C2 d2 + C3 d3 = 0.

This means that if we force one of di 's to be 0, then the remainders become 0,
provided that 0 < c2 c3 . Thus we put, for example,

d _ (3c2 -1)(3c2 -2) (c2-1)
 —0

1 	6c2(4c2-3)

which leads to

1	 2
c2 =3, 3, 1.

Among these solutions, c 2 = 2/3 is not allowed because of (25), so that we consider
the remaining two solutions.

Next we show the stability regions of the ESDIRK4's with c2 = 1/3 and c2 = 1,
and compare these regions with that of the classical Runge-Kutta method (RK4).

Fig. 1. Stability regions of ESDIRK4's with c2 = 3 (solid),

c2 = 1 (dashed), and RK4 (dash-and-dotted).

Fig. 1 shows that the ESDIRK4 with c 2 = 1/3 is preferable to the ESDIRK4
with c2 = 1, since the former has broader stability region. Therefore we take
c2 = 1/3 also for FESDIRK4, since it is expected that FESDIRK has approximately
the same properties as those of ESDIRK, when h is small. We show the Butcher
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array of the ESDIRK4 with c 2 = 1/3.

Hereafter, we simply denote the methods ESDIRK4 and FESDIRK4 with c 2 = 1/3,
by ESDIRK4 and FESDIRK4, respectively.

Finally we investigate the attainable order with the FESDIRK of the type
(19). It is clear from the previous discussion that the FESDIRK and the ESDIRK
have always the same order, since the latter corresponds to the particular case that
0 1 (t) = t, 02 (t) = t2 , 03 (t) = t3 , and the discussion is independent of the choice of
the basis functions. Therefore, we will consider the attainable order of the ESDIRK
instead of that of the FESDIRK.

There exists unique three-stage six order Runge-Kutta method, that is the
Gauss Runge-Kutta method, so that the attainable order of the ESDIRK given by
(19) must be at most 5. If the order of the method is 5, then the condition

3

i0) 9 1 = 1
i-1	 Q

must be satisfied. For the present case with c l = 0, the set of the abscissae satisfying
this condition is given by

6—'	 6+^
C2 = 10 ,	 C3= 10

which is obtained by solving the orthogonality condition

f t.t(t—C2 )(t—C3 )dt=0,

Substituting the c2 and c3 obtained now into (32), and solving this for	 we have

b (o) _ 	 b(0) _ 16+' —  	 b0)= 16 —
1 	9'	 2	 36	 '	 3	 36

Moreover, the values of a 0 's which satisfy (24) for these ci 's are given by

(0 ) 6—y (0) 6— /
a2 

1 =	 20	 ' a2, 2 = 20

(0) 6+' (o) 12+7/ 	(0)	 6—/
a3,1

_	

100	 '
a32 _

50	
a33 _
	 20

00
1	 1	 1
3	 6	 6
5	 1	 5	 1
6	 24	 8	 6

1	 1	 2
10	 2	 5
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Unfortunately, the set of the values listed above does not satisfy some of the order
conditions even for p = 4. For example, the order condition corresponding to
the tallest tree of order 4, which is (°) a (0) a(°) ak°l = 24given bg	 by i , is not^, ,r^,c b 2	 Z,
satisfied; this becomes 57

i20o 	present6 for the resent values. Thus we have the conclusion
that the attainable order with the FESDIRK is 4. This means that FESDIRK4 is
one of the highest order methods in the class of (19).

6. Numerical Example

To see how well FESDIRK4 is fitted to the special problems for which we can
find the basis functions successfully, and whether or not the global error of the
method behaves like O(h4 ) for general problems, we shall present some numerical
examples. Here we solve Problem A, B, C, and D:

Airy equation
Bessel problem
Constant coefficient linear equation
Duffing equation

The solution of Problem A oscillates with varying "frequency." Problems B and D
are perturbed oscillators, and the solution of Problem C consists of the two compo-
nents: rapidly damped oscillatory component and decaying exponential component.
To generate the coefficients of FESDIRK4, we use sinusoidal bases for Problems A,
B and D, and exponential bases for Problem C. In these experiments, we measure
the errors using the Euclidean norms. All the computations are performed by using
the IEEE double precision arithmetic.

Airy equation
Consider the Airy equation

y" (t) — t y(t) = 0,	 (33)

with the initial condition

y (-50) = Ai(-50) + 0.5 Bi(-50) = —2.304564997 • • • x 10 -1 ,

y'(-50) = Ai'(-50) + 0.5 Bi (-50) = 3.963089871 • .. x 10 -1 ,

where Ai(t) and Bi(t) are Airy's Ai and Bi functions, which are linearly independent
solutions of Eq. (33) (see [6]). The exact solution of the problem is

y(t) = Ai(t) + 0.5 Bi(t).

For this problem, the basis functions

0 1 (t) = t,	 2 (t) = cos(w t), p 3 (t) = sin(w t),	 (34)

will be appropriate. For this choice of functions, Wronskian matrix (21) is nonsin-
gular if w j4 0. In Appendix A the coefficients derived from the functions are shown
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together with their power series expansions in h; when h is small, it is advantageous
to use the expansions rather than the closed forms to avoid the cancellations.

We will integrate the equation from t = —50 to 0, by changing the angular
frequency w with the formula

w=,

at every integer point t = —50, —49,.... The result of Fig. 2 shows that FESDIRK4
is compared favorably with ESDIRK4, although the errors of both methods decrease
with the rate of O(h4 ).

0

W -10

-20

-30

-40

-50
2	 4	 6	 8	 10	 L

— log2 h

Fig. 2. Errors E of FESDIRK4 (solid) and ESDIRK4 (dashed)
versus step-size h for Airy equation (33).

Bessel problem [15]
Next, we consider the equation

y"(t) + 1 100 + 	 J y(t) = 0,	 (35)

with the initial condition

y (0.5) = 1 JO (5)	 = —1.255798813. x 10 -1 ,

y'(0.5) = 1 JO (5) —	 J1(5) = 2.190754414 • • • ,

where J,(t) is the Bessel functions of the first kind. The exact solution of the
problem is given by

y(t)= /iJO(10t).
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We integrate the equation from t = 0.5 to 10 using the two methods: FESDIRK4
through (34) with w = 10 (fixed) and ESDIRK4. The results are shown in Fig. 3.

From the result, we can observe also in this example that the accuracy of
FESDIRK4 is remarkable compared with that of ESDIRK4.

0

-10

'OA

0 -20

-30

-40

-50
2 4 6 8 10	 h

—1og2 h

Fig. 3. Errors E of FESDIRK4 (solid) and ESDIRK4 (dashed)
versus step-size h for Bessel problem (35).

Constant coefficient linear equation
The third problem to be solved is the linear homogeneous equation

y'(t) - P y(t) = 0,	 y(0) = (1, 0, 0, 0) T ,	 (36)

where
0	 0	 1	 101

_ -96 -1 -97 6
P 	-98 0 -99 -96

(_1 0 —1 —102

The exact solution of the problem is given by

e—t + e—loot sin t

e— t (-1 + t) + e— loo t (cos t + 2 sin t)
y{t} _

-e-t + e - loot (cos t + sin t)

_e-loot Sint

This solution consists of fast and slow modes. If a small step-size which damps out
the fast mode is used, then sooner or later the slow mode will dominate the entire
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solution. Hence, it is advantageous to fit the method to the slow mode rather than
the fast mode, when the step-size is within the stability region. For this reason, we
use moderately small step-size and choose the following basis functions:

	^ 1 (t) = t, 452 (1) = exp ( - t),	 3(t) = t exp (-t).	 (37)

The coefficients derived from the functions (37) are shown in Appendix B. We
integrate the equation from t = 0 to 2 using the FESDIRK4, and compare the
error with those of the three fourth-order Runge-Kutta methods: ESDIRK4, the
two-stage Gauss (Gauss2) and the classical Runge-Kutta (RK4) methods. The
results are shown in Table 1.

Table 1. Errors of various methods for linear equation (36).

loge E

-log2 h FESDIRK4 ESDIRK4 Gauss2 RK4

2 2.708e+01 2.915e+01 -5.124e+00 1.099e+02

3 2.486e+01 2.713e+01 -2.196e+01 1.531e+02

4 -2.858e+01 -2.585e+01 -2.529e+01 1.682e+02

5 -5.334e+01 -2.985e+01 -2.929e+01 4.702e+01

6 -5.271e+01 -3.387e+01 -3.329e+01 -3.068e+01

7 -5.262e+01 -3.787e+01 -3.729e+01 -3.470e+01

8 -5.125e+01 -4.188e+01 -4.129e+01 -3.870e+01

9 -5.091e+01 -4.586e+01 -4.530e+01 -4.270e+01

10 -5.164e+01 -5.073e+01 -4.907e+01 -4.668e+01

11 -5.212e+01 -5.056e+01 -5.232e+01 -5.163e+01

12 -5.016e+01 -5.062e+01 -4.988e+01 -5.078e+01

E is the Euclidean norm of the error at t = 2.

It can been seen that, although FESDIRK4 is less stable than the two-stage
Gauss Runge-Kutta method for larger step-sizes, this method is fitted to the so-
lution completely for moderately small step-sizes; the values of order -5. Oe+0 1 or
less in the second column of the table are due to the accumulations of round-off
errors, since the machine epsilon of the arithmetic is 2 -53 . On the other hand,
although the other methods are not fitted to this problem completely, the errors
decrease steadily at the rate of O(h 4 ), as expected.

Duffing equation [3]
The last equation to be integrated by using FESDIRK4 is a nonlinear equation.

Let us consider the Duffing equation

y " (t) + (w2 + k 2 ) y(t) - 2 k2 y(t) 3 = 0,	 (38)

y(0) = 0 ,	 Y'(0) = w.

The exact solution is given by

y(t) = sn(w t; (k/w)2),
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where sn(.; •) is the Jacobian elliptic function. We integrate the equation with
w = 1 and k = 0.03 from t = 0 to 100 by using FESDIRK4 and ESDIRK4. We use
the basis functions (34) with w = 1, since sn(w t; e) —> sinw t, as e — 0 [16]. The
result is shown in Fig. 4.

For this example, although the interval of integration is long compared with
those of Problems A and B, these methods give more accurate results, since this
equation is subject to small perturbation, which results from the small value of k.
Also in this example FESDIRK4 is superior to ESDIRK4.
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-20

hO

-30

-40

-50

N

2 4 6 8 10	 1:
— log2 h

Fig. 4. Errors E of FESDIRK4 (solid) and ESDIRK4 (dashed)
versus step-size h for Duffing equation (38).

To summarize, FESDIRK4 is a very efficient scheme for the special problems
for which we can find the basis functions successfully. On the other hand, for
general problems the method is found to be reasonably accurate since the method
is of order 4. The method is not very stable since the method has one explicit stage.

7. Embedded FRK Method

Since we have solved Problems A, B, C, and D, next we must consider `E'
(embedded) method. Let us consider the embedded pair

yam.+i =yTL +h (b1.f(Y1)+b2f(Y2)+b3.f(Y3)),
(39)

9n+1 = yn + h (b1.f (Y1) + b2.f (Yz) + b3.f (I's) + b4 .f (Y4)) ,
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where

Y1 = yn ,

Y2 =Yn+h (a2,1f( 1'1)+af(Y2)J,
Y3 =yn+h (a3,1f(Yi)+a3,2f(Y2)+af(Y3)),
Y4 =y.+h (a4 1f(Y)+a4,2f(Y2)+a4,3f(Y3)+af(Y4)),

and we assume c 2 = 1/3 and c3 = 1, as before. The Butcher array of the pair is

00

1 a2,1	 a
5

a3, 1 a3, 2	 a

1 a4,1 a4,2 a4,3 a

b1	 b2	b3	 0

b l 	b2 	b3 b4

In the array, we further assume

b l = a4 , 1 , b2 = a4 2, b3 = a4 , 3, b4 = a,

so that the method to calculate yn+l becomes FSAL (first same as last). The
computational cost of this method is approximately the same as that of FESDIRK4,
since the number of the LU decomposition to be performed per step is still one.

Here we must determine the coefficients of the method. We take the same
ai , 3 , bi (1 <i < 3) and a as those of FESDIRK4, so that the order p of the method
corresponds to b i is 4. With these coefficients, we will determine the b i such that
the order of the method which computes yn+l is 3.

If we force

4

B(q) =	 bi cq-1 — =0(h4 ),	 q= 1 , 2 , 3 ,	 (40)
i=1	 q

then we have

4 h'9 B(q) 	(4-1)R = y(0) + h	 bi (cih) — y(h) _	 (q _ 1) ^ (^J
i
 (0))	 = 0(h4 ).

i=1	 q>1

Therefore, if we set R = 0(hr+l), then r = 3 and

p - min {p + 2, r + 1, r} = min {4, 4, 3} = 3.

The coefficients b 1 , b2 and b3 satisfying (40) are given by solving the system of the
equations

45 (h) = m(0) + h (bl com (0) + b2 m(e2 h) + b3'm (£3 h) + a 7m (h)) ,

m=1,2,3,
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for the given {0m (t) } rz=1 . With the coefficients, we have the 3rd order method
embedded in the 4th order one.

The step-size strategy for this pair, which controls the local truncation error
of the lower order method within a prescribed tolerance TOL, is given by

TOL 	1/4

^n^ 1 = g	 Ilyn — ynII /	 ^n

where 0 is a safety factor, say 9 = 0.9.
Now, let us apply the embedded pair to the two-body problem [5], [12]

	yi = — y1/r 3, yz	 = —y2/r 3 , r = y1 + ya,	 (41)

with the initial condition

yi(0) = 1— e, y2(0) = 0, yi(0) = 0, yz(0) = 1 — e

where e (0 <e < 1) is an eccentricity. The exact solution of this problem is

	y 1 (t) = cos u — e,	 y2(t) = 1 — e2 sin u,

where u is the solution of Kepler's equation

u = t + e sin U.

The solution of (41) is found to be 2ir-periodic for any e, and is purely sinusoidal
for e = 0. Hence, a natural choice of the basis functions is (34) with w = 1. By this
choice, the problem with small e is expected to be accurately solved. We integrate
the problem with e = 0.005 from t = 0 to 50 7r by using the two embedded pairs:
FESDIRK4(3) and ESDIRK4(3).

Table 2. Errors and the total steps for two-body problem (41) with e = 0.005.

FESDIRK4(3)	 ESDIRK4(3)
TOL	 error	 steps	 error	 steps
10-2 	2.785e+00	 225 2.483e+00	 136
10-3 	2.866e-01	 170 2.153e+00	 277

10-4 	7.846e-03	 225 1.494e-01	 496
10-5 	1.399e-03	 381 9.359e-03	 884

10-6 	1.690e-04	 680 6.200e-04	 1573
10-7 	1.846e-05	 1207 4.416e-05	 2796
10-8 	1.938e-06	 2144 3.412e-06	 4970
10-9 	1.993e-07	 3806 2.848e-07	 8833
10-10 2.021e-08	 6762 2.530e-08 15706

TOL: Tolerance of the local error.
error: Euclidean norms of the errors at t = 50 it.
steps: Total number of time steps (including rejected steps).



20	 40	 60	 80	 100 120 140 160

t

0.42

0.4

0.38

0.36

0.34

0.32

0.3
0

0.44

424	 K. OZAWA

From the result of Table 2, we can see that the embedded method controls the
local truncation error well, and as a result, the method integrates the equation with
fewer steps compared with ESDIRK4(3).
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Fig. 5. Step-size plot and error behavior of embedded pair FESDIRK4(3).

8. Summary and Future Work

We have presented a functionally fitted three-stage ESDIRK method. Al-
though the method is of order 4 for general cases, the method is always exact when
the solution of the ODE can be expressed in terms of a linear combination of the
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given basis functions and the method is designed by the functions. Various numer-
ical examples show that the method has proved successful when a suitable set of
the basis functions is found, and reasonably accurate, even if this is not the case.
The method is extended to an embedded pair.

The stability analysis and the implementation issues of FRKs will be future
works.
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Appendix A.

In the following, we set 0 = w h:

tan(e)	 1	 92 	94
a2,1 = a22 - a3
	

_

' 3 	B s 	6 + 648 + 58320 +0(9 ),

sec ( 12) Sec2 (6) ( — sin( 2 )+sin(i2))

a3,1 	40

	_ 1	 1102 	890

24 10368 3732480 +0(06),

csc( 2 ) (-1 + cos(s) + sin(") tan())
	a3,2 --

	 0

	5 	 5 02 	5 04  
8 1152 248832 + 0(06)

,

0-29  cos( 2 ) + 2 sin(")

b1 29 (—cos( 2 ) +cos(2))

	

1	 B2	 16304	 (s)
10 3600 10886400 + 0(96),

csc( 12) 2 (0 (-1 + 2 cos( 2 ) — 2 cos( 2 )) +2 sin())

	b2 	40(1+2 cos())

	

_1	 02 	6104	 (s)
2 + 2160 6531840 + 0(06)

,

—0 cos(6)+sin(6)+sin(s )

	b3 	0 (COS( 2 ) — COS(23 ))

	

_ 2	 92 	397 0
  

5 
54Q+

 16329600 +0(06)

Appendix B.

3 - 3 e- 3 - h = 1 h	 h2 	h3	 h4
=a2 ' 1	 h2	 6 54 + 648 9720 + 174960 + 0(h5),

_ 3- 3 e 3+ h_ 1 h	 h2 	h3	 h4
	a2 '

2 = a3,3	 h2	 6 + 54 + 648 + 9720 + 174960 + 0(h5),

6+3e -S6 -9e- 2 -2h

a3'1 

= _

2 h2

1	 11 h 191 h2 	599 h3 - 6719 h4=	 (5)
24 + 216	 10368 + 155520 11197440 + 0(h5)

,
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3 (6+9e-S6 - 15e- Ze	 )
a3 , 2 =
	 2h2

_ 5 5h 5 h2 	iii 	 77h4 	(5 )
8 72 + 384 10368 + 746496 + 0(h

_ (6-5h)e
h
 -(6+h) e-32 - 2(3-h)+3h2 e-S6 +(6+4h)e-h

bl 	(2+3e-ss -5e- 2)h2

_ 1 	h2	 13h3	 1453 h4 	(5)
10 + 1200 21600 + 10886400 + 0(h5),

e3 (6+(-6-6(l+h) e- s +5(1-h) h+(6+h)e-h )e-SS )

b2 	(2+3e-SS -5e- z)h2

_ 1	 h2 	11h3 	781 h4  
2 720 + 12960 6531840 + 0(h5),

e3(-6-(6+4h)e-43` +6(1+h)e-h +2(3-(1-h) h) e- 3)
b3_	(2+3e-SS -5e4)h2

_ 2 	h2 	h3	 227 h4 

5 + 1800 4050 16329600 + 0(h5).


