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Localized patterns of the quintic Swift-Hohenberg equation are studied by bifurcation
analysis and rigorous numerics. First of all, fundamental bifurcation structures around
the trivial solution are investigated by a weak nonlinear analysis based on the center
manifold theory. Then bifurcation structures with large amplitude are studied on Galerkin
approximated dynamical systems, and a relationship between snaky branch structures
of saddle-node bifurcations and localized patterns is discussed. Finally, a topological
numerical verification technique proves the existence of several localized patterns as an
original infinite dimensional problem, which are beyond the local analysis.
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1. Introduction

In this paper, we study the following quintic Swift-Hohenberg equation:

/	 82 \2)
ut = v—I1+ 	 u +µu3—u5.	 (1)

In particular, our main interest is devoted to stationary localized patterns of this
equation. Sakaguchi and Brand [14] observe by computer simulations that the quin-
tic Swift-Hohenberg equation may have many types of stable localized stationary
solutions in suitable parameter regions. Furthermore, they heuristically explain the
relation between the existence of the stable localized patterns and the coexistence
of stable uniform solutions and stable spatially periodic(roll) solutions, which is
realized in the subcritical region (v < 0).

From the viewpoint of the stationary problems, i.e. the fourth order ordinary
differential equations, there has been several studies for localized patterns by dif-
ferent approaches in recent years. Budd et al. [1] study post-buckling states of the
classical elastic strut problem by the asymptotic expansion technique. They de-
rive an amplitude equation from the original fourth order differential equation and
show that there exist homoclinic orbits to the origin corresponding to the local-
ized solutions. Moreover, heteroclinic connections between uniform solutions and
periodic solutions are also studied by their analysis. The paper [17] also treats
this problem by the combination of asymptotic and numerical methods, and it suc-
ceeds in capturing double-hump solutions and these snaky bifurcation structures.
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The Hamiltonian-Hopf bifurcation (or degenerate reversible 1-1 resonance bifurca-
tion [7]) is one of the other key issues to investigate localized solutions of the fourth
order ordinary differential equations [5, 18]. In these papers they also found the
similar phenomena, i.e. localized solutions and their snaky bifurcation structures,
by the normal form analysis and numerical approaches.

Although the approaches are different from each other, these works described
above are summarized as follows. They first analytically prove the existence of
localized homoclinic solutions around the bifurcation point. Then the snaky bifur-
cation structures are derived by exploiting the numerical continuation technique.
All these works are remarkably important not only to study localized solutions but
also to discover the fascinating snaky bifurcation structures. However, it seems to
be difficult to prove the existence of the snaky branches and to clarify the relation-
ship between the localized solutions and the snaky bifurcation structures by the
theoretical approaches. It is no wonder of this situation, since asymptotic analy-
sis and normal form method essentially treat small amplitude phenomena. On the
other hand, the stationary solutions on the snaky branches derived by the numerical
branch continuations have essentially large amplitude. One of the main purposes of
this paper is to directly investigate the stationary solutions on the snaky branches
by a rigorous numerical technique.

Our strategy is to study the problem under the periodic boundary condition
with reasonably large period by a weak nonlinear analysis and a topological rigor-
ous numerical technique. In Section 2.1, a center manifold reduction to the quintic
Swift-Hohenberg equation is performed in order to study local bifurcation struc-
tures. From this analysis, it is explained that pure mode branches bifurcate from
the trivial solution as a subcritical pitchfork type at a simple critical point. On the
other hand, at parameter values close to double critical points, we observe that sta-
ble mixed mode branches appear and lose their stability by a subcritical pitchfork
bifurcation. Moreover, we conclude that imperfections of this subcritical pitchfork
bifurcation occur and "Z-shaped" mixed mode branches are observed in generic
cases.

Next, in order to proceed our studies to the regions away from bifurcation
points, a numerical branch continuation technique [8] is adopted to Galerkin ap-
proximated quintic Swift-Hohenberg equation in Section 2.2. It is observed that
snaky structures of saddle-node bifurcations arise along the secondary bifurcation
branches (i.e. mixed mode branches) and localized patterns correspond to the equi-
libria on lower layers of these snaky structures (see Figure 7). We expect that these
periodic stationary solutions converge to the homoclinic stationary solutions. In
fact, as we discuss in Section 4, similar snaky branches appear by taking larger
periods and corresponding solutions seem to converge to the homoclinic stationary
solutions. We also discuss how aftereffects of these successive saddle-node bifurca-
tions affect invading dynamics observed by computer simulations.

It is natural to consider whether these localized patterns observed at lower
layers of snaky branches in the finitely approximated problem really exist in the
original quintic Swift-Hohenberg equation. To answer this naive question, we verify
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the existence of these patterns by using a topological numerical verification method.
This method is first developed in [19] and a key tool for this method is the Conley
index, topological quantities defined on invariant set for dynamical systems (see
Section 3.1 for the definition). We here point out that one of the advantages to
adopt the topological verification method is that not only proving the existence of
equilibria but also we may detect connecting orbits between verified equilibria by
using the Conley index theory. In fact, this idea is realized in [3] for the cubic
Swift-Hohenberg equation under certain parameter regions.

In Section 3.1, we briefly review the topological verification method. Let us
note that localized patterns require many modes to be approximated by Fourier
expansion and that the equation (1) has the quintic nonlinearity. These facts cause
huge computational cost for the verification, especially for estimates of nonlinear
parts. Therefore in Section 3.2, we propose an improvement to efficiently obtain
the estimates of the nonlinear terms. A key idea comes from the pseudo-spectral
method [13] and we explain that the computational cost for the nonlinear terms
may be suppressed by using a Fast Fourier Transform (FFT). Several rigorous
numerical results of the existence of localized patterns on snaky branches are shown

in Section 3.3.
The method we used here may be regarded as one of the tools to prove the

numerically obtained continuation branch. However, we can not prove the existence
of the whole snaky branch at present, therefore we need another improvement to
reduce the computational cost. We conclude this paper with the discussion about
the relationship between the computational difficulty to verify the whole snaky
branch and behaviors of critical eigenvalues along this branch in Section 4.

2. Bifurcation Structures

2.1. Weak nonlinear analysis
Let us consider local bifurcation structures by the weak nonlinear analysis, i.e.

the center manifold reduction. First of all, let us assume that u E L^ , is an L o-

periodic function and let a fundamental wave number be denoted by ko = 2'ir/Lo.

We denote 11u11L2 = uMML2(o,L ) ). Then a dispersion relation for each mode j is given
by c =v—(1—j 2 k0) 2 . Hence, a set

C^ = {(v, ko ) v = vv(ko) = ( 1 - 2 kó) 2 }

represents a neutral stability curve for each mode j (see Figure 1). Our interest in
this section is to study rigorous bifurcation structures with the nonlinear terms.

It should be noted that three curves do not intersect each other except at

(v, ko) = (1, 0). Therefore, at most two elements in the set {(j }j >o are zero at the
same parameter values. Remark that {( } is going to be a set of eigenvalues for the
linearization of ODEs (2) below at the origin. Let us define v(ko) = min^ E z v^(ko ).

Then, we only have to study the following two special cases, since we are interested
in the first instability:
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Fig. 1. Neutral stability curves for j = 1, 2, 3, 4.

1. (Simple critical point) There exists n > 1 such that if v* (ko ) = v(ko) and

IjI	 n, then v*(ko) < vj(ko)•	
—

2. (Double critical point) There exists n > 1 such that if v* (ko) = vn (ko) _

vn +l (ko) and jI j n,n+1, then v* (ko ) <vj (ko ).

Let us decompose u(x, t) into a Fourier series

u(x, t) = Eaj(t)e ijkOx , aj(t) E C , i =	 •
jE7L

This decomposition leads to the following system of ordinary differential equations

^j = (jaj +µf^ 3) (a) — f^ s) (a) , j E Z,	 (2)

where

/ 	 2SJ = v — (1 — j 2 ko) 2
 , f

(3)
j (a) _	 arnlaM2a,n.3

mi ß-m2+ms=j
m;EZ

and

	f5(a) _	 LYmi(xm2CkM3amyCYms.

m1+m2+m3+ 7114+m5 =.i
m; EZ

By the general theory [10] this system of ODEs is well-posed on the space:

X = {a = (aj) I aI12 := E ^a 2(1 + kpj 2 ) 4 < oo
jEz
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First of all, we consider the simple critical case for the mode n. Then we have
two critical modes which correspond to the center space X, = span{a n , cti_ n }. Let
Xs C X be a stable space which is spanned by all the other modes and X = Xs +X,.

By the standard center manifold theory [16] we can construct a local invariant
manifold C which is tangent to X, at a = 0 when (n = v — vi (ko) = 0. The center
manifold is characterized locally by a graph of a smooth function h: U —> X,s

where U C Xc x R is a neighborhood of (ct, (n) = 0 with h(a,, Cn)Il x +

^Ia c x)c 11x• Here, a c = (an ,a_ n) and C is a constant which is independent of
(a,, çn ). And the dynamics on the center manifold is obtained by just neglecting
the effect from a with il n as

an = (nan + 3pQn10n12 — 10Ctinlan1 4 + 0 ( 66 ),	 (3)

since that effect produces only higher order terms of an J = 0(6) when cn = 0(64 )
and p = 0(62 ). Let us here introduce a polar coordinate an (t) = an (t) exp(icn (t)).
Then the dynamics on the center manifold takes the following form

án = (nam + 3µa3 — 10an + 0(6 6 )	 (4)

^n = 0 (6e ).	 (5)

As is easily observed, this system is structural unstable. To avoid this prob-
lem, we first restrict Fourier coefficients to real numbers. For the original variable
u(x, t), this restriction corresponds to even functions in L^ ,. Since the quintic
Swift-Hohenberg equation has a translation invariant property u(x, t) —4 u(x +9, t),

the dynamics on the center manifold (3) can be recovered from the restricted prob-
lem. From this argument and the equation (4), we can conclude that a subcritical
pitchfork bifurcation occurs around the simple critical point.

Next, let us study dynamics near a double critical point for the n, n+1 modes.
As well as the simple critical point, the dynamics on the center manifold is governed
by the following system

an = (nan + 3pa, I : n I 2 + 6/tc n LY E. +l l 2

— 10anlan14 — 60anlanl 2 an+112 — 30(xnlan+l l 4 + 0(66)

6zn+l = Sn+lan+l + 3^da n +l lan+1 2 + 6+i12

— 10c n+llan+l l 4 — 60cxn+llanl 2 an+11 2 — 30a+llanl 4 + 0(66 )

In the following, we assume u( . , t) to be even functions. Then we obtain the
following system

^n = an ((n + 3µa 2 + 6µa2 +1 — 10a — 60a 2 a 2 +1 — 30a 4 +1 ) + 0(66 ),

an+1 = an+1 ((n+l + 3µa2 +1 + 6µa 2 — 10a4 +1 — 60a2 a2 +1 — 30a4) + O(66 ). (6)
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Fig. 2. Nullclines of (6) with p = 0.1 for (a) p = -0.00189 (b) p = -0.00186
(c) p = -0.0008. Gray lines and dark lines correspond to izn = 0 and
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v

Fig. 3. Schematic bifurcation structure of pitchfork bifurcations.

Now let us first consider the case when (n, = fin. + 1 = p. Note that p differs
from v by a constant: p = ^  = v - (1 - n 2 kó) 2 . By a simple algebraic calculation
we can conclude that we have a stable mixed mode solutions in a subcritical region

p E (-81µ2 /400, -9µ 2 /80) (see Figure 2). This stable mixed mode solution appears
from a saddle-node bifurcation at v = v, which corresponds to p = -81A2 /400 and
loses its stability by a subcritical pitchfork bifurcation at v = v*, that is p =

-9µ2 /80 (see Figure 3). Bifurcation diagrams in the general case, 'n (,+l, are
obtained by the imperfection of the pitchfork bifurcation. Two pictures in Figure 4
describe how this imperfection is observed in bifurcation diagrams. A parameter
value for the left picture in Figure 4 is closer to the degenerate case (" = (n, + 1 than
that for the right picture. Two branches of n and n + 1 mode solutions almost
overlap each other in the left picture, while they are apart from each other in the
right picture. Therefore the bifurcation diagram in the left picture is very close to
the L2 projection of Figure 3. Also at the degenerate case: C, = (, + 1 two pure
modes and mixed mode solutions appear as subcritical pitchfork bifurcations at the
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Fig. 4. Imperfection of pitchfork bifurcations (p = 0.5).

same value of v coincidently (Figure 2 (c)). While, on the other hand, these three
pitchfork bifurcations occur separately in general. Therefore in this weak nonlinear
region we generically observe the "Z-shaped" branches for the mixed mode solutions
which coincide with numerical global bifurcation diagrams in Figure 4 (derivations
of these diagrams are treated in Section 2.2). Here we again assume that y = 0(62 )

since all of the fixed points we are interested in should be included in a, = O(6).

2.2. Snaky structures and localized patterns
The results of the previous subsection provide us with the complete information

concerning the local bifurcation structures around the trivial solution. It is, how-
ever, not enough to understand the whole bifurcation structure far away from the
weak nonlinear region. To study the structure in these regions, numerical branch
continuations by the pseudo-arclength method [8] to a Galerkin approximated
problem:

aj = Sjaj + p	 amlam2am3 —	 E	 am,am2am3am4am,,

mi +m2+m3=J	 m 1+m2+m3+m4+m5=7
m; <m	 Im; <m

j =0,1,...,m	 (7)

play a central role. Here {a} are coefficients of the Fourier cosine expansion

u(x,t) =	 a^(t)cos(jkox), a(t) ER

^7I5m

with a_^ (t) = a (t). Remark that we again restrict u(• , t) to even functions.
Let us fix the fundamental wave number ko = 0.1 and investigate bifurcation

structures with different p. Figure 5 expresses the bifurcation diagrams for equi-
libria of the equation (7) at p = 0.5, 1.0, 1.5, respectively. Here solid lines and
dotted lines express stable and unstable branches, respectively. We easily observe
that at each p the first bifurcation branch arises as a subcritical pitchfork type.
Moreover, the second bifurcation occurs from the first bifurcation branch. Numer-
ical evidence shows that this new branch originates from one of the pieces of the
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Fig. 5. Bifurcation diagrams at (a) p = 0.5 (b) p = 1.0 (c) p = 1.5 (ko = 0.1).

imperfected pitchfork bifurcation for the mixed mode. Notice that the branch of
the mixed mode solutions become close to the "Z-shaped" branch if it is close to
the degenerate case.

Moreover, if we increase the parameter µ further, we obtain a snaky bifurcation
structure of saddle-node bifurcations (Figure 6). Let us denote each layer on the
snaky branch by Uk and Sk as is described in the figure. The stationary solutions
especially on lower layers have localized wave profile as are seen in Figure 7. These
observations imply that the stable localized patterns appearing at the lower layers of
the snaky structure correspond to those appearing in [14] by computer simulations.
We remark that the number of the peaks of localized patterns increases as k becomes
large. Due to the limitation of the system size Lo, these localized patterns change
their shapes into that of the pure mode solution when the snaky branch approaches
the bifurcation point at the original pure mode branch.

Furthermore, we numerically study the dynamics of solutions close to those

Fig. 6. Bifurcation diagram at it = 3.0 (ko = 0.1).
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Fig. 7. Profiles of equilibria on the layers Uk, Sk, k = 1, 2, 3, (v = —1.3).

Fig. 8. Connection between unstable and stable equilibria (v = —1.3).

on the snaky branch. Two different time evolutions of almost same initial data
on U2-layer at v = —1.3 with small perturbations are shown in Figure 8. Each
graph in Figure 9 describes the transition of L 2-norm corresponding to each time
evolution in Figure 8. As is easily observed, depending on the small perturbations,
unstable equilibrium point converges to stable equilibria on Si-layer or S2- layer.
Therefore these numerical simulations imply that there exist connecting orbits from
the stationary solution on U2-layer to that on both Si-layer and S2-layer.

It should be mentioned that we can observe transient behavior so called
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Fig. 9. Time evolution of L2 norm (v = —1.3).

"aftereffects" of saddle-node bifurcations in [11]. More precisely, we can observe
invading dynamics with the aftereffect of the hierarchical structure of saddle-node

points by choosing the parameter v carefully. Namely, when v is slightly larger
than the right saddle-node line, say v = —1.1015, the stable roll invades the sta-
ble uniform state temporally stagnating around each saddle-node bifurcation point.
On the other hand, when v is slightly smaller than the left saddle-node line, say
v = —1.7370, the roll recedes from the uniform state, again temporally stagnating

around each saddle-node point (Figure 10).

Fig. 10. Invading dynamics with the aftereffect of saddle-node points.

Although these phenomena studied in this subsection are derived from the
finitely approximated problems, they imply the possibility of the rich dynamical
structures for the quintic Swift-Hohenberg equation. Therefore, to clarify an essence
of these phenomena, we need to investigate rigorously the existence of the localized
solutions of the quintic Swift-Hohenberg equation and hopefully verify the snaky

branch.
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3. Rigorous Numerics

This section is devoted to the rigorous numerics in order to prove the existence
of the localized patterns on the snaky branch. We briefly review the topological veri-
fication method with the Conley index theory in Section 3.1. In Section 3.2, we shall
improve the method to efficiently obtain estimates of nonlinear terms, which are
essential for the verification. This improvement is indispensable to apply the topo-
logical verification method to the localized patterns of the quintic Swift-Hohenberg
equation. Finally in Section 3.3, we try to verify the existence of localized patterns
observed in the preceding section.

3.1. Topological verification method
The Conley index plays an important role in the topological verification meth-

od. We first recall the elementary results of the Conley index theory (see [2, 15] for
more detailed introductions).

Let cp: R x X --t X be a flow on a locally compact metric space X. A compact
set N is defined as an isolating neighborhood if the maximal invariant set Inv(co, N)
in N with respect to (p is contained in Int N, the interior of N. That is Inv(p, N) C
Int N. This maximal invariant set is called the isolated invariant set. Moreover,
the neighborhood N is defined as an isolating block, if the boundary of an isolating
neighborhood óN consists of the union of

L+ :_ {x E áN 3t > 0 s.t. cp((0, t), x) n N = 0},

L- := {x e DN t > 0 s.t. :p((—t, 0), x) f N = ø}.

L+ and L- are called the exit set and the entrance set of N, respectively.

DEFINITION 1. The Conley index of the isolated invariant set Inv(cp, N) is
defined by

CH„(Inv(^p, N)) := H * (N, L+)

Here the notation H. (N, L+) denotes the relative homology. We remark that
the Conley index can also be defined by the homotopy class of the quotient space
N/L+. More precisely, let N D L be a pair of topological spaces and (N/L, [L])
((N \ L) U { f }, {t}) denote a pointed topological space obtained by identifying the
points in L to one point t. Then the homotopy Conley index is also defined by
the homotopy class of (N/L+, [L+]). By the basic homology theory, the previous
definition of the Conley index is equivalent to the homology of (N/L+, [L+]), i.e.

H,(N,L+ ) = H.(N/L+ , [L+ ]).
It should be noted that the above definition is well-defined [2, 15] . More

precisely, we can check that there exists an isolating block for any given isolated
invariant set. In addition, if (Nl, Li ) and (N2, L2) are pairs of isolating blocks and
exit sets for the same isolated invariant set, then

CH.(NI, Li) = CH* (N , Lz ).
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Next, let us move on to the topological verification method. Recall that the

quintic Swift-Hohenberg equation decomposed into Fourier cosine bases u(x, t) _

EjEZ aj (t)cos(jkox) with aj = a_ j takes the following form

dj = fj(a) = (jaj + µf
(3)

(a) — f(a), j E Z,	 (8)

where

3	 1:fj (a) =	 L	 am, amt a„

m1 +m2 +m3 =3
m;EZ

and

f 5(a)	 amlam2am3am4 am5

m1 +m2+m3+m4+7725 =3
m ; Ez

with a = (ao, aI, ...). Since we can treat only finite dimensional problems numeri-

cally, it is convenient to adopt the following decomposition

aF := fF(aF, aI) = (fo(a), f, (a), ... , fm(a)),

ai := fI (aF, ai) _ (fm+l (a), fm+2(a), ...),

where aF :_ (ao, a1, ... , am ) and aj := (a+1, am+2, ...). We remark that in the

rest of this paper the subscript F and I means finite part and infinite part separated

by a prescribed integer m > 0, respectively.

Let us define the projection P: (ao, al, ...) H aj for each j.

DEFINITION 2 ([3]). A compact set W = fl j>o [aI , a^ ] is called a lifting set

with respect to (8), if there exists an integer m > 0 such that the followings hold:

1. There exists a compact set NC WF = flo<j<m[aI , a
.

 ] and, N x WI, where

WI = fl .> [aJ , aÏ ], forms a self-consistent a priori bound [19].

2. N is an isolating block for the flow (al) induced by the vector field fF (aF, aI)

for each al E WI.

3. For j > m,

Pj(f(a)) < 0,	 for Pj (a)Ia F,EN = aÏ ,

Pj(f(a)) > 0,	 for Pj(a)Ia,., EN = aj

We are now ready to show the important theorem which plays a central role

in the topological verification method.

THEOREM 3 ([19]). Let W be a lifting set and N C WF be a compact set

corresponding to that in the condition 1 of Definition 2. If the Conley index of the

isolating block N takes

da)	 Z, i = n,
CH2 (Inv( lp	 , N))

0,  otherwise
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for some n E {0, 1, ..., m}, then there exists an equilibrium point for (8) in N x WI.

Let á = (áF, 0) be an approximate equilibrium obtained by the Galerkin ap-
proximated finite dimensional system, like an equilibrium corresponding to a local-
ized pattern in the previous section. The lifting set W is supposed to include the
approximate equilibrium point á for the verification. To verify the above conditions
for the lifting set by rigorous numerics, we assume a power decay property on the
infinite part, i.e.

WI = (9)
j

u I — Ŝ , ^S J 
for a positive constant c and an integer s > 2.

In order to construct an isolating block N and to check the inwardness of the
vector fields on the boundary N x 3WI, it is convenient to introduce a new variable
x = (XF, xi) satisfying

(PXF + áF, xr) = (aF, ar), P = [popi ... p,,,,],

where pj is an eigenvector of the Jacobi matrix of fF(aF, ar) around á. Let us

denote this transformation by T : x = (XF, xI) (PXF + áF, x j). Then the system

on the x-coordinate is expressed by

xj = Ajxj + Ej(Tx), j = 0, 1, ...,

where ) is an eigenvalue associated with the eigenvector pj for 0 < j < m and

is Cj for j > m from the property of the transformation. Note that ej (Tx) is the

higher order error term, whose absolute value is expected to be smaller than that

of the linear part.

We check the conditions on Theorem 3 on this system. More precisely, we first

prepare on the x-coordinate

W = WF x Wi, WF = [J [xI , x^ ], Wr = ll L — ŝ , ^S JO<j<m	 j>m

with 0 E W such that TF(WF) C WF. Then we construct an isolat ing block in
WF and check the inwardness of the vector field on the boundary WF x 0W1 by
obtaining the estimate Ij (W) as an interval such that

€(Tx) E Ij(W) for x E W.

In the real computations, since we can derive the explicit form of ej (a) expressed
by the a-coordinate, we make use of an other interval Ij (W) for the estimate such
that

ej(a) E I(W) for a E W.	 (10)
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Note that Ij (W) C Ij (W ). As is clearly observed, the transversarity of the vector
field on the boundary may be easily checked on computers in the x-coordinate
rather than in the a-coordinate. We refer [3, 6, 19] for the details of the algorithm
of the topological verification method.

3.2. Estimates of nonlinear terms
One of the essences of the topological verification method is to make use of the

hyperbolicity of the equilibrium point to construct a desirable lifting set. Precisely,
the hyperbolicity of the linear part is needed to suppress the nonlinear error part

Ej (a). Therefore, we have much more opportunity to succeed in the verification if

we could have efficient estimates of Ij (W).
Let us consider the following summation, which is a generalized form for a j -th

Fourier mode of a p-th nonlinear term.

E a, amt ...a„„ j E Z.	 (11)
mi+m2 -F ... +mp=7

m,Ez

Recall that, from the arguments in [3, 4, 6, 19], the explicit expressions of I(W)

consist of the union of the above summation (11). Moreover, due to the power

decay property (9) of the infinite part, the analytical estimates can be derived for

the case of max( m i 1) > m or j > m. On the other hand, the collection of the finite

sums

am,am2...a, j=0,1,...,m	 (12)

ml+m2+ ... }m1=7
Im, Im

should be calculated on computers with interval arithmetic. If we directly calculate

this collection, it requires O(mP) computational costs. As is observed in Section 2.2,

localized patterns require much more modes to be approximated by the Fourier

expansion compared to simple mixed mode patterns. It means that the number m,

which separates the finite part and the infinite part, should be large. Therefore the

computational cost of the direct calculation performed as before in [3, 4, 6, 19] for

(12) grows proportionally to m°. The purpose of this subsection is to present an

improvement to efficiently calculate the finite sum (12). The key idea comes from

the pseudo-spectral method, which is well-known as one of the computer simulation

methods.

Let us first treat the quadratic case (p = 2) for the sake of simplicity. Consider

the discrete Fourier transform and its inverse:

2m-1

al =.F(u)ll =	 u(xj)e-21k;	 (13)

j=0

1	 m
u(x) _ F ' (a)Ij = 2m	

ale^ck,^	 (14)

l=-m+1
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whose size are 2m. Here {xj = 2 j}, j = 0, 1, ..., 2m — 1, are grid points in the

interval [0, Lo].
The basic idea of the pseudo-spectral method is the following. First of all,

we pull back the Fourier coefficients {al} to the original physical variable {u(xj)}

by (14). Then we calculate the nonlinear term {u 2 (xj)} at each point. Finally,
the summation (12) may be calculated by transforming {u2 (xj)} to each Fourier
element by (13). These arguments can be described as follows,

2m-1
	Cl _ E	 x .u() 2 e — ilkox.i

1 7

j=0

2m-1	 m	 m1 
a eimik°x ' 	a eimzkox 	 e_iIkox j

(2m)2ml	 mzj=0 m1= m^1	m2=—m+1

	= 2m 	a, aM 2 + 2m 	am, amt.	 (15)
ml +m2 =l	 ml+m2 =l±2m

—m+1<m; <m	 —m+l<m; <m

Recall that the second term of (15) is called an aliasing error. This error is incor-
porated to the convolution because two different Fourier modes by modulo 2m can
not be distinguished due to discretization. One of the popular methods to remove
aliasing errors is as follows ([13]). Extend the size of the discrete Fourier transform
from 2m to 2m6 for S > 1 and let {aj} be

{ a—,

aj=0,	 form+1<j<Smand — Sm +1<j<—m-1,

 = am.

Then, the same calculation as above for extended Fourier coefficients leads to

28m-1
=	 a(xj)2e—ilkux,

j=0

=
2Sm	

am' am, +
ml +m2 =1

I mIm

2óm	
a,, , a,, 2 .	 ( 16 )

ml +m2 =l±28m
m; <m

Hence if S > 2 , then second term which causes the aliasing error can be eliminated
and the finite summation (12) for p = 2 is calculated by

a,, am t = 2m5cl.

ml +m2 =1
I m;I<m

The same approach can be applied to the general nonlinear term (12) by taking S
suitably. Note that by using FFT implemented with interval arithmetic we obtain
the rigorous bounds of (12) quite efficiently.
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For the quintic Swift-Hohenberg equation, p = 3 and p = 5 are important cases
and the following lemma may be obtained easily.

LEMMA 4. A sufficient condition to remove aliasing errors is 8 > 2 for p = 3
and 8 > 3 for p = 5, respectively.

3.3. Existence of localized patterns

Let us denote the stationary solution corresponding to the equilibrium on the
lower layers of the snaky branch in Figure 6 by

u(x; ko, v, b) =	 a cos(jkox),
I7I<-m

where the set of the Fourier coefficients {a} corresponds to the approximated
equilibrium on each layer b = Uk, Sk, k = 1, 2, 3, at the parameter value v.

Then, we obtain the following theorems by the topological verification method.

THEOREM 5. Let v = -1.3, ko = 0.1 and µ = 3.0. Then, at each point
u(x; ko , v, b), b = Uk, Sk, k = 1, 2, 3, there exists a stationary solution u(x; k o , v, b)
of the quintic Swift-Hohenberg equation such that

flu* (x; ko, v, U1 )

u(x; ko, v, Si)

u(x; ko, v, U2)

u(x; ko, v, S2)

u(x; k0, v, U3)

aj u(x; ko, v, 53)

u (x; ko, v, Ul)ML2 < 1.04077019 x 10 -s

u(x; ko, v, SI)I^L2 < 1.57739803 x 10 -8

• (x; ko, v, U2)L2 <2.44819377x  10 -a

u(x; ko, v, S2)HL2 < 4.31155312 x 10 -8

u(x; ko, v, U3)IIL2 < 2.83246161 x 10 -9

u(x; ko, v, S3)ML2 < 7.47772691 x 10 -9

THEOREM 6. Let v = -1.5, ko = 0.1 and u = 3.0. Then, at each point
u(x; ko, v, b), b = Uk, Sk, k = 2, 3, there exists a stationary solution u(x; ko, v, b)
of the quintic Swift-Hohenberg equation such that

u(x; ko, v, (.2) - u(x; ko, v, U2)L2 <4.47782900 x 10

 ko , v, S2) - u(x; ko, v, S2)ML2 < 4.57533187 x 10_ 8

^I u * (x; ko, v, (.13) - u(x; ko, v, U3)ML2 < 4.20841075 x 10 -8

aju * (x, ko, v, S3) - u(x; ko, v, S3)L2 < 6.82912523 x 10 -9 .

Here, the norm of the difference between a stationary solution and the approx-
imate solution in the above theorems is estimated by the L 2-volume of each lifting
set. It should be remarked that we set the power decay property (9) as c = 1.0 and
s = 5 for all the verifications of the above theorems. Moreover, the dimension for
the finite part is chosen as in = 256 for Uk, Sk, k = 1, 2, and in = 512 for U3, S3
in Theorem 5. In Theorem 6, m = 256 for U2, S2, U3 and m = 512 for S3. From
these theorems, we can conclude that close to the localized patterns observed on the
snaky branch in Figure 6 there really exists the stationary solution to the quintic
Swift-Hohenberg equation (8), i.e. the original infinite dimensional problem.
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4. Discussion

Throughout the present paper, we only studied periodic stationary solutions of
the quintic Swift-Hohenberg equation. Therefore it should be mentioned here why
we call the stationary solutions on the lower snaky branch "localized patterns."
This is based on the following two observations: (i) Stationary solutions on the

snaky branch can be numerically traced as ko varies. They persist no matter how

large the period L = 27r/ko is. (ii) Although these continuations can be done
up to certain numerical resolution, these stationary solutions can be expected to
converge to homoclinic solutions (see [18], where they also found snaky branches of
homoclinic solutions). In fact, if we draw the corresponding numerical orbits in the
phase space of (u, ums , u,, ,,, u,,,,,,) for several different parameter values of ko, they
seem to converge to a closed Jordan curve which passes the origin as ko —+ 0. (see

Figure 11.)

Fig. 11. (u,u y )-projections of numerical periodic orbits on  Ui-layers
(v = —1.3, µ = 3.0,) for ko = 0.2,0.1,0.07,0.05, respectively. As

expanding the neighborhood of origin ((a)—+(b)—*(c)--(d)), these or-

bits become distinguishable in order of thier periods.
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All computations shown in the present paper is performed by 3 GHz Pentium 4
processor and gcc-3.2 compiler on RedHat 8.0 with the interval arithmetic software
C-XSC [9]. As is mentioned in Section 1, our main purpose is to study the localized
patterns on the snaky bifurcation branches, and we succeeded in proving the exis-
tence of several localized solutions (Theorem 5 and 6). However, the computation
to verify the solutions on higher layers becomes more difficult rather than those on
lower layers.

Recall that the crucial point of the topological verification method is to exploit
the hyperbolicity of the equilibrium point to suppress the effects of the higher order
error terms. On the other hand we can numerically check that the higher we go
up the snaky branch, the more critical eigenvalues appear. Moreover, the distance
between the most critical eigenvalue and the origin becomes much smaller on the
higher layers than lower layers.

These properties of critical eigenvalues make it difficult to construct an isolating
block by using the hyperbolicity around the equilibrium point on the higher layers
of the snaky branch. To suppress the nonlinear error terms of the equilibria on
these higher layers, it is inevitable to increase m, since their finite part dynamics
possess weak hyperbolicity. Note that, FFT based algorithm to estimate nonlinear
terms also works well for m > 512. However, we observe that the computational
cost for several other parts in the algorithm of the topological verification method
becomes large as m increases. For example, for the coordinate change from the
a-coordinate to the x-coordinate, we need to solve an m + 1 dimensional linear
equation. The algorithm we exploited to solve linear equations is based on the idea
in [12], and it requires 3 m3 computational costs. In fact, on the layer next to that
we can prove, the necessary dimension for the finite part should be m > 512 and
therefore the verifications are not performed in reasonable computational time.
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