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A natural Runge-Kutta method is a special type of Runge-Kutta method for delay dif-
ferential equations (DDEs); it is known that any collocation method is equivalent to one
of such methods. In this paper, stability properties of natural Runge-Kutta methods are
studied using nonlinear DDEs which have a quadratic Liapunov functional. A discrete
analogue of the functional is defined for each method, and the stability of the method is
examined on the basis of this analogue. In particular, it is shown that an algebraically
stable method, if it satisfies an additional condition, preserves the asymptotic properties
of the original equations for every stepsize.
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1. Introduction

Various concepts of unconditional stability of Runge-Kutta methods have been
introduced and studied from the viewpoint of their application to stiff equations. A-
stability for linear autonomous equations and B-stability for contractive nonlinear
equations are representative. It is also well known that algebraic stability, which is
introduced by an algebraic condition on the parameters of a method, is equivalent
to B-stability for most Runge-Kutta methods (see, e.g., [6]). Recently, some studies
[5, 15, 16] appeared which revealed a similarity between A-stability and algebraic
stability; they have shown that A-stable methods are also characterized by algebraic
conditions on their parameters of almost the same form as in the case of algebraically
stable methods.

Runge-Kutta methods can be also applied to delay differential equations
(DDEs) by using some interpolation procedures. It would be significant to con-
sider what meanings the above stability concepts have in the application of the
methods to DDEs. Concerning A-stability, its meaning has been clarified to some
extent. Zennaro [19] studied stability properties of Runge-Kutta methods with an
interpolation procedure proposed by himself [18] using linear scalar test equations
[1]. As a result, he has shown that an A-stable method preserves the asymptotic
stability of the zero solution for every stepsize, if the method has a kind of con-
sistency with the interpolation procedure. The same results were obtained in the
cases of scalar equations of neutral type [2], multi-dimensional equations [12], and
multi-dimensional equations of neutral type [8]. On the other hand, in 't Hout [10]
has proposed another type of interpolation procedure; he shows that it can make
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every A-stable method have the above property in the cases of scalar equations [10]
and multi-dimensional equations [11].

In those studies, difference equations obtained by the application of methods
are directly considered, but it does not seem easy to study nonlinear cases by
such an approach. In this paper, we discuss the stability of Runge-Kutta methods
for DDEs from a different point of view; we study their stability using nonlinear
DDEs which have a quadratic Liapunov functional. More specifically, we define a
discrete analogue of the functional for each method, and examine the stability of
the method by considering whether the analogue preserves the monotonicity of the
original functional. Through such consideration, we show a meaning of algebraic
stability and a new significance of A-stability in the application of Runge-Kutta
methods to DDEs. Our basic idea and a part of our results in a restricted case are
presented in [13] (see also [21] on nonlinear model equations of another type).

2. Preliminaries

2.1. Delay differential equations
We consider initial value problems of the form

(2.1.a) w(t) — Ku/'(t — 1) = f(t,u(t),u(t — 7)), t>0,
(2.1.b) u(t) = p(t), -17<t<0,

where u(t) € R%, 7 > 0 is a constant delay, K denotes a constant matrix whose
spectral radius is less than 1, and ¢(t) is a given C’-function. Furthermore, we
assume that f : (0,00) x R% x R?* — R is locally Lipschitz continuous and satisfies
f(t,0,0) =0 for all £ > 0.

For the equation (2.1.a) we consider a functional of the form

(2.2) V(u(®)) = (u(t) — Ku(t — 7))TG(u(t) - Ku(t — 7)) + /t_ u(0)T Eu(o)do,

where G, E are constant symmetric d X d-matrices which satisfy G > 0, E > 0; the
symbols ‘> 0’ and ‘> 0’ indicate that a matrix is a positive definite and nonnegative
definite, respectively. When u(#) is a solution of (2.1.a), we get

d

(2.3) 7

V(u(t)) = $(t, u(t), ut — 7)),

vt z,y) =2(z — Ky)TGf(t, z,y)+ z¥Ez —y'Ey, z,y€ R

Thus, by the standard argument (see, e.g., [14], p.31, Theorem 5.4, see also [7]), it is
shown that the solutions of (2.1.a) are uniformly bounded if 1 satisfies the following
condition (LC).

(LC) There is a continuous nondecreasing function w : [0, 00) — [0, 00) such
that

¥(t,z,y) < —w(|z]) for t>0, =z,ye R
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Here, || denotes a norm on R¢. If, in addition, w(o) > 0 for ¢ > 0, the zero solution
of (2.1.a) is uniformly asymptotically stable (ibid.).
For example, consider the case f is linear and autonomous, i.e.,

(2.4) f,u(t),u(t — 7)) = Lu(t) + Mu(t — 1),
where L, M are constant matrices. Simple computation gives

1/}(75, x, y) = _(J"Ta yT)Q(xTa yT)Tv

~GL-LTG-E LTGK - GM
=
(LTGK — GM)T KTGM + MTGK + E

Hence, (LC) is satisfied if and only if {2 > 0, and an w{c) is taken so that w{c) > 0
for o > 0if 2 > 0.

REMARK 1. The functional (2.2) has been used by Slemrod and Infante [17} to
obtain sufficient conditions on coefficients in linear DDEs which ensure the asymp-
totic stability of the zero solution. A discrete analogue of (2.2) based on the 6-
method has been also examined in [17].

2.2. Natural Runge-Kutta methods

For the application of a Runge-Kutta method to (2.1), some interpolation
procedure is needed which gives approximate values to u(t—7), ¥/(t—7) in (2.1.a); we
use a natural continuous extension (18] of the Runge-Kutta method to approximate
those arguments. For simplicity of analysis, we treat only an aligned mesh, i.e., a
mesh of the form

t, =hn, h=71/k, n€Z, k: positive integer.

An s-stage Runge-Kutta method applied to (2.1) is represented as follows:

k]
Uy, s = ftn+ cihyUni,Un k) + K > wj(e)Ul_y 5,

=1

8 s
Uni=1up,+ hZaijU,'l,j, Uni=un+ hZ’u)j(Ci)UTIL,j,
j=1 j=1

i=1,2,...,s,
8
Ung1 =1tn+h Y bU),.
i=1

Here, u,, denotes an approximate value to u(t,), and U, ;, ﬁn,i, U, ; are interme-
diate variables; when n < 0 they are given, for example, by

Uni=@(ta +cih), UL, =¢ (ta+ch), 1<i<s, —-k<n<O0.
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Moreover, a;j;, b;, ¢; are the parameters of the method, and w;(c) are polynomials
which satisfy a kind of order condition [18]. In particular, they satisfy

(2.5.3.) wi(O) =0, wi(l) = bi; 1< < 8,

S _ Uq )
(2.5.b) ;wxa)cz’ ‘=" 1<iss 1<g< max{deg(wi)}.

In addition, we assume that
(26) A5 = ’LUj(C,'), 1 S ’L,] S S.

It is easy to see that (2.5) and (2.6) imply

s 8
(2.7) sz’w;'(ci) =bj, 1<j<s, Z aimwy(em) = aij, 1<4, j<s.

=1 m=1

A Runge-Kutta method is said to be natural, if it satisfies (2.6). It is known
that any collocation method can be regarded as a natural Runge-Kutta method
[19, 20]. In particular, the Gauss-Legendre, Radau ITA, Lobatto IITA methods (see,
e.g., [3]) are considered as natural Runge-Kutta methods.

For notational convenience, we write the parameters of the method in the form

Az(aij) (1S'L,]SS), b=(b1»b2v~--’bs)Tv

I = (wj(ci)) (1<4, j<s)

Furthermore, define

Ty = (tn + crhytn + Coh,. .. tn + csh)T € R,

Un = ((Un1)T, (Un2)T,- -, (Un,s)T)T € R%,

U, = (U )7, (UL )7, .., (UL )T)" € R®,
and let

F(0,X,Y) = (f(01, X1, Y1), f(62, X2, Y2)T, ..., f(B, X, Ya)T)"

for

6 =(61,02,...,0)T € R,

X =(XT,x7,....x0)" er®, v =u7,vf,...,v7) € R®.



Runge-Kutta Methods for Nonlinear DDEs 115

Since ﬁn_k,i = Up—k,: by (2.6), the natural Runge-Kutta method is written in a
compact form:

(2.8:a) U, = F(T.,Up,Up—) + (' @ K)U, _,,
(2.8.b) Up=eQ®un+h(4AQ 1)U,
(2.8.¢) Uny1 = Uy + R(BT @ 1)UL,

where e = (1,1,...,1)T € R®, I; is the d x d identity matrix, and ® denotes
Kronecker product. The condition (2.7) is also written in the form

(2.7) VI'r =T, Al = A.
We thus get

(2.9)
Up— KUn_i = e® (un — Ktn_i) + h(A® I3)F (T, Un,Un_y), K=I,QK.

from (2.8.a) and (2.8.b), where I, is the s x s identity matrix. Since U], is obtained
from Uy, by (2.8.a), the approximate values u,, n = 1,2, .. ., are succesively obtained
if the equation

(210) X —-KU,_p=e® (up — Ktn_p) + h(A® Ig)F(Tn, X, Un_s)

has a solution for each n > 0.

3. Discrete Analogues of Liapunov Functionals

3.1. Conditions on equations and methods
To discuss the properties of the natural Runge-Kutta method (2.8), we prepare
further notation. Let S be a nonnegative definite symmetric s x s-matrix, and define

Us(6,X,Y) =2(X — KY) (S®G)F(6,X,Y) + XT(S® E)X - YT(S® E)Y.

The following condition is an analogue of the condition (LC).
(LD) There is a continuous nondecreasing function wg : [0, 00) — [0, 00) such
that

Us(0,X,Y) < —ws(|X|) for e R, X,Y e R%.

Here, || - || denotes a norm on R%. By the definition of ¥s, if S is diagonal,
(LC) implies (LD). On the other hand, when f is linear and autonomous, since

F0,X,Y)=(I; L)X + (I, ® MY,
we obtain

WS(&X’Y) = _(XTaYT)(S ® ‘Q)(XTaYT)T'
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Therefore, if (LC) is satisfied, (LD) is satisfied for any S > 0.
Furthermore, let us consider a nonlinear perturbation of (2.4) of the form

(3.1)  f(t,u(®),ult — 7)) = Lu(t) + Mu(t — 1) + efo(t, u(t), u(t — 7)),

where f; : (0,00) x R% x R? — R? is assumed to satisfy

(3.2) |[fot,z,9)| < Collz| +lyl) for t>0, @ye R

for a constant Cy independent of ¢, z, y. Defining Fy in the same way as F', we get

Ts(6,X,Y) = —(XT, YT (S 2)(XT,YyT)T
+2¢(X — KY)' (S® G)Fo(6, X, Y).

Since there is a constant C such that

(X - KY)T(S® G)Fo(6, X,Y)|
<C(IX|*+|Y|?) for 6 € R®, X,Y € R*

by (3.2), if S > 0 and 2 > 0, then (LD) is satisfied for sufficiently small .
Concerning Runge-Kutta methods, we consider the following two conditions:
(E) There is a symmetric matrix P > 0 such that

(3.3) PA+ATP>0.
(S) There is a symmetric matrix @ > 0 such that
(3.4) QA+ ATQ —bbT >0, Qe=b.

Propositions described below have particular interests when one matrix fulfills
both requirements for (E) and (S) simultaneously. Before proceeding the proposi-
tions, we show two typical cases where this condition is satisfied.

A Runge-Kutta method is said to be algebraically stable if @ =
diag(by, bs, ..., bs) satisfies (3.4) and Q > 0. Since, if some @ > 0 satisfies (3.4)
and b; > 0 for all 7, then P = Q satisfies (3.3), an algebraically stable method satis-
fies (E) and (S) simultaneously if b; > 0 for all ¢. For example, the Gauss-Legendre
and Radau ITA methods have this property (see, e.g., [3]); a general condition is
presented in [6] which ensures every b; of an algebraically stable method is positive
(p.200, Theorem 12.16).

On the other hand, an s-stage Runge-Kutta method is said to be minimal if its
stability function is included in R, s \ Rs—1,s—1, where R, », denotes the set of all
rational functions having degree of the numerator < m and degree of denominator
< n. It is shown that a minimal method is A-stable if and only if there is a symmetric
matrix @ > 0 which satisfies (3.4) (see, e.g., [15]). Therefore, an A-stable minimal
method also satisfies both (E) and (S) if b; > 0 for all 3.
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3.2. Discrete analogues of functionals

The following proposition can be proved by the same argument as in the proof
of Proposition 3.4 in [9], which deals with similar problems in the case of usual
equations without delayed arguments.

PROPOSITION 1. Assume that A is invertible. If (E) is satisfied and (LD) is
satisfied for S = P, then (2.10) has at least one solution for any h, tn, Un_k, Un—g.

Proof. Letting Z = X — I}Un_k and z, = e® (up — Kup—i), we write (2.10)
as

(3.5) Z = 2zp — MAQI)F(Ty, Z + KUp_p,Un_y) = 0.
It suffices to show that the function

HZ) = (A QI Z — 20 — MA@ I))F(Tn, Z + KUpn_1, Un_i)}
= (A'®I)(Z — 20) — hF(Tp, Z + KUpn_g, Upn_i)

has at least one zero.
Since

PAT 4+ (A HYTP=(A"H)T(PA+ATP)A™I >0

by (E), there is a real number a > 0 such that

(3.6) % (PAT'+(A™H)TP)—aP>0.
Hence,
(3.7) ZT (PA'®G)Z>aZ"(P®G)Z for Ze€ R*.

Furthermore, let B(0, R) denote the ball centered at 0 with radius R in R%
with a norm defined by

(z7(Pe&)2)"*, ZeR®.

Using (3.7) and (LD) for S = P, we can show that
ZT(PRG)®(Z)>0 for Z € dB(0,R)
if R is sufficiently large. Hence, by a lemma (see, e.g., [4], p.58, Lemma, 7.2) derived

from Brouwer’s fixed-point theorem, we conclude that & has at least one zero.

Q.E.D.

REMARK 2. Proposition 1 treats only the case where A is invertible, but there
are some methods with singular A for which the solvability of (2.10) is proved by
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the same argument as above. For example, we can show that (2.10) is solvable for
the Lobatto ITTA methods, by using the argument in the proofs of Theorems 14.7
and 14.8 in [6] together.

In the remainder of the paper, we assume that there are u,, U,, U}, n > -k,
which satisfy (2.8). Moreover, we assume the condition (S), and define an analogue
of the functional (2.2} by

k
(38) Vo= (un—Kun )" Gtn — Ktn_p) +h Y Ul . (Q® E)Un_m.

m=1
Then, an analogous relation to (2.3) is obtained.
PROPOSITION 2. For anyn > 0,

(39) Vn+1 - Vn < hWQ(Tny Un’ Un—k)

1s satisfied.
Proof. From (2.8), (2.7) it follows
Unt1 — Ktng1—g = Un — Kup_i + 2 (07 ® 1) —kUé_k)

(2
= tp — Ktn_p + h (0" @ 1) (U, - (I' @ K)U,,_})
un—Kun—k+h(bT®Id) Fn, Fy :F(TannaUn—k)'

Thus,

Vst — Vo = (Uns1 — Kuny1-8) T Gunty — Ktini1-k)
~ (tn — K1) TG (un — Kup_y)
+hUs (Q ® E)Up — hU_1(Q ® E)Up_y
= 2h(b® (un ~ Kun))” (I, ® G)F, + 2 FL (0T ® G)F,
+hUT(Q ® E)U, — hUL_(Q ® E)Up_p.

Furthermore, multiplying (2.9) by Q ® I; and simplifying it by Qe = b, we get
b® (un — Kun_g) = (Q® Io)(Un — KUp_1) — h(QA® I4)F,.
Substituting this in the above equation, we finally obtain
Vat1 — Vo = —h2FI ((QA+ ATQ — ") ® G) F,, + hi¥lg(T, U, Un—y).

Hence, (3.9) follows from the condition (S). Q.E.D.
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4. Stability of Natural Runge-Kutta Methods

We characterize the stability of the natural Runge-Kutta method (2.8) using
Proposition 2. To describe our results concisely, we introduce two quantities:

Wi = max fun—m|+ ‘/7_'1‘5“73’5% [Un—mll.

roo =1 —bTA e,
The former is a measure of initial values for (2.8); the latter is the value of the
stability function at the infinity when A is invertible.
THEOREM. Assume that (LD) is satisfied for S = Q.
(i) There is a constant C such that

(41) |un| < CWno fO"' n > no,

where ng 1S any nonnegative integer.

(il) Assume, in addition, that wg(o) > 0 for ¢ > 0. If A is invertible and
|reo| < 1, then the following statement (A) is true:

(A) Forany p, € > 0, there is a nonnegative integer N such that, if W,, < p,
then

(4.2) |un| <& for n>mng+ N,

where ng is any nonnegalive integer.
To prove Theorem, we prepare a simple lemma.

LEMMA. There are constants Cp, 0 < vp < 1 such that, for any positive
integer | and any real number B, if x, € R* for 0 < n < kl and y, € R® for
k <n < Kkl satisfy

Tp — KTk =UYn, |yn| <0 for k<n <Kl

then
[n/k)
< <n<
(4.3) lzn] < Co (ﬂ +% ocmax | |:1:m|> for 0<n <kl
where [ - | denotes the Gauss notation.

Proof. Define p, ¢ by p = [n/k], ¢ = n — kp, and let | - |, be a norm on R?
such that | K|, < 1. Simple computation gives

p—1

In = Z K'yp iyh+q + KP2q.
=0



120 T. Koto

Thus, we have

p—1
(44) [Tals < B 1KLL + |K|Pl2gls
=0
Since
p—1
. 1
YOIKL < —
=0 1- 1Kl
and all norms on R? are equivalent, (4.4) implies (4.3). Q.E.D.

Proof of Theorem. (i) By Proposition 2 and the condition (LD), we get
Vi <V, for n>ng,
which implies
tn = Ktn—t] < Cs (Jttny = Kttngi| + V7 max [Uno—ll)

for some Cy, since G >0, Q ® E > 0 and 7 = kh. Using Lemma, we obtain (4.1).
(ii) We first show the statement below:
(B) For any &1 > 0, there are an integer N; > 1 and a real number é; > 0
such that if

(4.5) |Unl| <61 for my <n<ng+ Ny —1,

then W, 4N, < €1, where n; is any nonnegative integer.
Let N3 be an integer which satisfies

(4.6) Ire|¥2Cp < 2—1

for C in (i), and let 62 > 0 be a real number such that
€
(47) | (6747 © L) Unll < (1~ Iraol)

for any ||U,|| < é2. Using N3 and 6, we define N; and é; by
€1
27"

Then, these N; and & fulfill the requirement for (B).
In fact, if (4.5) is satisfied, (4.7) is satisfied for n;y < n < n; + N; — 1. Since it
follows from (2.8.b) and (2.8.c) that

N1 =k+N2, (51 :min{ég,

(4.8 Up gl — Tooln = (bTA'1 ® Id) U,,
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the same computation as in the proof of Lemma gives
€
{4.9) lun] < —41 Froe| M g, | for n; <n<np+ Ny

If n > ny + Ny — k, then n — ny > N, by the definition of N;. Using (4.9), (i)
and (4.6), we get |up| < &1/4+e1/4=¢1/2for ng+ Ny —k <n <n;+N;. On
the other hand, ||U,]] < &1/(2y/7) for n; < n < ny + Nj —1 by the definition of ;.
Hence, Wy, +n, <€1/2+61/2=¢;.

We now show that (B) implies (A). Take £, in (B) as &; = £/C, and take an
integer I so that

(4.10) Czp2 - llth((Sl) <0,

where Cj; is a constant such that V,, < CzW,?L ,n > 0. Then, N = [{ Ny + 1 fulfills
the requirement for (A).
To show this, consider the disjoint union

-1
{neZ:ing+1<n<no+N-1}= ] Jp,
p=0

Jpz{nEZ:no+pN1+1§n§n0+(p+1)N1}.

There is a p such that ||U,|| < é; for any n € J,. If not, an n(p) € Jp with
IUn(pyll > 61 is taken for each p; hence, V;, 1,y < Vi, — l1hwg(61) by Proposition 2.
But, this contradicts V;, > 0 by (4.10). Therefore, it follows from (B) that there is
an ny < ng + N such that W,,, < e/C. This, together with (4.1), implies (4.2).
Q.E.D.

It is suspected that the condition |ro| < 1 in (ii) cannot be omitted to ensure
that the statement (A) is true for a general f. For example, consider the scalar
equation (without delayed arguments)

(4.11) u'(t) = At)u(t), t>0, A{)=-2 (t + 2)3 .

Since A(t) < —27/4, t > 0, (LC) is satisfied for V(u(t)) = u(t)? and w(o) =
(27/2)0?. Hence, if S is diagonal, (LD) is satisfied; if, in addition, S > 0, an wg can
be taken so that wg(c) > 0 for ¢ > 0.

Applying the implicit midpoint rule (the 1l-stage Gauss-Legendre method,
Too = —1) with A =1 to (4.11), we obtain

1—(n+2)3

Un+1 = I+—(11_+—2)3 Un .

Since

ﬁ (n+2P%-1_2
(n+2)3+1 3

n=0
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we have [u,| — (2/3)|ug| as n — oo; (A} is thus false.

This example suggests that f must satisfy some uniformity condition on ¢, for
(A) to be ensured in the case of methods lacking |ro| < 1. For example, consider
the condition below, which is clearly satisfied when f is independent of ¢, or given
by (3.1), (3.2).

(Cp) For any g¢ > 0, there is a 6y such that, if |z| < 8y and |y| < &y, then

|f(t,z,y)| <eg for teR.

Under the condition (Cg), we can use (2.9), instead of (4.8), to estimate |u,| by
U, || independently of T,,. Thus, when f satisfies (Cg), we can prove the same state-
ment as in (ii) by the same argument without the assumption that A is invertible
and |reof < 1.

8. Conclusion

We studied the stability of natural Runge-Kutta methods with aligned meshes
using nonlinear DDEs which have a quadratic Liapunov functional. Our main re-
sults are, in cases they have particular interests, summarized as follows. An al-
gebraically stable method with all b; positive preserves the uniform boundedness
of the solutions for every stepsize, and preserves also the uniform asymptotic sta-
bility of the zero solution if |ro| < 1, or if the original equation is autonomous.
An A-stable minimal method with all b; positive preserves the uniform asymptotic
stability for every stepsize, if the equation is a sufficiently small perturbation of a
linear autonomous equation (see (3.1)).

We thus revealed a meaning of algebraic stability and a new significance of A-
stability in the application of Runge-Kutta methods to DDEs. However,
Liapunov functionals treated here are very simple and not in general use. To apply
our technique to more complicated cases is an important problem in future.
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