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A natural  R u n g e - K u t t a  me thod  is a special type  of Runge-Kut t a  me thod  for delay dif- 
ferential equat ions (DDEs);  it is known tha t  any collocation me thod  is equivalent to one 
of such methods .  In this  paper,  stabil i ty proper t ies  of natural  Runge -Kut t a  me thods  are 
s tudied using nonl inear  DDEs which have a quadra t ic  Liapunov functional .  A discrete 
analogue of the  funct ional  is defined for each method ,  and the  stabil i ty of the  me thod  is 
examined on the  basis of this analogue. In part icular ,  it is shown tha t  an algebraically 
stable method,  if it satisfies an addit ional  condi t ion,  preserves the  asympto t i c  propert ies  
of the  original equat ions  for every stepsize. 
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tions, Liapunov funct ionals  

1. I n t r o d u c t i o n  

Various concepts of unconditional stability of Runge-Kutta methods have been 
introduced and studied from the viewpoint of their application to stiff equations. A- 
stability for linear autonomous equations and B-stability for contractive nonlinear 
equations are representative. It is also well known that  algebraic stability, which is 
introduced by an algebraic condition on the parameters of a method, is equivalent 
to B-stability for most Runge-Kutta methods (see, e.g., [6]). Recently, some studies 
[5, 15, 16] appeared which revealed a similarity between A-stability and algebraic 
stability; they have shown that A-stable methods are also characterized by algebraic 
conditions on their parameters of almost the same form as in the case of algebraically 
stable methods. 

Runge-Kutta methods can be also applied to delay differential equations 
(DDEs) by using some interpolation procedures. It would be significant to con- 
sider what meanings the above stability concepts have in the application of the 
methods to DDEs. Concerning A-stability, its meaning has been clarified to some 
extent. Zennaro [19] studied stability properties of Runge-Kutta methods with an 
interpolation procedure proposed by himself [18] using linear scalar test equations 
[1]. As a result, he has shown that  an A-stable method preserves the asymptotic 
stability of the zero solution for every stepsize, if the method has a kind of con- 
sistency with the interpolation procedure. The same results were obtained in the 
cases of scalar equations of neutral type [2], multi-dimensional equations [12], and 
multi-dimensional equations of neutral type [8]. On the other hand, in 't Hout [10] 
has proposed another type of interpolation procedure; he shows that  it can make 
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every A-stable method have the above property in the cases of scalar equations [t0] 
and multi-dimensional equations [11]. 

In those studies, difference equations obtained by the application of methods 
are directly considered, but  it does not seem easy to s tudy nonlinear cases by 
such an approach. In this paper, we discuss the stability of Runge-Kutta  methods 
for DDEs from a different point of v~ew; we study their stability using nonlinear 
DDEs which have a quadratic Liapunov functional. More specifically, we define a 
discrete analogue of the functional for each method, and examine the stability of 
the method by considering whether the analogue preserves the monotonicity of the 
original functional. Through such consideration, we show a meaning of algebraic 
stability a n d a  new significance of A-stability in the application of Runge-Kutta 
methods to DDEs. Our basic idea a n d a  part of our results in a restricted case are 
presented in [13] (see also [21] on nonlinear model equations oŸ another type). 

2. P r e l i m i n a r i e s  

2.1. D e l a y  d i f f e ren t i a l  e q u a t i o n s  
We consider initial value problems of the form 

(2.1.a) u'( t )  - K u ' ( t  - T) = f ( t , u ( t ) , u ( t  -- ":)), t > O, 

(2.1.b) u(t)  = ~(t),  - T  < t < 0, 

where u(t) �9 R d, ~- > 0 is a constant delay, K denotes a constant matrix whose 
spectra! radius is less than 1, and ~(t) is a given Cl-function. Furthermore, we 
assume that  f : (0, c~) • R d • R d --~ R d is locally Lipschitz continuous and satisfies 
f ( t ,  0, 0) = 0 for all t > 0. 

For the equation (2.1.a) we cons idera  functional of the forro 

fl (2.2) v ( u ( t ) )  = ( u ( t )  - K u ( t  - r ) ) r a ( u ( t )  - K u ( t  - r ) )  + u ( c ~ ) r E u ( ~ ) d ~ ,  
r F 

where G, E are eonstant symmetrie d x d-matriees whieh satisfy G > 0, E _> 0; the 
symbols '> 0' and '_> 0' indicate that  a matrix is a positive definite and nonnegative 
definite, respectively. When u(t) is a solution of (2.1.a), we get 

(2.3) d ~ ( ~ ( t ) )  = r ~(t), u ( t  - ~)) ,  
a ~  

r  x, y) = 2(x - K y ) T G f ( t ,  x ,  y) + x T E x  -- y T E y ,  x,  y E R d. 

Thus, by the standard argument (see, e.g., [14], p.31, Theorem 5.4, see also [7]), ir is 
shown that  the solutions of (2.1.a) are uni formly  bounded if r satisfies the following 
condition (LC). 

(LC) There is a continuous nondecreasing funetion w :  [0, oo) --~ [0, oo) sueh 
that  

r  < - w ( I x l )  for t > 0 ,  x , y  �9 R d. 
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Here, [. [ denotes a norm on R d. If, in addition, w(a) > 0 for a > 0, the zero solution 
of (2.1.a) is uniformly asymptoticaUy stable (ibid.). 

For example, consider the case f is linear and autonomous, i.e., 

(2.4) f ( t ,  u(t), u(t - ~-)) = Lu(t)  + Mu( t  - T), 

where L, M ate constant  matrices. Simple computat ion gives 

r x, y) = - (x  ~, yT)~(x~, y~)~, 

I - G L  - L T G -  E L T G K -  G M  
~2 ) ( L T G K - G M )  T K T G M  + M T G K  + E 

Q 

Hence, (LC) is satisfied if and only if t2 _> 0, and an w(a) is taken so tha t  w(a) > 0 
for a > 0 if $2 > 0. 

REMARK 1. The functional (2.2) has been used by Slemrod and Infante [17] to 
obtain sufficient conditions on coefficients in linear DDEs which ensure the asymp- 
totic stability of the zero solution. A discrete analogue of (2.2) based on the 0- 
method has been also examined in [17]. 

2.2. Natural Runge-Kutta  methods  
For the application of a Runge-Kut ta  method to (2.1), some interpolation 

procedure is needed which gives approximate values to u( t -T) ,  u ' ( t -7 )  in (2.1.a); we 
use a natural continuous extension [18] of the Runge-Kut ta  method to approximate 
those arguments. For simplicity of analysis, we t reat  only an aligned mesh, i.e., a 
mesh of the form 

i n  "~ hn, h = 7/k ,  n E Z, k : positive integer. 

An s-stage Runge-Kut ta  method applied to (2.1) is represented as follows: 

8 

U'~,~ f ( tn  + c~h, Un,i, • + K ~ ' ' = ~ j ( c ~ ) u ~ _ k , j ,  
j = l  

Un# = un + h aijU;,j, • = un + h E wj(ci)U;,j ,  
j=l j=l 

i = 1 , 2 , . . . , s ,  
8 

"an+ 1 U n + h E ' = bq i . 
i=1 

Here, un denotes an approximate value to u(tn), and Un,i, • u~,i are interme- 
diate variables; when n < 0 they are given, for example, by 

•  U~n,~=~'(tn+cih),  l < i < s ,  - k _ < n < 0 .  
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Moreover, aij, bi, ci are the parameters of the method, and wi(a)  are polynomials 
which satisfy a kind of order condition [18]. In particular, they satisfy 

(2.5.a) w i ( 0 ) = 0 ,  w~(1)=bi ,  l<i<s, 

s (7 q 

(2.5.b) E wi(cr)cq-1 = --' I < i < s, 1 _< q _< max {deg(w~)}. 
i = l  q l< i<s  

In addition, we assume that 

(2.6) a{j = wj(c{), 1 <_ i , j  <_ s. 

It is easy to see that  (2.5) and (2.6) imply 

(2.7) biwj(c~) = bj, l y j <_ s, a~,~wj(Cm) = a~j, l < i, j <_ s. 
i=I r n = l  

A Runge-Kutta  method is said to be natural, if it satisfies (2.6). It is known 
that any collocation method can be regarded as a natural Runge-Kutta  method 
[19, 20]. In particular, the Gauss-Legendre, Radau IIA, Lobat to IIIA methods (see, 
e.g., [3]) are considered as natural Runge-Kutta  methods. 

For notational convenience, we write the parameters of the method in the form 

A - -  (aij) ( l < i , j _ < s ) ,  b - - ( b l , b 2 , . . . , b e )  T , 

Furthermore, define 

and let 

for 

F=(w ' j ( c~ ) )  ( l_<i ,  j _<s ) .  

In  ---- (tn + clh, tn + c2h , . . .  , tn + csh) T e R s, 

un = ((un,l) T, (un ,~)~ , . . . ,  ( u n , J )  ~ e R d~, 

, {{U ! "~T ( U  t "~T t T T Rds u" = ~~ n , ,  ,~ n,~, , . . . , ( u ' ~ )  ) e 

F(O, X, Y) = (f(01, X1, Y1) T, f(02, X2, Y2)T,. . . ,  f(O~, Xs ,  Y , )T)  T 

8 = (01,02, . . . ,08) T �9 R ~, 

x : r x  ~ x ~  x f )  ~ ~ R ~~, Y (Y/ ,  Y / , . . ,  v•) ~ e R ~~ \ I ,  2 , ' ' ' ~  mE " " 
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Since • = Un-k,~ by (2.6), the natural  Runge-Kutta method is written in a 
compact form: 

(2.8,a) U~ = F(Tn, Un, Un-k) q- (F Q K)UIn_k, 

(2.8.5) Un = e | un + h(A | Id)U~, 

(2.8.c) "ttn+l = Un + h(b T | Id)U~n, 

where e = (1, 1 , . . . ,  1)T E R s, Id is the d x d identity matrix, and @ denotes 
Kronecker product. The condition (2.7) is also written in the form 

(2.7') bT F = b T, AF  = A. 

We thus get 

(2.9) 

un - F~Un-k = ~ | (un - K ~ n - k )  + h ( A  | Id )F(Tn ,  U. ,  Un--k), ~: = L | K .  

from (2.8.a) and (2.8.b), where Is is the s x s identity matrix. Since U~n is obtained 
from Us by (2.8.a), the approximate values un, n = 1, 2 , . . . ,  are succesively obtained 
if the equation 

(2.10) X - -KU,~-k = e @ (un - Kun-k )  + h(A | Id)F(Tn, X, Un-k) 

has a solution for each n > 0. 

3. D i s c r e t e  A n a l o g u e s  o f  L i a p u n o v  F u n c t i o n a l s  

3.1.  C o n d i t i o n s  o n  e q u a t i o n s  a n d  m e t h o d s  
To discuss the properties of the natural  Runge-Kutta  method (2.8), we prepare 

further notation. Let S be a nonnegative definite symmetric s x s-matrix, and define 

~s(O, X, Y) = 2(X - ~[Y)T ( s  | G)F(O, X,  Y)  + x T ( s  | E ) X  - y T ( s  @ E)Y. 

The following condition is an analogue of the condition (LC). 
(LD) There is a continuous nondecreasing function ws :  [0, co) --* [0, co) such 

that  

~'s(O,X,Y) <_ -0~s(lIXII) for 0 ~ R ~, X , Y  ~ R d~. 

Here, [[. II denotes a norm on R &. By the definition of #s ,  if S is diagonal, 
(LC) implies (LD). On the other hand, when f is linear and autonomous, since 

F(O, X, Y)  = (I~ | L ) X  + (I~ | M)Y, 

we obtain 

g's (0, X, Y) = - ( X  T, Y T ) ( s  | 19)(X T, yT)T.  
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Therefore, if (LC) is satisfied, (LD) is satisfied for any S > 0. 
Furthermore, let us consider a nonlinear perturbation of (2.4) of the forro 

(3.1) f ( t ,  u( t ) ,  u ( t  - T)) = Lu( t )  + M u ( t  - T) + sf0(t, u(t ) ,  u ( t  -- T)), 

where f0 : (0, co) x R d • R d ~ R d is assumed to satisfy 

(3.2) I fo ( t , x ,Y) l  <- Co(IXl + lYl) for t > 0, x , y  E R d 

f o r a  constant Co independent of t, x, y. Defining F0 in the same way as F,  we get 

~s(o, x, Y) = - ( x  ~, Y~)(s  | r~)(x ~, Y~)~ 

+ 2~(x - Yr | C)Fo(O, X, Y). 

Since there is a constant C such that  

I(X - ~Y)T(s | C)Fo(O, X, Y)I 

C (llXII 2 + IIYll 2) for e E R ~, X , Y  E R d* 

by (3.2), if S > 0 and ~2 > 0, then (LD) is satisfied for sui¡ small r 
Concerning Runge-Kutta  methods, we consider the following two conditions: 
(E) There is a symmetric matr ix P > 0 such that  

(3.3) P A  + A T  p > O. 

(S) There is a symmetric matr ix Q > 0 such that  

(3.4) Q A  + AT Q - bb T > O, Qe = b. 

Propositions described below have particular interests when one matrix fulfills 
both requirements for (E) and (S) simultaneously. Before proceeding the proposi- 
tions, we show two typical cases where this condition is satisfied. 

A Runge-Kutta  method is said to be algebraically stable ir Q -= 
diag(51,52,. . . ,  5s) satisfies (3.4) and Q > 0. Since, if some Q > o satisfies (3.4) 
and bi > 0 for all i, then P = Q satisfies (3.3), an algebraically stable method satis- 
fies (E) and (S) simultaneously if bi > 0 for all i. For example, the Gauss-Legendre 
and Radau IIA methods have this property (see, e.g., [3]); a general condition is 
presented in [6] which ensures every hi of an algebraically stable method is positive 
(p.200, Theorem 12.16). 

On the other hand, an s-stage Runge-Kutta  method is said to be minimal  if its 
stability function is included in Rs,s \ R s - l , ~ - l ,  where Rm,n denotes the set of all 
rational functions having degree of the numerator ~ m and degree of denominator 
< n. It is shown that  a minimal method is A-stable if and only if there is a symmetric 
matrix Q > 0 which satisfies (3.4) (see, e.g., [15]). Therefore, an A-stable minimal 
method also satisfies both (E) and (S) if b~ > 0 for all i. 
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3.2. Discrete  analogues  of  funct ionals  
The following proposition can be proved by the same argument as in the proof 

of Proposition 3.4 in [9], which deals with similar problems in the case of usual 
equations without delayed arguments. 

PROPOSITION 1. Assume that A is invertible. Ir (E) is satisfied and (LD) is 
satisfied for S = P, then (2.10) has at least one solution for any h, Un, Un--k, Un-k.  

Pro@ Letting Z = X - KUn-k and z n = e@ ('�91 n - -K?tn-k)  , w e  write (2.10) 
a s  

(3.5) Z - zn - h(A | Id)F(Tn,  Z + ti[Un-k, Un-k) = O. 

It suffices to show that  the function 

�9 (Z) = (A -1 @ Id){Z  -- zn -- h (A  | Id)F(Tn,  Z + ~[Un-k, Un-k)}  

= (A -1 | Id)(Z -- zn) -- hF(Tn,  Z + ~Ÿ Un_k) 

has at least one zero. 
Since 

P A  -x + ( A - 1 ) T P  = ( A - 1 ) T ( p A  + A T p ) A  -1 > 0 

by (E), there is a real number a > 0 such that  

(3.6) ~ 1 ( P A  -1 + ( A - 1 ) T P )  - - a P  > 

Hence, 

(3.7) Z T ( P A  - I |  Z > a Z T ( P |  for Z � 9  ds. 

Furthermore, let B(0, R) denote the ball centered at 0 with radius R in R ds 
with a n o r m  defined by 

( z T ( p |  1/2, Z �9 R ds. 

Using (3.7) and (LD) for S -- P,  we can show that  

z r ( P  | a)~(z)  > o f o r  z �9 OB(O, R) 

if R is sufficiently large. Hence, by a lemma (see, e.g., [4], p.58, Lemma 7.2) derived 
from Brouwer's fixed-point theorem, we conclude that  4~ has at least one zero. 

Q.E.D. 

REMARK 2. Proposition 1 treats only the case where Ais  invertible, but there 
are some methods with singular A for which the solvability of (2.10) is proved by 
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the same argument as above. For example, we can show that  (2.10) is solvable for 
the Lobatto IIIA methods, by using the argument in the proofs of Theorems 14.7 
and 14.8 in [6] together. 

In the remainder of the paper, we assume that there are Un, Un, UPn, n >_ - k ,  
which satisfy (2.8). Moreover, we assume the condition (S), and define an analogue 
of the functional (2.2) by 

(3.8) 
k 

Vn ---- (Un - K U n - k ) T G ( U n  -- K U n - k )  + h E U¡ | E ) U n - m .  
m ~ l  

Then, an analogous relation to (2.3) is obtained. 

P R O P O S I T I O N  2. For any n >_ 0, 

(3.9) Vn+l - Vn < h~Q(T~, Un, Un-k) 

is satisfied. 

Proof. From (2.8), (2.7') it follows 

U n + l  - -  K U n + l - k  ---- Un -- K U n - k  + h (b T | Id) (Un - f fŸ  

= Un -- K U n - k  "~- h (b T | Id) (UIn -- ( F  | K)U:_k)  

= u n - K u n - k + h ( b T |  Fn, Fn =F(Tn ,Un ,  Un_k). 

Vn+ 1 - V n : ( U n +  1 - -  K U n + I _ k ) T G ( U n + I  -- K U n + l _ k )  

- (u~ - Ku~_+)rC(un - Kun-k) 

+ hU$(Q | E)Un - hU$_k(Q | E)Un-k 

---- 2h (b | (un - Kun -k )  ) T (Is | G)Fn + h2 FT (bb T | G)Fn 

+ hU[(Q | E)U~ - hU[_+(Q | E)Un_k. 

Thus, 

Furthermore, multiplying (2.9) by Q | Id and simplifying it by Qe = b, we get 

b | (un - Kun-k )  = (Q | Id)(U,+ -- PlUs-k) - h(QA @ Id)Fn. 

Substituting this in the above equation, we finally obtain 

Vn + l Vn 2 T - = - h  F~ ((QA + ATQ -- bb T) | G) F~ + h~Q(Tn, Un, Un-k). 

Hence, (3.9) follows from the condition (S). Q.E.D. 
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4. Stability of  Natural  Runge-Kutta  Methods  

We characterize the stability of the natural  Runge-Kutta method (2.8) using 
Proposition 2. To describe our results concisely, we introduce two quantities: 

Wn ma~ IIU~-mll -~0<m<kmax ]Un-mi +V/~l<m< k 

r ~  = 1 -- b T A - l e .  

The former is a measure of initial values for (2.8); the latter is the value of the 
stability function at the infinity when A is invertible. 

THEOREM. A s s u m e  that (LD) is satisfied ]of S = Q. 
(i) There is a constant C such that 

(4.1) ]uni < CW~o /or n >_ no, 

where no is any nonnegative integer. 
(ii) Assume,  in addition, that wQ(a)  > 0 for  ~ > O. Ir A i s  invertible and 

Ir~l < 1, then the foUowing s ta tement  (A) is true: 
(A) For any p, ~ > O, there is a nonnegative integer N such that, ir W,~ o < p, 

then 

(4.2) lUnl <-- ~ for  n > no + N,  

where no is any nonnegative integer. 

To prove Theorem, we prepare a simple lemma. 

LEMMA. There are constants Co, 0 < ~/o < 1 such that, for  any positive 
integer l and any real number  ~, i f  xn E R d for  0 ~_ n ~_ kl and y~ E R d for  

le < n < kl satisfy 

x~ - Kx,~_k = y~, ]yn]<_~ [o f  k < n < kl, 

then 

(4.3) tXnl ~-- C~ (~  +"/[On~k] 0<m<k-lmax IXm{) for  0 < n < kl, 

where [. ] denotes the Gauss notation. 

Proof. Define p, q by p = [n/k], q = n - kp, and let I. I. be a norm on R a 
such that  IKI. < 1. Simple computation gives 

p--1 
i Xn = E K Y(p-i)k+q + KPxq �9 

izo 
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p--1 

(4.4) Ix~l, ~ ~ ~  IKl: + IKI,plxql,. 
i=0  

Since 

p-1 1 

E [K[*i < 1 _ [KI~' 
i : 0  

and all norms on R d are equivalent, (4.4) implies (4.3). 

Proof of Theorem. (i) 

Q.E.D. 

By Proposition 2 and the condition (LD), we get 

V~<V~ o for n > n 0 ,  

which implies 

q -- K U n - k l  <__ C l ( ] ~ n o  - K U n o - k l  + V ~ max HUno_mH) \ l<m<k  / 

for some C1, since G > 0, Q | E >_ 0 and ~" -- kh. Using Lemma, we obtain (4.1). 
(ii) We first show the statement below: 
(B) For any el > 0, there are an integer NI _> 1 a n d a  real number 51 > 0 

such that if 

(4.5) q _< 51 for ni  < n < ni + N1 - 1, 

then Wnl+N1 <_ ~1, where ni is any nonnegative integer. 
Let N2 be an integer which satisfies 

(4.6) [r~q < ~1 
- -  4 

for C in (i), and let 52 > 0 be a real number such that  

C1 
(4.7) ][ (bT A -1 |  Un[I <__ (1 - I r ~ l )  

for any q _< 52. Using N2 and 52 we defne  NI and 51 by 

N1 = k + N 2 ,  51 = r u i n  52, �9 

Then, these N1 and ~1 fulfill the requirement for (B). 
In faet, if (4.5) is satisfied, (4.7) is satisfied for ni < n < ni  + NI - 1. Sinee it 

follows from (2.8.b) and (2.8.e) that  

(4.8) Un+ 1 -- r ~ u n  = (bT A -1 | Id) Un, 



Runge-Kutta Methods for Nonlinear DDEs 121 

the same computation as in the proof of Lemma gives 

E1 
(4.9) I~�91 f o r  T � 9 1 1 9 1 1 9 1  1 . 

If n > Ÿ191 ~- N1 - -  k, then n - ni _> N2 by the definition of NI. Using (4.9), (i) 
and (4.6), we get lu,~] _< 61/4 + El/4 = 61/2 for ni + N1 - k < n < n I -~ N 1. On 
the other hand, HUnl] < c l / ( 2 v ~  ) for n I < r t  < n I @ N1 - 1 by the definition of 51. 
Hence, Wnl+N1 <-- 61/2 + a l /2  = al. 

We now show that  (B) implies (A). Take 61 in (B) as 61 = E/C, and ta~e a h  

integer tl so tha t  

(4.10) C2p 2 - llhwQ(51) < 0, 

where C2 is a constant such that  V~ < C2W~, n > O, Then, N = tlN1 + 1 fulfills 
the requirement for (A). 

To show this, consider the disjoint union 

/1--1 

{ n E  Z : n o +  l < n  < n o +  N - 1 } - -  U JP' 
p=0 

Jp = {n E Z :  no + pN1 + 1 < n < no + (p + 1)N1}. 

There is a p  such that  [[Un[[ _< 51 for any n E Jp. If not, an n(p) E Jp with 
I[Un(p)l[ > 51 is taken for each p; hence, Vn(ll) _< tino - / lhwQ(51)  by Proposition 2. 
But,  this contradicts V,~ > 0 by (4.10). Therefore, it follows from (B) that  there is 
an n2 _< no + N such that  W~~ < E/C. This, together with (4.1), implies (4.2). 

Q.E.D. 

It is suspected tha t  the condition Ira[ < 1 in (ii) cannot be omitted to ensure 
that  the statement (A) is true for a general f .  For example, consider the scalar 
equation (without delayed arguments) 

(4.11) u'(t) = A(t)u(t), t > 

Since A(t) < - 2 7 / 4 ,  t > 0, (LC) is 
(27/2)a 2. Hence, if S is diagonal, (LD) 
be taken so that  ws (a) > 0 for a > 0. 

( ~)~ o, ~ ( t ) = - 2  t +  . 

satisfied for V(u(t))  = u(t) 2 and w(a) = 
is satisfied; if, in addition, S > 0, an ~s  can 

Applying the implicit midpoint rule (the 1-stage Gauss-Legendre method, 
r a  = -1 )  with h = 1 to (4.11), we obtain 

Since 

1 - ( n  + 2) 3 
Un+l-- l + (n + 2) 3 Un. 

oo ( n  + 2) 3 - 1 2 

l - I  = -  n=o ( n +  2) 3 + 1 3' 
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we have Iu~~ I --~ (2/3)fuo t a s  n --~ oo; (A) is thus  false. 
This  example  suggests  tha t  f mus t  sat isfy some uni formi ty  condit ion on t, for 

(A) to be ensured in the case of m e t h o d s  lacking I r~ l  < 1. For example ,  consider 
the condit ion below, which is clearly satisfied when f is independen t  of t, or given 
by (3.1), (3.2). 

(Co) For any  ~o > 0, there is a 6o such tha t ,  ir q _< 5o and lYl -< 60, then  

I f ( t , x ,y ) l  <_ Eo for t e R. 

Under  the  condi t ion (Co), we can  use (2.9), instead of (4.8), to es t imate  q by  
II Un II independent ly  of Tn. Thus,  when  f satisfies (Co), we can prove  the same state-  
m e n t a s  in (ii) by the  same a rgument  wi thout  the  a s sumpt ion  t h a t  A is invertible 

and I r ~  I < 1. 

5. C o n c l u s i o n  

We s tudied  the  s tabi l i ty  of na tu ra l  R u n g e - K u t t a  me thods  wi th  Migned meshes  
using nonl inear  D D E s  which have a quadra t ic  Liapunov functional .  Our  main  re- 
sults are, in cases they  have par t i cu la r  interests,  summar ized  as follows. An al- 
gebraically s table  m e t h o d  with  all bi posi t ive preserves the  un i form boundedness  
of the solutions for every stepsize, and  preserves also the  un i form asympto t i c  s ta-  
bility of the  zero solution if I r~ l  < 1, or if the original equa t ion  is au tonomous .  
An A-stable  min ima l  me thod  with all bi posi t ive preserves the  uni form asympto t i c  
stabil i ty for every  stepsize, if the equa t ion  is a sufficiently small  pe r tu rba t ion  of a 
linear a u t o n o m o u s  equat ion (see (3.1)). 

We thus  revealed a meaning  of a lgebraic  stabil i ty and  a new significance of A- 
stabil i ty in the  appl icat ion of R u n g e - K u t t a  me thods  to  DDEs.  However,  
Liapunov funct ionals  t r ea ted  here are very  simple and not  in general  use. To app ly  
our technique to  more  compl ica ted  cases is an impor t an t  p rob lem in future. 
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