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We consider the compressible Euler equations with damping. The singular behavior of the
flow near vacuum and the large-time states are of particular interest. A class of solutions
is constructed and shown to converge to the self-similar solutions of the porous media
equation. The porous media equation is derived from the Euler equations through Darcy’s

law. Thus we have justified Darcy’s law for the compressible flow time-asymptotically.
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1. Introduction

Consider the compressible Euler equations with damping

pe+ V- (p’l_!,') =0, (1'1)1

(p@), + V- p(d Q) + Vp(p) + —apd, (1.1)

where p, i, p are the density, velocity, and pressure, respectively, of the gas, and
the friction constant ¢ is positive. We assume that the gas is polytropic

plp)=kp?, k>0, v>1 (1.2)

It is well-known that the Euler equations possess shock waves. Our interest, though,
is in the singular behavior of the flow near the vacuum p = 0. We also want to study
the large-time behavior of solutions to (1.1) and relate it, time-asymptotically, to
the often-called “porous media equation”;

pe = a1 Ap(p), (1.3)

when (1.1); is simplified to Darcy’s law
Vp(p) = —api. (1.4)

For (1.3) basic understanding is provided by the self-similar solutions of
Barenblatt, [2]. We will construct a class of particular solutions for (1.1} which
tend to the Barenblatt solutions time-asymptotically. This establishes Darcy’s law
for the compressible flows in the time-asymptotic sense.
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For gas flows away from the vacuum, p > py > 0, the damping prevents shocks
from forming, [7]. No other singularity emerges from the flow and it can be shown
relatively easily that (1.1) and (1.3) are time-asymptotically equivalent, [3]. The
main interest, however, is in the vacuum, and this is the concern of the present
paper. The study of vacuum is also important in other physical situations such
as astro-physics, [5], [6]. As in the present situation, the external forces dictate the
singular behavior of the solutions near the vacuum. It would be interesting to study
the general solutions for these physical models.

In the next section we give a heuristic analysis of the nature of the singular-
ity near vacuum for general solutions of (1.1). This motivates the construction of
explicit solutions in the following section. The time-asymptotic behavior of these
solutions is then studied in Section 4.

REMARK. Some of the results in the present paper have been announced in
i4]. The author would like to thank Professor Tetu Makino for his urging to write
this paper.

2. Boundary Singularity

The sound speed c is given by
¢ =p'(p) = kv (2.1)

The characteristic speeds for (1.1) are formed by # and c. Since we do not consider
shocks, there is no need to keep the equations in conservation form and it is natural
to rewrite (1.1) in terms of ¥ and ¢

() +V(c?) T+ (vy-1)AV - T =0, (2.2,

fl;t + ('l_l: V)’ﬁ‘*‘ (’)‘ - 1)—1V(C2) = —ovil. (22)2

We now investigate the behavior of a solution near vacuum p = ¢ = 0. The trajec-
tory of the free boundary

r'={(t):p(&,t) 2 0} N {(£,1}: p(,1) =0}
coincides with the gas particle paths:

dE(t)
o = (E(). 1) (2.3)

Thus {2.2),, specified on I", becomes

i
d—;‘ tai= —(y-1)19(). (2.3)s

Generically, the acceleration di/dt of I would be finite and (2.3); would yield

(&) = n(&,¢) - |&(t) - &,
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for some function #(Z,t) differentiable up to I". Thus we have
e(F, 1) = |E(t) — 2|2 (2.4),

near 1. In particular, the sound speed is not Lipschitz continuous. The characteristic
speed of (1.1) are therefore not Lipschitz continuous near vacuum. This implies that
the characteristic surfaces hit the vacuum surface I' tangentially and then bounce
back. It is interesting to note that for p > 0, (1.1) is hyperbolic and for p = 0, it is
nondiagonizable and parabolic; while the reverse is true for {1.3).

From (2.4) we have

p(&,) = |&(t) - /207D,
p(%,1) = |&(t) — F"/207Y

near I'. These singularities are the same as for the solutions of the porous media
equation (1.3), [2]. Such a singularity would hold generically when the free boundary
I" moves. Same as for (1.3), the phenomenon of waiting time, before which the free
boundary I" does move, also occures for (1.1) when the initial value is smooth, [1].
This follows from the local existence theory of smooth solutions, cf. [5].

3. Explicit Solutions

We look for two types of particular solutions, spherical and plane-wave solu-
tions, of (1.1). For spherical solutions, (2.2) becomes

(c*)s + u({c®)z + nT—l('y - 1tu + (v — 1)cPu, =0, (3.11

1
v—1

z= (gx,?)l/z, i = (¥/z)u.

We consider solutions with finite mass:

g + Uty + o+ (c*). =0, (3.1)2

p(z,£) =0, for |z > (e(t)/b(t))"/?,
and with the ansatz, cf. (2.4),
c*(z,t) = e(t) — b(t)z?, (3.2)1

u(z,t) = a(t)z. (3.2)2

Plug (3.2) into (3.1) and compare the coefficients for z*, i = 0,1,2, to yield the
following ordinary differential equations for the functions a(t), b(t), and e(t):

e +n(y—1)ea =0, (3.3)
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b + {(nv —n+2)ab=0, (3.3)2

2
a +a*+aa— ——b=0. (3.3)3
v—1

It can be shown through simple phase-plane analysis of (3.3)2 and (3.3); for a(t)
and b(t} that a{t), b(¢) and ¢(t) exist for all time. This yields solutions for (1.1} for
each given initial value a(0), 5(0}, and (0).

There also exist explicit plane wave solutions for (1.1), z € R!. Consider

Az, ty= D(e(t) —z), = <elt),
u(x,t) = aflt),
for a constant D. From {2.2) with n = 1 we have

a'+oa=—"—, €& =a,
¥y—1

which can easily be solved to obtain

D

ZeEr R

a(t) = a(0)e™ " +

e(t) = e(0) + (5"—(&0—) - %) (1—e )+ %t.

This class of solutions tend, as { — oo,
c(z,t) = (v — Dalupt — z),
u(r,t) = ug, T < ugt.

These are travelling wave solutions of (1.1) with any given speed up > 0. They are
also the travelling wave solutions of the porous media equation (1.3). In the next
section we will show that solutions with finite mass (3.2}, (3.3) of (1.1) are also
time-asymptotic solutions of {1.3).

4, Time-asymptotic Behavior

To analyze the phase-plane diagram of (3.2) and (3.3) we set the curve I'i, I3
in the {a, b}-plane as follows:

—1 X
(a® + aa),

In: b= ada.
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Along the trajectories of (3.3)

b <0, a >0, between b-axisand Iy, (4.1);
bV <0, & =0 on I, (4.1),

¥ <0, o <0, between a-axis and I, (4.1)3
gg = %(n'y—n+2)(’y—l)a, on I5. (4.1)4

From (4.1} we see that a{t), b{t) — 0, as ¢ — oc. As we will see later, the
Barenblatt’s self-similar solutions for (1.3) move along the curve I3, We there-
fore call I'y the Darcy’s line. (4.1} says that all trajectories of (3.3) are transversal
to I, at a constant angle 8:

2(ny —n+ 1){v - D

tanf = :
M v —n+2) (v — D22 + 4

Nevertheless, we will show that the trajectories of (3.3) will come around and
approach the Darcy’s line I3 as t — oo.

PROPOSITION.  Solutions of (3.3) tend to the Darcy’s line I -

b(t -1
(—)—>7——a as t— oo.

a(t) 2

Proof. TFrom (3.3)

b\ Wa—da'b 2
() =—a—:f-—=—(nfy—n+1)b+a—b———2—(g) .

a a

Given any small £ > 0, consider the curve
2 2 5
I.: ~(ny —n+1)ba® + avba — —1{; = za”,
Y

which is below I'; and has slope

at origin (0,0). The slope tends to that of I as € — 0. Below I7, (g)’ > &£. Thus
any trajectory can stay below I, at most for finite time. Since £ is arbitrary, each
trajectory eventually approaches I'. Q.E.D.
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The Barenblatt’s self-similar solutions of (1.3) can be obtained by the same
ansatz as (3.2):

c*(z,t) = &(t) — b(t)z?, (4.2)1

u(z,t) = a(t)z. (4.2)2

Plugging this into the porous media equation, (1.1); and (1.4), or, equivalently,
(3.1); and

ou+ (), =0 (4.3)

-1

we obtain the system of ordinary differential equations

g +n(y— ez =0, (4.4);
b+ (ny —n+ 2)ab =0, (4.4),
20

This (4.4) is the same as (3.3) except for the third equation (4.4)3, which says that
the solutions move aong I;. (4.4)3 follows from the Darcy’s law (4.3) and so we
call I; the Darcy’s line. (4.4) can be integrated directly to yield the Barenblatt’s
solutions:

1
a(t) = ———t ! 4.5
a(t) ny-n+2 (45)s
7 (y=Da
b(t) = ————"— .
®) 2(nfy—n+2)t ’ (45);
&(t) = egt (Y- 1)/ (ny—n+2), (4.5)3

Here we have made the normalization that the support of the solution is a point
z = 0 at the initial time ¢ = 0 so that @(0) = 5{(0) = co. The positive constant eg is
related to the total mass m through

VE(R)/b(1)
m = Qn_1/ . plz, )z tde

0
VE®)/BE)
= Oy (ky)" MO f ((z, )~ g1 g
1}

VE()/b(8) _ _

(&(t) — b(t)x?)/ ("D gn—1dy

s (k) =1/ =D) /

0
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0

— n/2
= -Qn—l(k'y)‘lf(”"l) (M) LPT=nt2)/2(r-1)

(v—1a

1
f (1 ="/ 0Dy dy,
0
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(4.6)

THEOREM. The solutions (3.2), (3.3) of the system (1.1) with total mass m
tend to the self-similar Barenblatt solutions (4.5), (4.6) of the porous media equation

(1.3), (1.4) :

(45,90 = @5,8)(0) + O,

as t — oo. Here the bound O(1) is independent of t > 1, but varies with the

trajectories of (3.3). In particular, the supports {z : 22 < e(t)/b(t)} and {z : 2% <

g(t)/b(t)} are time-asymptotically the same.
Proof. From the Proposition and {3.3)2 we have

2(ny —n+2)
a(y=1)

for some 0(1) — 0 as t — oo. This implies

b+ (1+0Q))¥* =0,

b(t) = D(t)t ', b(t)=O0(1)t2,

for some function D(#) positive and bounded away from zero. Thus we have from

(3.3)3 and the Proposition that a(t) = O(1)t™?, and so

2 2
"baf + —— b =g — — ¥ = O(1}t72,
Frel=om=) o -1’ oW
2
=qg- ——b.
vy
This can be solved to yield
2

f(t) = a(t) b(t) = O(1)t™2 = O(1)b(t)t .

Co(y-1)
Thus we conclude

la(t)] + [b(t) = O(1)¢ 7,
I

Yo b(t)| = O(1)b(t)t™, as t— oo.

a(t) —

(4.7)

From the above identities and (3.3); we may compare the function b(t) with b(t) of

(45)2
Bt (ny —n+2)(1 + 0t~ 1H? =0,
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i

bt) = [bto) " + [ (my =t 21+ O1)s)ds]

ta
= b(t) (1 + O(l)lnTt) . (4.8)
Plug (4.7), (4.8) into (3.3)1 to obtain
e +n(y—1)ea (1 + O(I)I—I:—t) =0,

- [f n(y-vya(syas -~ [ ns/s)ds
e(t) = eftg)e” o MOTIEE [ 0o/

= As(t) (1 + 0(1)[0 ln—,sds)

52

= Az(t) (1 + 0(1)1‘”) , (4.9)

t
for some constant A. Note that both (1.1} and (1.3) satisfy the same conservation
law

m:/ plz, t)dz.

— o

When we apply this time-asymptotically it follows from (4.6), (4.8) and (4.9) that
A = 1. This completes the proof of the theorem. Q.E.D.
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