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Compressible Flow with Damping and Vacuum* 
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We consider the compressib[e Euler equations with damping. The singular behavior of the 
flow neax vacuum and the large-time states are of particular interest. A c|ass of solutions 
is constructed and shown to converge to the self-similar solutions of the porous media 
equation. The porous media equation is derived from the Eu|er equations through Darcy's 
law. Thus we have justified Darcy's law for the compressib|e flow time-asymptoticMly. 
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1. I n t r o d u c t i o n  

Consider the compressible Euler equations with damping 

Pt § V .  (p~7) = O, (1.1 h 

(p~7)t + V .  p ( ª  ~7) + Vp(p)  + -ap~7, (1.1)2 

where p, g, p a r e  the density, velocity, and pressure, respectively, of the  gas, and 
the friction constant  a is positive. We assume t h a t  the gas is polytropic  

p ( p ) = k p  ~, k > 0 ,  7 >  1. (1.2) 

It  is well-known tha t  the Euler equations possess shock waves. Our  interest, though,  
is in the singular behavior  of  the flow near the vacuum p = 0. Wc also want  to  s tudy  
the  large-time behavior  of  solutions to (1.1) and  relate it, t ime-asymptot ical ly,  to  
the oŸ "porous media equation": 

pt = a - I  Ap(p),  (1.3) 

when  (1.1)2 is simpli¡ to  Darcy 's  law 

v p ( p )  = -~p~ (1.4) 

For (1.3) basic unders tand ing  is provided by the self-sinailar solutions of 
Barenblat t ,  [2]. We will eonstruct  a class of  par t icular  solutions for (1.1) whieh 
tend  to  the Barenbla t t  solutions t ime-asymptotical ly.  This establishes Darcy ' s  law 
for the compressible flows in the t ime-asymptot ic  sense. 
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For gas flows away from the vacuum, p >_ p0 > 0, the damping prevents shocks 
from forming, [7]. No other singularity emerges from the flow and it can be shown 
relatively easily tha t  (1.1) and (1.3) are time-asymptotically equivalent, [3]. The 
main interest, however, is in the vacuum, and this is the concern of the present 
paper. The s tudy of vacuum is atso important  in other physical situations such 
as astro-physics, [5], [6]. As in the present situation, the external forces dictate the 
singular behavior of the solutions near the vacuum. It would be interesting to study 
the general solutions for these physical models. 

In the next section we give a heuristic analysis of the nature of the singular- 
ity near vacuum for general solutions of (1.1). This motivates the construction of 
explicit solutions in the following section. The time-asymptotic behavior of these 
solutions is then studied in Section 4. 

REMARK. Some of the results in the present paper have been announced in 
[4]. The author would like to thank Professor Tetu Makino for his urging to write 
this paper. 

2. B o u n d a r y  S i n g u l a r i t y  

The sound speed c is given by 

~~ = p' (p) = kTp ~- ~. (2.1) 

The characteristic speeds for (1.1) are formed by ª andc .  Since we do not eonsider 
shocks, there is no need to keep the equations in conservation form and it is natural 
to rewrite (1.1) in terms of g and c: 

(~2)~ + v ( ~ 2 ) .  , i  ~ (-~ - 1 )~2v  �9 ~ = o, (2 .2h  

~Tt + (~7. V ) ª  ('7 -- 1)-'V(c2) = - a u .  (2.2)2 
We now investigate the behavior of a solution near vacuum p = c = 0. The trajec- 
tory of the free boundary 

r -  { (~ , t ) :  o(~,t)  > o} n { ( i , t ) :  p(~,t) = o} 

coincides with the gas particle paths: 

d~( t )  _ ~(c~(t), t) .  (2.3), 
dt 

Thus (2.2)2, specified on F, becomes 

dª  
d-7 + ~ ~  = - ( ~  - 1) l V ( ~ 2 )  (2.3)2 

Generically, the acceleration d g / d t  o f / "  would be finite and (2.3)2 would yield 

c~(~, t) = n(:e, t ) .  I~(t) - ~l, 
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for some function Ÿ t) differentiable up to F. Thus we have 

e(~, t) ~ I~(t) - ~l 1/~ (2.4)1 

near F. In particular, the sound speed is not Lipsehitz continuous. The characteristic 
speed of (1.1) are therefore not Lipschitz continuous near vacuum. This implies that  
the characteristic surfaces hit the vacuum surface F tangentially and then bounce 
back. It is interesting to note that for p > 0, (1.1) is hyperbolic and for p = 0, it is 
nondiagonizable and parabolic; while the reverse is true for (1.3). 

From (2.4) we have 

p(~,t) ~ I~(t) - ~11/~(,-1), 
p(2,t) ~= I~(t)- ~1 ~/2(~-a) 

near F. These singularities are the same as for the solutions of the porous media 
equation (1.3), [2]. Such a singularity would hold generically when the free boundary 
F moves. Same as for (1.3), the phenomenon of waiting time, before which the free 
boundary F does move, also occures for (1.1) when the initial value is smooth, [1]. 
This follows from the local existence theory of smooth solutions, cf. [5]. 

3. Explicit Solutions 

We look for two types of particular solutions, spherical and plane-wave solu- 
tions, of (1.1). For spherical solutions, (2.2) becomes 

(c2) t + u(c2)z + n - 1 (7 - 1) c2u + (7 - 1)c2u~ = 0, (3.1)1 
X 

1 
+ uux + c~u + 7 ~ ~ 1  (C2)z = 0, (3.1)2 Ut 

(~~i~/1'~ ~,/ 
We consider solutions with finite mass: 

p(x,t)  =-- 0, for Ix t > (e(t)/b(t)) 1/a, 

and with the ansatz, cf. (2.4), 

c2(x,  t) = e( t )  - b ( t )x  2, (z.2)1 

u(x,  t) = a( t )x .  (3.2)2 

Plug (3.2) into (3.1) and compare the coefficients for x i, i = 0, 1,2, to yield the 
following ordinary differential equations for the functions a(t), b(t), and e(t): 

el + Ÿ191 -- 1 )~a  = 0, (3.3)1 
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b' + (n 7 - n + 2)ab O, (3,3)2 

2 
a '  + a ~ + a a -  b = 0, (3,3)3 

7 - 1  

Ir can be shown through simple phase-p lane  analysis  of (3.3)2 and  (3.3)3 for a(t) 
and b(t) t ha t  a(t) ,  b(t) and c(t) exist for all t ime. This  yields solutions for (1.1) for 
each given initial  value a(0), b(0), and c(0). 

There  also exist  explicit plane wave solu~ions for (1.1), x E R 1. Consider 

c 2 ( x , t )  = D(e( t )  - x), x < e(t),  

~(~ ,  t) = ~(t) ,  

for a cons tant  D.  From (2,2) with n = 1 we have 

D a ~ + a a  - 
~ - 1 '  

e t ~ a :  

which can easily be solved to obta in  

a(t) = a(O)e -~ '  + - -  
D 

a ( ?  - 1)(1 - e-~~),  ~ 

e(t) = e(O)+ /[a(O) D \] ( 1 -  D 
a 2 ( ~ -  1) / e -ca) + - - t .  \ ~ ( ~ / -  1) 

This class of solut ions tend, as t --* oc, 

c2(x, t) = (7 -- 1)a(u0t  - x), 

u ( x , t )  = uo, x < uot. 

These  are t ravel l ing wave solutions of (1.1) with any given speed u0 > 0. T h e y  are 
also the t ravel l ing wave solutions of the  porous  med ia  equat ion  (1.3). In the  next  
section we will show tha t  solutions wi th  ¡  mass  (3.2), (3.3) of (1.1) are also 
t ime-asympto t i c  solutions of (1.3). 

4. T ime-asymptot i c  Behavior 

To analyze the  phase-plane  d i ag ram of (3.2) and (3.3) we set the curve/"1,  F2 
in the (a, b)-plane as follows: 

1 F l : b =  7 (a 2 + a a ) ,  
2 

F ~ : b  7 - 1  - - c s  
2 
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Along the t ra jector ies  of (3.3) 

b' < 0, a ~ > 0, between b-axis and F1, 

29 

(4.1h 

b ' < 0 ,  a ' = 0 ,  on /"1, (4.1)2 

b' < O, a ~ < O, between a-axis  and/"1 ,  (4.1)3 

db 1 
da ~ ( n T -  n + 2 ) ( ' / - -  1)a ,  on /'2. (4.1)4 

F rom (4.]) we see t ha t  a(t), b(t) --+ 0, as t --~ oe. As we will see later ,  the 
Ba renb la t t ' s  self-similar solutions for (1.3) move along the  curve F2. We there- 
fore call/2. 2 the Darcy ' s  line. (4.1)4 says tha t  all t ra jec tor ies  of (3.3) are t ransversa l  
to  F2 a t a  constant  angle O: 

t an  t) = 2(n~ - n + 1 ) ( ' / -  1)a  
( n ' / -  n + 2 ) ( ' / -  1)2a2 + 4" 

Nevertheless,  we will show tha t  the t ra jec tor ies  of  (3.3) will come axound and 
approach  the Darcy ' s  line 1~ as t ~ ce. 

PROPOSITION. SoIutions of (3.3) $end to the Darcy's tine 1"2 : 

~(t) " / -  1 
- -  --+ - - O z ~  a 8  t - - +  O C .  
~(t) 2 

Proof. From (3.3) 

(ha)' b 'a-a'‰ ab 2 ( b )  2 
- -  a~----y~ - -  (n 7 - n + l ) b +  

a " / - - 1  

Given  any small  s > 0, consider the curve 

F~ : - ( n ' / - n + l ) b a  2 + a b a - -  

which is below F2 and has  slope 

r a > ~ - 1  2r 
2 7 - 1  2 a 

at  origin (0,0). The  slope tends  to  t ha t  of F2 a s r  -~ 0. Below F~, ( ~ ) '  > E. Thus  
any  t r a j ec to ry  can s tay  below F~ at  most  for finite t ime. Since ~ is a rb i t ra ry ,  eacll 
t r a j ec to ry  eventual ly  approaches  1"2. Q.E.D.  
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The  B a r e n b l a t t ' s  self-similar solut ions of (1.3) can be ob ta ined  by the  same 
ansatz  as (3.2): 

c2(x, t) = ~(t) - b(t)x 2, (4.2)1 

u(x, t) = ~(t)x. (4 .2)2  

Plugging this in to  the porous  med ia  equat ion,  (1.1)1 and (1.4), or, equivalently, 
(3.1)1 and 

1 
a u  + - -  -(c 2 7 - l- )x = 0 (4 .3)  

we obta in  the  sys t em of ordinary  differential  equat ions 

~' + n (~  - 1)~~ ---- 0, (4.4)1 

~' + ( n ~  - n + 2 ) ~  = 0, (4.4)2 

2 b  
a ~  - . (4.4)3 

7 - 1  

This  (4.4) is the  same  as (3.3) except  for the third equat ion (4.4)3, which says t ha t  
the solutions move  aong F2. (4.4)3 follows f rom the Darcy ' s  law (4.3) and so we 
call /"2 the D a r c y ' s  line. (4.4) can be  in tegra ted  direct ly to yield the  Barenb la t t ' s  
solutions: 

1 
~ ( t ) -  t 1, (4.5)1 

n T - n + 2  

b(t) = (~/-- l ) c ~  
2(n~ - n + 2) t - l '  (4.5)2 

~(t) = eot -n(~-1)/(~~-'~+2). (4 .£  

Here we have m a d e  the normaJizat ion t h a t  the  suppor t  of the  solution is a point  
x = 0 a t  the  initiaJ t ime  t -- 0 so t ha t  ~(0) = �91 = oz. The  posi t ive  constant  e0 is 
related to the  to ta l  mass  m through  

m = ~2,~-i ] p(x, t )x"- ldx  
, l  O 

= ~~_,(kz)-l/(~ 1)fv~�91 
J o  

= ~n-l(k~/) -1/('y-1) f ~ ( ~ ( t )  - -b(t)x2)l/('r-I)x'~-ldx 
JO 
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= ~'~n-- l ( ~~)--l/ ('T--1) ( 2(7�91 -- l�91 -[- ~) )n/2 = ~~"~ 

f 1 ( 1  _ y 2 ) l / ( ' ~ - l ) y ~ - l  dy" 

]o 
(4.6) 

THEOREM. The solutions (3.2), (3.3) of the sys tem (1.1) with total mass  m 
tend to the self-similar Barcnblatt  solutions (4.5), (4.6) of the porous media equation 
(1.3), (1.4) : 

(a, b, c)( t) = (~, �91 g)(t  ) + O ( 1 ) I t  t , 

as t --~ cx~. Here the bound O(1) is independent of t >_ 1, but varies with the 
trajectories of  (3.3). In  particular, the supports { x :  x 2 < e( t ) /b( t ) }  and { x :  x 2 < 
-g( t ) /-�91 t ) } are t ime-asymptotically the same. 

Pro@ From the  Propos i t ion  azld (3.3)2 we have 

2(n7 - n + 2) (1 + O(1))b 2 = O, b'§ ~(-(-~(~: ~) 
for some 0(1) --~ 0 as t --~ c~. This implies 

b(t) = D( t ) t  1, b•(t) • O(1) t  -2,  

for some funct ion D(t)  positive and bounded away from zero. Thus  we have from 
(3.3)3 and the Proposi t ion t ha t  a(t) = O(1)t  -1 ,  and  so 

2 b' = - a  2 2 b' = O(1)t  -2,  f '  + s Ÿ  + ~(~ _ 1------) ~ (~  _ 1~ 

This  can be solved to yield 

f ( t )  = a(t)  

Thus  we conclude 

2 
f -- a o~(7 _ 1)b. 

2 O(1) t_  2 O(1)b( t ) t_  1 a (~  _ 1) b ( t )  = = . 

la(t)l + lb(t)l = O(1) t  -1,  

a(t) ~(~y-_-~)2 b(t) = O(1)b( t ) t  -1,  as t --* oc. (4.7) 

From the above identities and (3.3)2 we may  compare  the function b(t) with �91 of 
(4.5)2: 

b' + ( n ~ / -  n + 2)(1 + O(1) t -1 )b  2 = O, 
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b(t) = [b(to) 1 + (n~, n + 2)(1 + O(1)s - i )d s  

= ~(t) (1 + o ( i ) ~ � 9 1  (4.s) 

Plug (4.7), (4.8) into (3.3)1 to obtain 

e' + n(~~- l)~n (l + O(1)[~ t) =0, 

~(t) = ~(t0)~ ~o ~ ~~o 

( f ~176 ' 
= A~(t) i + O(1) .--fi-ds) 

= A~(t)(l+O(1)~~-), (4.9) 

for some constant A. Note that  both (1.1) and (1.3) satisfy the same conservation 
law 

m = O(x, t)dx. 

When we apply this time-asymptotically it follows from (4.6), (4.8) and (4.9) that  
A = 1. This completes the proof of the theorem. Q.E.D. 
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