Japan J. Indust. Appl. Math., 12 (1995), 285-308

Variable Coefficient A-stable Explicit Runge-Kutta Methods

Masaharu NAKASHIMA

Department of Mathematics, Faculty of Science, Kagoshima University, Korimoto, Kagoshima 890, Japan e-mail: naka@sci.kagoshima-u.ac.jp

Received September 20, 1993

The explicit Runge-Kutta methods possessing extended stability regions have already been discussed by many authors including van der Houwen [6]. It is the purpose of the present paper to derive a class of variable coefficients A-stable explicit Runge-Kutta methods. Some numerical tests justifying the results are given.

 $Key \ words:$ initial-value problem, stability, Runge-Kutta method, variable coefficients formulae

1. Introduction

The present paper is concerned with the numerical integration for the stiff system of ordinary differential equations:

$$y' = f(x, y), \quad y(x_0) = y_0, \quad y \in \mathbb{R}^m,$$
(1.1)

or if we rewrite (1.1) in it's component form

$${}^{l}y' = {}^{l}f(x, {}^{1}y, {}^{2}y, {}^{3}y, \dots, {}^{m}y), \quad y(x_{0}) = y_{0} \quad (l = 1, 2, \dots, m).$$
(1.2)

A basic difficulty in the numerical solution of stiff systems is the satisfying of the requirement of stability. By the restriction of stability, implicit methods have been proposed, and some explicit methods imposing stability conditions have been derived; however, there is still a stability problem for an explicit method. So it is the purpose of the present paper to derive the explicit A-stable Runge-Kutta methods (abb. R-K methods) with respect to the model equation defined in (2.4). Using the idea of deriving stabilized R-K methods explored by P.J. van der Houwen [6], we propose variable coefficients A-stable R-K methods. The outline of this paper is as follows: In §2, we consider two-stage first order and three-stage second order R-K methods. In §3, we propose some numerical tests.

2. Derivation of the Formulae

Consider *r*-stage explicit R-K methods:

$${}^{l}y_{n+1} = {}^{l}y_{n} + h\sum_{i=1}^{r} {}^{l}b_{i}{}^{l}k_{i},$$
(2.1)

$${}^{l}k_{1} = {}^{l}f(x_{n}, {}^{1}y_{n}, {}^{2}y_{n}, \dots, {}^{m}y_{n}),$$

$${}^{l}k_{i} = {}^{l}f(x_{n} + c_{i}h, {}^{1}y_{n} + h\sum a_{ij}{}^{1}k_{j}, \dots, {}^{m}y_{n} + h\sum a_{ij}{}^{m}k_{j}),$$

$$c_{i} = \sum a_{ij} \qquad (i = 2, \dots, r) \ (l = 1, 2, \dots, m).$$

Here the weights $\{^{l}b_{i}\}$ vary with the component. Introducing the vector notations

$$\begin{split} Y_p &= [{}^1y_p, {}^2y_p, \dots, {}^my_p], \quad K_i = [{}^1k_i, {}^2k_i, \dots, {}^mk_i], \\ B_i &= \text{diag}[{}^1b_i, {}^2b_i, \dots, {}^mb_i], \end{split}$$

we may write (2.1) in the form

$$Y_{n+1} = Y_n + h \sum_{i=1}^r B_i K_i.$$

The order conditions of Runge-Kutta methods which are discussed in [1], are listed up to second order:

order 1:
$$\sum{}^{l}b_{i} = 1, \qquad (2.2)$$

order 2:
$$\sum {}^{l}b_{i}c_{i} = 1/2.$$
 (2.3)

Let us now apply the r-stage, p-th order R-K methods (2.1) to the test equation

$${}^{l}y' = \lambda_{l}{}^{l}y, \quad \operatorname{Re}(\lambda_{l}) < 0 \qquad (l = 1, 2, \dots, m),$$

$$(2.4)$$

then we have the stability polynomial

$${}^{l}y_{n+1} = S(z_l){}^{l}y_m, (2.5)$$

where $S(z_l)$ takes the form

$$S(z_l) = \sum_{i=0}^{p} \frac{(z_l)^i}{i!} + \sum_{\kappa=p+1}^{r} \gamma_{\kappa} z_l^{\kappa} \qquad (z_l = \lambda_l h).$$
(2.6)

Thus, the method (2.1) is A-stable if for all h > 0

$$|S(z_l)| < 1.$$

In this paper, the case of (p, r) = (1, 2) and (2, 3) in (2.6) are discussed.

2.1. Two-stage first order Runge-Kutta formulae Setting p = 1 and r = 2 in (2.6), we have

$${}^{l}y_{n+1} = (1 + z_l + {}^{l}b_2a_{21}z_l^2){}^{l}y_n.$$
(2.7)

If ${}^{l}b_{2}a_{21}$ takes the form

$${}^{l}b_{2}a_{21} = \frac{\sum_{i=0}^{s} \widetilde{b}_{i}z_{l}^{i}}{\sum_{i=0}^{m} \widetilde{a}_{i}z_{l}^{i}}$$

$$(2.8)$$

$$(\widetilde{a}_{i}, \widetilde{b}_{i}; \text{ constants}),$$

then, putting (2.8) to (2.7), it is required that

$$m \le s - 1,$$

where s is any positive integer. Many formulas may be considered in determining (2.8), in this paper, we study the case s = 2, 3 in the first order and s = 2, 3, 4 in the second order. Hereafter, for simplicity of expression, we abbreviate z_l by z. Assuming ${}^{l}b_{2}a_{21}$ in the form

$${}^{l}b_{2}a_{21} = \frac{\delta + \rho z}{\alpha + \beta z + \gamma z^{2}},$$
(2.9)

then we have

$${}^{l}y_{n+1} = \frac{\alpha + (\alpha + \beta)z + (\beta + \gamma + \delta)z^{2} + (\gamma + \rho)z^{3}}{(\alpha + \beta z + \gamma z^{2})} {}^{l}y_{n},$$
(2.10)

where the undetermined parameters $\alpha, \beta, \gamma, \delta$ and ρ must be chosen so that (2.10) satisfies the A-stability conditions.

Case (I) (s = 1): Firstly, we consider the case $\gamma = \rho = 0$ in (2.9), putting those values in (2.10), we have the stability conditions

$$\beta + \delta = 0$$
 and $|R(z)| < 1$

with

$$R(z) = rac{lpha + (lpha + eta)z}{lpha + eta z},$$

which lead to the conditions

$$\alpha\beta < 0 \quad ext{and} \quad lpha(lpha+2eta) < 0.$$

If we take, for example, $\alpha = 1$, $\beta = -1$, and $\gamma = \rho = 0$, then (2.9) reduces to

$${}^{l}b_{2}a_{21} = \frac{1}{1-z},\tag{2.11}$$

and (2.10)

$${}^{l}y_{n+1} = \frac{1}{1-z} {}^{l}y_{n},$$

which is an A-stable algorithm. In determining the coefficient ${}^{l}b_{2}$ from order condition (2.2), we leave ${}^{l}b_{2}$ as a free parameter which is specified in the form

$${}^{l}b_{2}a_{21} = \frac{{}^{l}y_{n}}{{}^{l}y_{n} - h^{l}u_{1}}$$
(2.12)

where ${}^{l}u_{1} = {}^{l}f(x_{n}, {}^{1}y_{n}, {}^{2}y_{n}, \dots, {}^{m}y_{n}).$

It is easily seen that (2.12) applied to the test function (2.4) gives the same value as that of (2.11) and is bounded by

$$\left|\frac{1}{1-z}\right| < 1$$
 for $\operatorname{Re}(z) < 0$.

From those results, we may set ${}^{l}b_{2}$ as follows:

(i) If
$$-1 < D_1 = \frac{{}^{\prime} y_n}{{}^{l} y_n - h^l z_1} < 1$$
, then
 ${}^{l} b_2 = D_1 / a_{21},$ (2.13)

(ii) If
$$|D_1| \ge 1$$
, then

$$^{l}b_{2} = \operatorname{sgn}(D_{1})/a_{21}, \tag{2.14}$$

where ${}^{l}z_{1} = {}^{l}f(x_{n}, {}^{1}y_{n}, {}^{2}y_{n}, \dots, {}^{m}y_{n}).$

Therefore, solving the first order condition (2.2) with (2.13) and (2.14), we have the *l*-th component coefficients of R-K methods (2.1)

(A) if $|D_1| < 1$, then

$${}^{l}b_{2} = \frac{D_{1}}{a_{21}}, {}^{l}b_{2} = 1 - {}^{l}b_{1}, {}^{c}c_{2} = a_{21}$$
 (2.15)
(a₂₁: free parameter),

(B) if $|D_1| \ge 1$, then

$${}^{l}b_{2} = \frac{\operatorname{sgn}(D_{1})}{a_{21}}, \quad {}^{l}b_{1} = 1 - {}^{l}b_{2}, \quad c_{2} = a_{21}$$
 (2.16)
(a₂₁: free parameter).

Case (II) (s = 2): From (2.10), we have the stability conditions

$$\gamma + \rho = 0 \quad \text{and} \quad |S(z)| < 1 \tag{2.17}$$

with

$$S(z) = \frac{\alpha + (\alpha + \beta)z + (\beta + \gamma + \delta)z^2}{\alpha + \beta z + \gamma z^2},$$
(2.18)

which lead to

- (i) $\gamma + \rho = 0$,
- (ii) $\beta^2 4\alpha\gamma < 0$, or $\beta^2 4\alpha\gamma > 0$, $\beta\gamma < 0$, $\alpha\gamma > 0$,
- (iii) $(\beta + \delta)(2\gamma + \beta + \delta) < 0, \quad \alpha(2\delta \alpha) > 0.$

If, for example, we take the parameters α , β , γ , δ and ρ satisfying the conditions (i), (ii) and (iii)

$$\alpha = 1, \quad \beta = -2, \quad \gamma = 1, \quad \delta = 1 \quad \text{and} \quad \rho = -1,$$

then (2.9) reduces to

$${}^{l}b_{2}a_{21} = \frac{1-z}{1-z+z^{2}},$$
(2.19)

and (2.10)

$$^{l}y_{n+1} = rac{1-z}{1-z+z^{2}} ^{l}y_{n},$$

which is an A-stable algorithm. By the same reason stated in the case (I), we may replace (2.19) by the function

$${}^{l}b_{2}a_{21} = \frac{{}^{l}y_{n} - h^{l}u_{1}}{{}^{l}y_{n} - 3h^{l}u_{1} + 2h^{l}u_{2}}$$
(2.20)

with ${}^{l}u_1 = {}^{l}f(x_n, {}^{1}y_n, \dots, {}^{m}y_n), \ {}^{l}u_2 = {}^{l}f(x_n + h/2, {}^{1}y_n + h^{1}u_1/2, \dots, {}^{m}y_n + h^{m}u_1/2).$ It is easily seen that the function (2.19) is bounded by

$$\left| \frac{1-z}{1-z+z^2} \right| < 1$$
 for $\operatorname{Re}(z) < 0$.

From those results, we may set ${}^{l}b_{2}$ as follows:

(i) if
$$-1 < D_2 = \frac{{}^l y_n - h^l u_1}{{}^l y_n - 3h^l u_1 + 2h^l u_2} < 1$$
, then
 ${}^l b_2 = D_2/a_{21},$ (2.21)

(ii) if $|D_2| > 1$, then

$$b_2 = \operatorname{sgn}(D_2)/a_{21},$$
 (2.22)

where ${}^{l}u_1 = {}^{l}f(x_n, {}^{1}y_n, \dots, {}^{m}y_n), {}^{l}u_2 = {}^{l}f(x_n + h/2, {}^{1}y_n + h^{1}u_1/2, \dots, {}^{m}y_n + h^{m}u_1/2).$

Solving the order conditions in the component form, from (2.2), (2,21) and (2.22), we have the *l*-th component coefficients

(A) if
$$-1 < D_2 = \frac{{}^{l}y_n - h^{l}u_1}{({}^{l}y_n - 3h^{l}u_1 + 2h^{l}u_2)} < 1$$
, then we take
 ${}^{l}b_2 = \frac{D_2}{a_{21}}, \ {}^{l}b_1 = 1 - {}^{l}b_2, \ c_2 = a_{21}$ (2.23)
(a_{21} : free parameter),

(B) if $|D_2| \ge 1$, then we take

$${}^{l}b_{2} = \frac{\operatorname{sgn}(D_{2})}{a_{21}}, \ {}^{l}b_{1} = 1 - {}^{l}b_{2}, \ c_{2} = a_{21}$$
 (2.24)
(a₂₁: free parameter).

2.2. Three stage second order Runge-Kutta formulae

In this section, we discuss the second order methods. Applying the test function (2.4) to the second order R-K methods, we have the numerical processes

$${}^{l}y_{n+1} = \left(1 + z + \frac{z^{2}}{2} + {}^{l}b_{3}a_{32}a_{21}z^{3}\right){}^{l}y_{n}.$$
(2.25)

Assuming ${}^{l}b_{3}a_{32}a_{21}$ in the form

$${}^{l}b_{3}a_{32}a_{21} = \frac{\delta + \rho z + \tau z^{2}}{2!(\alpha + \beta z + \gamma z^{2} + \eta z^{3})},$$
(2.26)

we have

$${}^{l}y_{n+1} = \frac{2\alpha + 2(\alpha + \beta)z + (\alpha + 2\beta + 2\gamma)z^{2} + (\beta + 2\gamma + 2\eta + \delta)z^{3} + (\gamma + 2\eta + \rho)z^{4} + (\eta + \tau)z^{5}}{2!(\alpha + \beta z + \gamma z^{2} + \eta z^{3})}ly_{n}.$$
 (2.27)

Proceeding in the same way as in the case of the first order, we give some A-stable algorithms.

Case (I) (s = 1): Firstly, we consider the case $\gamma = \eta = \rho = \tau = 0$ in (2.26), putting those values in (2.27), we have the stability conditions

$$lpha = -2eta \quad ext{and} \quad \delta = -eta,$$

which lead to

$${}^{l}b_{3}a_{32}a_{21} = \frac{1}{2(2-z)},\tag{2.28}$$

and (2.27) takes the form

$${}^{l}y_{n+1} = \frac{2+z}{2-z} {}^{l}y_{n},$$

which is an A-stable algorithm. It is easily seen that if we set

$${}^{l}b_{3}a_{32}a_{21} = \frac{{}^{l}y_{n}}{2(2^{l}y_{n} - h^{l}u_{1})}$$

$$\tag{2.29}$$

with ${}^{l}u_1 = {}^{l}f(x_n, {}^{1}y_n, {}^{2}y_n, \ldots, {}^{m}y_n)$, then (2.29) applied to the test function (2.4) gives the same value as that of (2.28). It can be shown that the function (2.28) is bounded by

$$\left| rac{1}{2(2-z)} \right| < rac{1}{4} \quad ext{for} \quad ext{Re}(z) < 0.$$

From those results, we may set ${}^{l}b_{3}$ as follows:

(i) if
$$-\frac{1}{4} < D_3 = \frac{{}^l y_n}{2(2^l y_n - h^l u_1)} < \frac{1}{4}$$
, then we take
 ${}^l b_3 = D_3/a_{32}a_{21},$ (2.30)

(ii) if
$$|D_3| \ge \frac{1}{4}$$
, then we take
 ${}^lb_3 = \operatorname{sgn}(D_3)/(4a_{32}a_{21}),$ (2.31)

where ${}^{l}u_{1} = {}^{l}f(x_{n}, {}^{1}y_{n}, {}^{2}y_{n}, \dots, {}^{m}y_{n}).$

Therefore, solving the second order conditions (2.2), (2.3) with (2.30) and (2.31), we have the *l*-th components coefficients of R-K methods (2.1).

(A) if
$$|D_3| < \frac{1}{4}$$
, then we set
 ${}^lb_3 = \frac{D_3}{a_{32}a_{21}}, {}^lb_2 = \frac{1}{c_1}\left(\frac{1}{2} - {}^lb_3c_3\right),$ (2.32)
 ${}^lb_1 = 1 - ({}^lb_2 + {}^lb_3),$
 $c_2 = a_{21}, c_3 = a_{31} + a_{32}$
 $(a_{21}, a_{31}, a_{32}: \text{ free parameters}),$
(B) if $|D_3| \ge \frac{1}{4}$, then we set

$${}^{4} b_{3} = \frac{\operatorname{sgn}(D_{3})}{4a_{32}a_{21}}, \ {}^{l}b_{2} = \frac{1}{c_{1}}\left(\frac{1}{2} - {}^{l}b_{3}c_{3}\right),$$

$${}^{l}b_{1} = 1 - ({}^{l}b_{2} + {}^{l}b_{3}),$$

$${}^{c}c_{2} = a_{21}, \ c_{3} = a_{31} + a_{32}$$

$$(a_{21}, a_{31}, a_{32}: \text{ free parameters}).$$

$$(2.33)$$

Case (II) (s = 2): Secondly, we consider the case $\eta = \tau = 0$ in (2.26), we put those values to (2.27) which leads to the following stability conditions

$$\beta + 2\gamma + \delta = 0, \ \gamma + \rho = 0 \text{ and } |S(z)| < 1$$
 (2.34)

with

$$S(z) = \frac{2\alpha + 2(\alpha + \beta)z + (\alpha + 2\beta + 2\gamma)z^2}{2!(\alpha + \beta z + \gamma z^2)},$$
(2.35)

which lead to

(i) $\beta + 2\gamma + \delta = 0, \gamma + \rho = 0,$

(ii) $\beta^2 - 4\alpha\gamma < 0$, or $\beta^2 - 4\alpha\gamma > 0$, $\beta\gamma < 0$, $\alpha\gamma > 0$,

(iii) $(\alpha + 2\beta)(\alpha + 2\beta + 4\gamma) < 0.$

If, for example, we take the parameters α , β , γ , δ and ρ satisfying the conditions (i), (ii) and (iii)

$$\alpha = 1, \ \beta = -1, \ \gamma = 1/2, \ \delta = 0 \ \text{and} \ \rho = -1/2,$$

then (2.26) reduces to

$${}^{l}b_{3}a_{32}a_{21} = \frac{-z}{2(2-2z+z^{2})}.$$
(2.36)

Substituting (2.36) into (2.25) yields

$${}^{l}y_{n+1} = \frac{2}{2-2z+z^{2}}{}^{l}y_{n},$$

which is an A-stable algorithm. As the same reason stated in case (I), we may replace (2.36) by the function

$${}^{l}b_{3}a_{32}a_{21} = \frac{-h^{l}u_{1}}{4({}^{l}y_{n} - 2h^{l}u_{1} + h^{l}u_{2})}$$
(2.37)

with ${}^{l}u_1 = {}^{l}f(x_n, {}^{1}y_n, \dots, {}^{m}y_n), {}^{l}u_2 = {}^{l}f(x_n + h/2, y_n + h^{1}u_1/2, \dots, {}^{m}y_n + h^{m}u_1/2).$ It is easily seen that the function (2.36) is bounded by

$$\left| \frac{-z}{2(2-2z+z^2)} \right| \le \frac{1}{4\sqrt{2}} \quad \text{for} \quad \text{Re}(z) < 0,$$

so we may set ${}^{l}b_{3}$ as follows

(i) if
$$-\frac{1}{4\sqrt{2}} \le D_4 = \frac{-h^l u_1}{4(ly_n - 2h^l u_1 + h^l u_2)} \le \frac{1}{4\sqrt{2}}$$
, then
 $lb_3 = D_4/(a_{32}a_{21}),$ (2.38)

(ii) if
$$|D_4| > \frac{1}{4\sqrt{2}}$$
, then
 ${}^lb_3 = \operatorname{sgn}(D_4)/(4\sqrt{2} a_{32}a_{21}),$ (2.39)

where ${}^{l}u_1 = {}^{l}f(x_n, {}^{1}y_n, \dots, {}^{m}y_n), {}^{l}u_2 = {}^{l}f(x_n + h/2, {}^{1}y_n + h^{1}u_1/2, \dots, {}^{m}y_n + h^{m}u_1/2).$

Thus, solving the second order conditions with (2.38) and (2.39) in the same way as in case (I), we have the *l*-th component coefficients of R-K methods (2.1)

(A) if
$$|D_4| \leq \frac{1}{4\sqrt{2}}$$
, then we have
 ${}^lb_3 = \frac{D_4}{a_{32}a_{21}}, \; {}^lb_2 = \frac{1}{c_2}\left(\frac{1}{2} - {}^lb_3c_3\right),$
 ${}^lb_1 = 1 - ({}^lb_2 + {}^lb_3), \; c_2 = a_{21}, \; c_3 = a_{31} + a_{32}$
 $(a_{21}, a_{31}, a_{32}: \text{ free parameters}),$
(2.40)

Variable Coefficient A-stable R-K Methods

(B) if
$$|D_4| > \frac{1}{4\sqrt{2}}$$
, then we have
 ${}^lb_3 = \frac{\operatorname{sgn}(D_4)}{4\sqrt{2}a_{32}a_{21}}, \ {}^lb_2 = \frac{1}{c_2}\left(\frac{1}{2} - {}^lb_3c_3\right),$ (2.41)
 ${}^lb_1 = 1 - ({}^lb_2 + {}^lb_3), \ c_3 = a_{31} + a_{32}$
 $(a_{21}, a_{31}, a_{32}: \text{ free parameters}).$

Case (III) (s = 3): From (2.27), we have the stability conditions

$$\gamma + 2\eta + \rho = 0, \ \eta + \tau = 0 \text{ and } |S(z)| < 1$$
 (2.42)

with

$$S(z) = \frac{2\alpha + 2(\alpha + \beta)z + (\alpha + 2\beta + 2\gamma)z^2 + (\beta + 2\gamma + 2\eta + \delta)z^3}{2!(\alpha + \beta z + \gamma z^2 + \eta z^3)}, \quad (2.43)$$

which lead to

(II) u > 0

or

(ii)'
$$\alpha < 0, \beta > 0, \gamma < 0, \eta > 0,$$

or

$$(\mathrm{ii})'' \quad \alpha \eta < 0, \ D < 0,$$

or

(ii)'''
$$\alpha < 0, \eta > 0, D \ge 0, -2DS_1 + (9\alpha\eta - \beta\gamma) < 0,$$

or

$$\begin{array}{ll} (\mathrm{ii})^{\mathrm{iv}} & \alpha > 0, \, \eta < 0, \, D \geq 0, \, -2DS_2 + (9\alpha\eta - \beta\gamma) > 0, \\ & \mathrm{with} \, \, D = \gamma^2 - 3\beta\eta, \, S_1 = -(\gamma + D)/3\eta, \, S_2 = -(\gamma + D)/3\eta, \\ (\mathrm{iii}) & \alpha(-\alpha + 4\gamma + 2\eta + 4\delta) + 4\beta\delta > 0, \, (\beta + 2\gamma + \delta)(\beta + 2\gamma + 4\eta + \delta) < 0. \end{array}$$

(iii) $\alpha(-\alpha + 4\gamma + 2\eta + 4\delta) + 4\beta\delta > 0$, $(\beta + 2\gamma + \delta)(\beta + 2\gamma + 4\eta + \delta) < 0$. If, for example, we take the parameters α , β , γ , δ and η satisfying the conditions (i), (ii) and (iii)

$$\alpha = 1, \ \beta = 1, \ \gamma = 0, \ \eta = -50, \ \delta = 99,$$

then (2.26) reduces to

$${}^{l}b_{3}a_{32}a_{21} = \frac{99 + 100z + 50z^{2}}{2(1 + z - 50z^{3})}.$$
(2.44)

Putting (2.44) into (2.25) yields

$${}^{l}y_{n+1} = \frac{2+4z+3z^{2}}{2(1+z-50z^{3})}{}^{l}y_{n},$$

which is A-stable algorithm. Analyzing in the same way as in case (I), we may replace (2.44) by the function

.

$${}^{l}b_{3}a_{32}a_{21} = \frac{99^{l}y_{n} + 100h^{l}u_{2}}{2({}^{l}y_{n} - 99h^{l}u_{1} + 200h^{l}u_{2} - 100h^{l}u_{3})}$$
(2.45)

with ${}^{l}u_1 = {}^{l}f(x_n, {}^{1}y_n, \dots, {}^{m}y_n), \ {}^{l}u_2 = {}^{l}f(x_n + h/2, \ {}^{1}y_n + h^{1}u_1/2, \dots, \ {}^{m}y_n + h^{m}u_1/2), \ {}^{l}u_3 = {}^{l}f(x_n + h, {}^{1}y_n + h^{1}u_2, \dots, {}^{m}y_n + h^{m}u_2).$ The function (2.44) is bounded by

$$\left|\frac{99 + 100z + 50z^2}{2(1 + z - 50z^3)}\right| < 49.5 \quad \text{for } \operatorname{Re}(z) < 0.$$

So we may set ${}^{l}b_{3}$ as follows

(i) if
$$-49.5 < D_5 = \frac{99^i y_n + 100h^i u_2}{2(ly_n - 99h^l u_1 + 200h^l u_2 - 100h^l u_3)} < 49.5$$
, then
 $lb_3 = D_5/(a_{32}a_{21}),$ (2.46)

(ii) if $|D_5| \ge 49.5$, then

$$^{l}b_{3} = \operatorname{sgn}(D_{5})/(a_{32}a_{21}).$$
 (2.47)

where ${}^{l}u_1 = {}^{l}f(x_n, {}^{1}y_n, \dots, {}^{m}y_n), {}^{l}u_2 = {}^{l}f(x_n + h/2, {}^{1}y_n + h^{1}u_1/2, \dots, {}^{m}y_n + h^{m}u_1/2), {}^{l}u_3 = {}^{l}f(x_n + h, {}^{1}y_n + h^{1}u_2, \dots, {}^{m}y_n + h^{m}u_2).$ In the same way as previously, from (2.2), (2.3), (2.46) and (2.47) we have the *l*-th

In the same way as previously, from (2.2), (2.3), (2.46) and (2.47) we have the *l*-th component coefficients of R-K methods (2.1)

(A) if $|D_5| < 1$, then we have

$${}^{l}b_{3} = \frac{D_{5}}{a_{32}a_{21}}, \ {}^{l}b_{2} = \frac{1}{c_{2}}\left(\frac{1}{2} - {}^{l}b_{3}c_{3}\right),$$

$${}^{l}b_{1} = 1 - \left({}^{l}b_{2} + {}^{l}b_{3}\right), \ c_{2} = a_{21}, \ c_{3} = a_{31} + a_{32},$$

$$\left(a_{21}, a_{31}, a_{32}: \text{ free parameters}\right),$$

$$(2.48)$$

(B) if $|D_5| \ge 1$, then we have

$${}^{l}b_{3} = \frac{\operatorname{sgn}(D_{5})}{a_{32}a_{21}}, \ {}^{l}b_{2} = \frac{1}{c_{2}}\left(\frac{1}{2} - {}^{l}b_{3}c_{3}\right),$$

$${}^{l}b_{1} = 1 - ({}^{l}b_{2} + {}^{l}b_{3}), \ c_{3} = a_{31} + a_{32},$$

$$(a_{21}, a_{31}, a_{32}: \text{ free parameters}).$$

$$(2.49)$$

3. Computational Results

We propose numerical methods whose numerical processes applied to the test function are bounded. We restrict our study on the number of function evaluations and the largest step-size whose numerical processes are stable, i.e., using the error bound, the largest step-size whose absolute error is bounded. By some numerical comparison the methods described in the preceding section with Runge-Kutta type methods indicate that our methods are much more efficient than other R-K methods for the numerical solution of stiff equations. The test problems are taken from the

examples of A.I. Johnson and J.R. Barney [1] and Hull, Enright and Sedgwick [3]. The methods considered are

Explicit Runge-Kutta Type Formulas.

Euler 1: Euler's First-Order Formulas.

Heun 2: Heun Second-Order Formulas.

Nyström 3: Nyström Third-Order Formulas.

Implicit Runge-Kutta Type Formulas.

Euler 1: Euler's First-Order Formulas.

Gauss 2: Gauss 1-point Second-Order Formulas.

Radau 3: Radau 2-point Third-Order Formulas.

Variable Coefficients Explicit Runge-Kutta Type Formulas.

VCRK1:

case I :
$$\frac{\frac{1}{2}}{b_1 \ b_2}$$
 case II : $\frac{\frac{1}{2}}{\tilde{b}_1 \ \tilde{b}_2}$ case II : $\frac{1}{2}$

where b_1 and b_2 are given by (2.15), (2.16) and \tilde{b}_1, \tilde{b}_2 by (2.23), (2.24).

VCRK2:

$$\operatorname{case I}: \begin{array}{c|c} \frac{1}{2} & \frac{1}{2} & & \frac{1}{2} & \frac{1}{2} & & \frac{1}{2} & \frac{1}{2} \\ 1 & \frac{6}{7} & \frac{1}{7} & & \operatorname{case II}: & 1 & \frac{6}{7} & \frac{1}{7} & & \\ \hline & b_1 & b_2 & b_3 & & & & \hline & \widetilde{b}_1 & \widetilde{b}_2 & \widetilde{b}_3 \end{array} \text{ case III}: \begin{array}{c} \frac{1}{2} & \frac{1}{2} & & \frac{1}{2} & \frac{1}{2} \\ 1 & \frac{6}{7} & \frac{1}{7} & & \frac{1}{7} & \frac{6}{7} & \frac{1}{7} \\ \hline & \widetilde{b}_1 & \widetilde{b}_2 & \widetilde{b}_3 \end{array}$$

where b_1 , b_2 and b_3 are given by (2.32), (2.33), \tilde{b}_1 , \tilde{b}_2 , \tilde{b}_3 by (2.40), (2.41) and \bar{b}_1 , \bar{b}_2 , \bar{b}_3 by (2.48), (2.49).

We set the heading

- Fev: number of function evaluations necessary to integrate the given integration interval.
- SDj: the absolute error of the *j*-th component with respect to a given reference solution.

Problems

(1) A linear, modestly stiff system with real eigenvalues:

$$Y' = AY, \quad Y(0) = (1, 1, 1, 1),$$

with

$$A = \left(egin{array}{ccccc} -0.5 & 0 & 0 & 0 \ 0 & -1.0 & 0 & 0 \ 0 & 0 & -100.0 & 0 \ 0 & 0 & 0 & -90.0 \end{array}
ight),$$

its theoretical solution is

$$Y(x) = \left(e^{-0.5x}, e^{-x}, e^{-100x}, e^{-90x}\right).$$

(2) A linear, modestly stiff system with real eigenvalues:

$$\begin{split} Y' &= AY, \quad Y(0) = (0,2), \\ \text{with} \\ A &= \begin{pmatrix} -500.5 & 499.5 \\ 499.5 & -500.5 \end{pmatrix}, \end{split}$$

its theoretical solution is

$$y_1(x) = \exp(-x) - \exp(-1000x),$$

 $y_2(x) = \exp(-x) + \exp(-1000x).$

(3) A linear, highly stiff system with real eigenvalues:

$$Y' = AY, \quad Y(0) = (0, 2),$$

with

$$A = \left(\begin{array}{cc} -500000.5 & 499999.5 \\ 499999.5 & -500000.5 \end{array}\right),$$

its theoretical solution is

$$y_1(x) = \exp(-x) - \exp(-1000000x),$$

$$y_2(x) = \exp(-x) + \exp(-1000000x).$$

(4) A linear, highly stiff system with real eigenvalues:

$$Y' = AY, \quad Y(0) = (1, 1, 1, 1)$$

with

$$A = \begin{pmatrix} -10^5 & 10^2 & -10 & 1 \\ 0 & -10^4 & 10 & -10 \\ 0 & 0 & -10 & 10 \\ 0 & 0 & 0 & -1 \end{pmatrix},$$

its theoretical solution is

$$Y(x)=(u(x),\,\,v(x),\,\,w(x),\,\,z(x)),$$

where

$$\begin{split} u(x) &= c_1 \exp(-10^5 x) + c_2 \exp(-10^4 x) + c_3 \exp(-10x) + c_4 \exp(-x), \\ v(x) &= 900c_2 \exp(-10^4 x) - \exp(-10x)/8991 + 10 \exp(-x)/89991, \\ w(x) &= (10 \exp(-x) - \exp(-10x))/9, \\ z(x) &= \exp(-x), \\ c_2 &= \frac{1}{900} \left(1 + \frac{1}{12208779} \right), \ c_3 &= \frac{1}{89991} \left(1 - \frac{10}{999} \right), \\ c_4 &= \frac{1}{99999} \left(1 - \frac{100}{9} + \frac{1000}{89991} \right), \ c_1 &= 1 - c_2 - c_3 - c_4. \end{split}$$

(5) A linear, highly stiff system with complex eigenvalues:

$$Y' = AY, \quad Y(0) = (1, 1, 1, 1)$$

with

$$A = \left(egin{array}{cccc} -10^4 & 10^3 & 0 & 0 \ -10^3 & -10^4 & 0 & 0 \ 0 & 0 & -10 & 100 \ 0 & 0 & -100 & -10 \ \end{array}
ight),$$

its theoretical solution is

$$Y(x) = (u(x), v(x), w(x), z(x)),$$

where

$$\begin{split} u(x) &= \exp(-10^4 x)(\cos(10^3 x) + \sin(10^3 x)),\\ v(x) &= \exp(-10^4 x)(\cos(10^3 x) - \sin(10^3 x)),\\ w(x) &= \exp(-10 x)(\cos(10^2 x) + \sin(10^2 x)),\\ z(x) &= \exp(-10 x)(\cos(10^2 x) - \sin(10^2 x)). \end{split}$$

CONCLUSION. The purpose of this paper is to develop efficient numerical algorithms of explicit R-K methods for solving stiff differential equations. From the numerical result of example I, we know that our methods are stable for the test problem. By comparing the results of Tables I, II, we see that among the first order methods, (2.23) and (2.24) are more efficient than (2.15) and (2.16), and among the second order algorithms, (2.48) and (2.49) are more efficient.

4. Additional Comments

There remain some problems which we plan to investigate. First, We have to analyze how to determine the parameters which appeared in (2.9) and (2.26). Second, we have to study the step control policy for the methods.

Acknowledgments. The author thanks Dr. J.H. Verner for his careful work and constructive criticisms. We wish also thank the referees, whose useful comments helped in clarifying the present paper.

TABLE I

Absolute Error

<u>Problem</u> I.

Explicit Methods:

	x = 0.13	$h = 1/2^{6}$	
	Euler 1	Heun 2	Nystrom 3
SD1	$0.301E{-4}$	$0.392E{-7}$	$0.374E{-}10$
SD2	0.118E - 3	$0.309E{-}6$	0.602E - 9
SD3	$0.416E{-1}$	0.314E - 1	0.491E - 2
SD4	0.522E - 1	0.275 E - 1	0.420E - 2
Fev	8	16	24
	$\underline{x} = 0$	0.484	$h = 1/2^{6}$
	Euler 1	$\underline{\text{Heun} \ 2}$	Nystrom 3
SD1	0.746E - 3	0.194E - 5	0.377E - 8
SD2	$0.235E{-2}$	$0.122E{-4}$	$0.479E{-7}$
SD3	$0.179 E{-7}$	$0.233E{-}5$	$0.920E{-}21$
SD4	0.745E - 12	0.530E - 7	0.116E - 18
Fev	124	248	372

Implicit Methods:

x = 0	0.781E - 1	$\underline{h=1/2^7}$
	Euler 1	Gauss 2
SD1	0.540E + 0	0.494E-8
SD2	0.785E+0	0.394E - 7
SD3	0.457E + 0	0.196E - 1
SD4	$0.495E{+}0$	$0.152E{-1}$
Fev	808	64

\underline{x}	= 0.523	$h = 1/2^7$
	Euler 1	Gauss 2
SD1	0.572E + 0	0.257E - 6
SD2	0.553E + 0	$0.159\mathrm{E}{-5}$
SD3	0.183E - 22	$0.184 \mathrm{E}{-22}$
SD4	$0.347\mathrm{E}{-20}$	0.343E - 20
Fev	1928	1240

Radau	i 3				$h = 1/2^7$
X	SD1	_SD2_	SD3	<u>SD4</u>	_Fev_
0.585E - 2	0.229E-10	0.345E-9	0.128E-3	0.148E-3	69
0.242E+0	0.143E-9	0.198E - 8	0.846E - 11	0.642E - 10	2860

Variable Coefficients Explicit Runge-Kutta Methods:

VCRK1: ca	ase I				$\underline{h=1}$
X	SD1	SD2	SD3	SD4	Fev
1.00	0.601E - 1	0.132E+0	0.990E-2	0.109E-1	8
7.00	0.283E-1	0.690E - 2	0.932E-14	0.193E-13	56
VCRK1: ca	ase II				$\underline{h=1}$
<u> </u>	SD1	SD2	SD3	SD4	Fev
1.00	0.107E + 0	0.298E + 0	0.990E+0	0.989E + 0	8
7.00	0.649E - 1	0.576E - 1	0.932E+0	0.925E + 0	56
VCRK2: c	ase I				$\underline{h=1}$
X	SD1	_SD2	SD3	SD4	<u>Fev</u>
1.00	0.653E - 2	0.345E - 1	0.960E + 0	$0.956\mathrm{E}{+0}$	12
7.00	0.220E-2	0.454E - 3	0.755E+0	0.732E+0	84
VCRK2: case II $\underline{h} =$					$\underline{h=1}$
<u> </u>	SD1	SD2	SD3	SD4	<u>F</u> ev
1.00	0.885E-2	0.321E - 1	0.196E-3	0.241E - 3	12
7.00	0.322E-2	$0.726E{-3}$	0.111E - 25	0.0	84

VCRK2: o	case III				$\underline{h=1}$
<u> </u>	SD1	SD2	SD3	<u>SD4</u>	Fev
1.00	0.550E + 0	0.357E + 0	0.296E - 3	$0.328E{-3}$	16
7.00	0.301E - 1	0.911E - 3	0.199E - 24	0.412E - 24	112

Problem II.

Explicit Method:

	$\underline{x = 0.390\mathrm{E} - 2}$		$h = 1/2^9$
	Euler 1	Heun 2	Nystrom 3
SD1	0.888E+0	0.890E+0	$0.625 \mathrm{E}{-1}$
SD2	0.888E + 0	0.890E + 0	0.625E - 1
Fev	4	8	14
			1 1/09
	x = 0	0.048	$h = 1/2^9$
	x = 0 Euler 1	0.048 Heun 2	$\frac{h = 1/2^9}{\text{Nystrom}}$
SD1	$\frac{x = 0}{\underbrace{\text{Euler } 1}}$ 0.301E+0	0.048 <u>Heun 2</u> 0.309E+0	$\frac{h = 1/2^9}{\text{Nystrom } 3}$ $0.130\text{E}-10$
SD1 SD2	x = 0 <u>Euler 1</u> 0.301E+0 0.316E+0	0.048 <u>Heun 2</u> 0.309E+0 0.309E+0	$\frac{h = 1/2^9}{\text{Nystrom} \ 3}$ 0.130E-10 0.137E-10

Implicit Methods:

Euler 1			$h = 1/2^9$
X	SD1	_SD2_	_Fev_
0.195E-2	0.135E+0	0.321E+0	104
0.117E - 1	0.438E + 0	0.438E + 0	624

	x = 0.9	976E-3	x = 0.537 E - 1	$h = 1/2^{10}$
	Gauss 2	<u>Radau 3</u>	Gauss 2	Radau 3
SD1	0.327E - 1	0.396E - 2	0.404E - 8	0.172 E - 11
SD2	0.327E - 1	0.396E - 2	0.404E - 8	$0.172 \mathrm{E}{-11}$
Fev	96	92	650	624

VCRK1:	case I			$h = 1/2^{10}$	
	<u>X</u>	SD1	_SD2_	Fev	
	0.195E - 2	$0.125E{+}0$	0.458E + 0	8	
	0.537E - 1	$0.772 \text{E}{-1}$	0.116E + 0	220	
VCRK1:	case II			$h = 1/2^{10}$	
	<u>X</u>	_SD1_	SD2	_Fev_	
	0.195E-2	0.149E + 0	0.468E + 0	8	
	0.537E - 1	0.105E+0	0.147E+0	220	
VCRK2:	case I			$h = 1/2^9$	
	_X	_ <u>SD1</u>	_SD2_	Fev	
	0.976E-2	0.942E + 0	0.917E + 1	20	
	0.195E-1	0.912E+0	0.912E + 0	40	
VCRK2:	case II			$h = 1/2^4$	
	X	SD1	SD2	Fev	
	0.125E+0	0.881E+0	0.879E+0	12	
	0.156E + 1	0.209E + 0	0.209E + 0	150	
VCRK2: case II	I <u>h =</u>	<u>1</u>		h =	$1/2^4$
X SD1 S	SD2 Fev	<u> </u>	<u>SD1</u>	<u>SD2</u>	Fev
1.0 0.357E+0 0.3	57E+0 8	0.125	E+0 0.882E	+0 0.882E+0	16
$5.0 \ 0.673E - 2 \ 0.6$	73E-2 40	0.812	E+0 0.443E	+0 0.443E $+0$	104

Variable Coefficients Explicit Runge-Kutta Methods:

Problem III.

Explicit Method:

	x = 0.3	$\underline{h=1/2^{19}}$	
	Euler 1	Heun 2	Nystrom 3
SD1	0.801E + 0	0.809E + 0	$0.379E{-1}$
SD2	0.801E + 0	0.809E + 0	$0.379E{-1}$
Fev	4	8	12

M. NAKASHIMA

	x = 0.1	$h = 1/2^{19}$	
	Euler 1	Heun 2	Nystrom 3
SD1	0.475E-2	0.617E - 2	0.693E-16
SD2	0.475E - 2	0.617E - 2	0.693 E - 16
Fev	62	124	186

Implicit Methods:

	Euler 1				$h = 1/2^{19}$	
	<u> </u>		<u>5D1</u>	SD2	Fev	
	0.195E-	-5 0.1	55E+0	0.155E+0	104	
	$0.514\mathrm{E}$ -	-4 0.18	87E-3	0.106E-3	262	_
_	x = 0.953E - 6	h = 1	2^{20}	x = 0	$524\mathrm{E}{-4}$	$h = 1/2^{20}$
	Gauss 2	Rada	<u>u 3</u>	Ga	<u>uss 2</u>	Radau 3_
SD	$1 0.310E{-1}$	0.369H	E-2	0.194	E-15	0.693E-16
SD	2 0.310E - 1	0.696I	E-2	0.194	4E-15	0.693E - 16
Fev	66	64		9	20	908

Variable Coefficients Explicit Runge-Kutta Methods:

VCRK1:	case I			$\underline{h=1/2^{20}}$
	<u> </u>	_SD1_	_SD2_	Fev
	$0.195 E{-5}$	0.117E+0	0.443E + 0	8
	0.524E - 4	0.128E + 0	0.146E+0	220

VCRK1: case II			$h = 1/2^{20}$
X	_SD1_	_SD2_	Fev
$0.195\mathrm{E}{-5}$	0.142E+0	0.453E + 0	8
$0.524\mathrm{E}{-4}$	0.161E + 0	0.180E+0	220

VCRK2: case l	[$h = 1/2^{19}$
<u>X</u>	SD1	SD2	Fev
0.953	BE-5 0.948E-	+0 0.933E+	0 30
0.476	6E-4 0.939E-	+0 0.939E+	0 150

Variable Coefficient A-stable R-K Methods

			$\underline{h} = 1/2^{20}$
X	SD1	SD2	Fev
$0.381E{-5}$	$0.235E{+}0$	0.235E + 0	24
0.104E - 3	0.164E + 0	0.164E + 0	654
VCRK2: case II			$h = 1/2^9$
<u> </u>	_ <u>SD1</u>	SD2	Fev
0.195 E - 2	0.905E+0	$0.905E{+}0$	6
0.761E - 1	0.926E + 0	0.926E+0	234
VCRK2: case III			$\underline{h} = 1$
X	_SD1_	SD2	_Fev
1.0	0.357E + 0	0.357E + 0	8
5.0	0.673E - 2	0.673E - 2	40
			$h = 1/2^4$
<u> </u>	SD1	_SD2_	Fev
$0.625 E{-1}$	$0.929E{+}0$	0.929E + 0	8
0.562E + 0	0.569E + 0	0.569E + 0	72

Problem IV.

Explicit Methods:

	x = 0.3	$h = 1/2^{16}$	
	Euler 1	Heun 2	Nystrom 3
SD1	0.229E + 0	0.359E + 0	0.450E - 1
SD2	0.188E - 1	0.979E - 3	$0.376E{-4}$
SD3	0.232E - 8	0.130E - 12	0.555E - 16
SD4	0.232E - 9	$0.119E{-}14$	0.277E - 16
Fev	8	16	24

M. Nakashima

	$\underline{x=0.}$	$h = 1/2^{16}$	
	Euler 1	Heun 2	Nystrom 3
SD1	0.234E - 7	0.183E-8	0.730E - 10
SD2	0.210E - 4	$0.165E{-5}$	0.620E-7
SD3	$0.771 E{-7}$	$0.432E{-}11$	0.212E - 14
SD4	$0.779\mathrm{E}{-8}$	$0.399 \mathrm{E}{-13}$	0.319E - 15
Fev	268	536	804

Implicit Methods:

Euler 1					$h = 1/2^{16}$
<u> </u>	SD1	SD2	SD3	_SD4_	Fev
0.152E-	-4 0.218E+0	0.852E+0	0.456E-2	0.999E + 0	132
0.503 E-	-3 0.152E -4	1 0.548E - 2	0.941E - 2	0.999E + 0	388
<u></u>	= 0.726E - 4 <u>Gauss 2</u>	$h = 1/2^{17}$ Radau 3	x = 0.5Gaus	<u>11E–3</u> <u>h</u> ss 2F	$= 1/2^{17}$ Radau 3
SD1	0.185 E - 1	0.187 E - 2	$0.167\mathrm{E}$	-7 0.2	211E-9
SD2	0.343E - 4	$0.427 E{-6}$	0.149E	-4 0.1	86E-6
SD3	$0.410E{-}14$	$0.416 \mathrm{E}{-16}$	$0.271\mathrm{E}$	-12 0.4	16E - 15
SD4	$0.277 E{-}16$	0.138E - 16	$0.285\mathrm{E}$	-14 0.6	693E-16
Fev	92	80	23	64	2088

Variable Coefficients Explicit Runge-Kutta Methods:

VCRK1: case I					
SD1	SD2	_SD3_	_SD4_	Fev	
0.809E+2 0.529E+2	0.105E-2 0.296E+1	0.940E+1 0.155E+0	0.132E+0 0.690E-2	8 56	
			<u>i</u>	$h = 1/2^{10}$	
SD1	_SD2_	_ <u>SD3</u> _	_SD4_	Fev	
0.353E+ 0.557E-	$\begin{array}{ccc} 0 & 0.287\mathrm{E}+ \\ 1 & 0.170\mathrm{E}+ \end{array}$	0 0.0 0 0.0	0.0 0.0	8 200	
	case I <u>SD1</u> 0.809E+2 0.529E+2 <u>SD1</u> 0.353E+ 0.557E-	SD1 SD2 $0.809E+2$ $0.105E-2$ $0.529E+2$ $0.296E+1$	SD1 SD2 SD3 $0.809E+2$ $0.105E-2$ $0.940E+1$ $0.529E+2$ $0.296E+1$ $0.155E+0$ SD1 SD2 SD3 $0.353E+0$ $0.287E+0$ 0.0 $0.557E-1$ $0.170E+0$ 0.0	SD1 SD2 SD3 SD4 $0.809E+2$ $0.105E-2$ $0.940E+1$ $0.132E+0$ $0.529E+2$ $0.296E+1$ $0.155E+0$ $0.690E-2$ $\underline{SD1}$ $\underline{SD2}$ $\underline{SD3}$ $\underline{SD4}$ $0.353E+0$ $0.287E+0$ 0.0 0.0 $0.557E-1$ $0.170E+0$ 0.0 0.0	

Variable Coefficient A-stable R-K Methods

VURKI					$\underline{n-1}$
<u>X</u>	_SD1_	SD2	SD3	SD4	Fev
1.00	0.100E+1	0.999E + 0	0.170E+1	$0.298E{+}0$	8
7.00	0.100E+1	0.101E + 1	0.224E + 1	0.576E - 1	56
					$h = 1/2^{3}$
<u> </u>	_SD1_	_ <u>SD2</u>	<u>SD3</u>	_SD4_	Fev
0.125	0.100E+1	0.999E + 0	0.140E + 0	0.791E - 2	8
3.125	0.101E + 1	0.983E+0	0.441E - 1	$0.109E{-1}$	200
VCRK2: c	ase I		·		$h = 1/2^9$
<u> </u>	_SD1_	_SD2_	SD3	_SD4_	Fev
$0.195E{-2}$	0.162E + 2	0.814 + 0	0.689E - 7	0.619E - 9	12
0.154E + 0	0.195E+2	0.617E - 2	$0.115E{-5}$	0.420E - 7	948
VCRK2: c	ase II				$h = 1/2^{9}$
X	_SD1_	_SD2_	_SD3_	_SD4_	_Fev_
$0.976E{-2}$	0.602E+2	$0.358E{+}0$	0.318E - 6	$0.307\mathrm{E}{-8}$	60
0.976E-2 0.781E-1	0.602E+2 0.502E+2	$0.358E+0 \\ 0.417E-2$	0.318E-6 0.127E-5	0.307E-8 0.229E-7	60 480
0.976E-2 0.781E-1 VCRK2	0.602E+2 0.502E+2 : case III	0.358E+0 0.417E-2	0.318E-6 0.127E-5	0.307E-8 0.229E-7	60 480 $\underline{h=1}$
0.976E-2 0.781E-1 VCRK2	0.602E+2 0.502E+2 : case III _ <u>SD1_</u>	0.358E+0 0.417E-2	0.318E-6 0.127E-5 	0.307E-8 0.229E-7	60 480 $\underline{h = 1}$ <u>Fev</u>
0.976E-2 0.781E-1 VCRK2 <u>X</u> 1.00	0.602E+2 0.502E+2 : case III <u>SD1</u> 0.464E-4	0.358E+0 0.417E-2 <u>SD2</u> 0.378E-4	0.318E-6 0.127E-5 <u>SD3</u> 0.398E+0	0.307E-8 0.229E-7 	60 480 $\underline{h = 1}$ \underline{Fev} 16
0.976E-2 0.781E-1 VCRK2 <u>X</u> 1.00 3.00	0.602E+2 0.502E+2 : case III <u></u> 0.464E-4 0.502E-5	$0.358E+0 \\ 0.417E-2 \\ \underline{SD2} \\ 0.378E-4 \\ 0.553E-5 \\ \end{array}$	0.318E-6 0.127E-5 <u>SD3</u> 0.398E+0 0.553E-1	0.307E-8 0.229E-7 <u>SD4</u> 0.357E+0 0.497E-1	60 480 $h = 1$ Fev 16 48
0.976E-2 0.781E-1 VCRK2 <u>X</u> 1.00 3.00	0.602E+2 0.502E+2 : case III <u>SD1</u> 0.464E-4 0.502E-5	$0.358E+0 \\ 0.417E-2 \\ \underline{SD2} \\ 0.378E-4 \\ 0.553E-5 \\ \end{array}$	0.318E-6 0.127E-5 <u>SD3</u> 0.398E+0 0.553E-1	0.307E-8 0.229E-7 <u>SD4</u> 0.357E+0 0.497E-1	60 480 $h = 1$ Fev 16 48 $h = 1/2^{8}$
0.976E-2 0.781E-1 VCRK2 <u>X</u> 1.00 3.00 <u>X</u>	0.602E+2 0.502E+2 : case III <u></u>	0.358E+0 0.417E-2 <u>SD2</u> 0.378E-4 0.553E-5	0.318E-6 0.127E-5 <u>SD3</u> 0.398E+0 0.553E-1 <u>SD3</u>	0.307E-8 0.229E-7 <u>SD4</u> 0.357E+0 0.497E-1	60 480 $h = 1$ Fev 16 48 $h = 1/2^{8}$ Fev
0.976E-2 0.781E-1 VCRK2 <u>X</u> 1.00 3.00 <u>X</u> 0.390E-2	0.602E+2 0.502E+2 : case III <u></u> 0.464E-4 0.502E-5 <u></u> 0.175E-3	0.358E+0 0.417E-2 <u>SD2</u> 0.378E-4 0.553E-5 <u>SD2</u> 0.738E-3	0.318E-6 0.127E-5 <u>SD3</u> 0.398E+0 0.553E-1 <u>SD3</u> 0.323E-3	0.307E-8 0.229E-7 <u>SD4</u> 0.357E+0 0.497E-1 <u>SD4</u> 0.294E-5	60 480 $h = 1$ Fev 16 48 $h = 1/2^{8}$ Fev 16

Problem V.

Explicit Methods:

$\underline{x} = 0$	0.244E - 3	h = 1/2	2^{13}	x = 0.5241	E-2 <u>h</u>	$= 1/2^{13}$
	Euler 1	Heun	2	<u>Euler 1</u>	<u>He</u>	<u>eun 2</u>
SD1	0.125E+0	0.1 33 E	2+0	$0.558\mathrm{E}-$	23 0.7	707E - 12
SD2	0.242E - 1	0.230E	2+0	0.219 E -	22 0.8	831E-13
SD3	0.178E-3	0.394E	2-6	0.434E -	2 0.5	521E - 6
SD4	0.114E-3	0.774E	2-6	0.300 E-	3 0.1	177E - 4
Fev	8	16		172		244
Nystrom 3		x = 0.10	9			$h = 1/2^{12}$
X	SD:	L	SD2	SD3	SD4	Fev
0.488E-	-3 0.677H	E - 1 = 0.1	119E+1	0.399E-7	0.149E-	7 24
0.46 E-	-2 0.228H	E + 0 = 0.2	202E + 0	0.387 E - 6	0.223E-	7 204

Implicit Methods:

	x = 0.1	22E - 3	$h = 1/2^{13}$
$\underline{\text{Euler } 1}$		Gauss 2	<u>Radau 3</u>
SD1	0.328E+0	$0.415E{-1}$	$0.528E{-2}$
SD2	$0.256\mathrm{E}{+0}$	0.637E - 1	$0.928E{-2}$
SD3	$0.554E{-1}$	0.992E - 7	0.412E - 9
SD4	$0.998E{+}0$	0.193E - 6	0.160E - 9
Fev	848	160	188
	x = 0.52	24E-2	$h = 1/2^{13}$
	<u>Euler 1</u>	Gauss 2	<u>Radau 3</u>
SD1	0.556E - 23	0.174E - 22	0.339E - 23
SD2	0.219E - 22	0.108E - 21	0.358E - 23
SD3	0.121E + 1	0.341E - 6	$0.178E{-7}$
SD4	$0.352E{+}0$	0.887E - 5	0.257 E - 8
Fev	7556	1648	1888

VCRK1: o	$h = 1/2^{10}$					
<u>X</u>	SD1	_SD2_	SD3	<u>SD4</u>	Fev	
$0.976E{-3}$	0.927 E - 1	$0.772 E{-1}$	$0.557E{-2}$	$0.323E{-2}$	8	
0.185E - 1	0.127E - 3	0.590E - 6	0.436E - 1	0.881E-1	152	
VCRK1:	$h = 1/2^8$					
<u> </u>	_SD1_	_SD2_	_SD3_	$\underline{SD4}$	Fev	
$0.781E{-2}$	0.896E + 0	$0.922E{+}0$	0.198E+0	$0.624E{-1}$	16	
0.195E+0	0.328E - 1	0.301E + 0	0.230E+0	0.314E + 0	400	
VCRK2: c	$h = 1/2^{11}$					
<u>X</u>	SD1	SD2	SD3	SD4	Fev	
0.244E - 2	$0.342E{-1}$	0.130E - 1	$0.217 E{-4}$	0.591E - 4	60	
0.488E-2	0.557E-2	0.386E-3	0.122E-4	0.117E-3	1320	
VCRK2: o	case II				$h = 1/2^{10}$	
VCRK2: c	ase II _ <u>SD1_</u>	SD2	_SD3_	_SD4_	$\frac{h = 1/2^{10}}{\text{Fev}}$	
VCRK2: c <u>X</u> 0.976E-3	case II <u>SD1</u> 0.948E+0	<u>SD2</u> 0.675E+0	<u>_SD3</u> 0.114E-3	<u>SD4</u> 0.170E-3	$\frac{h = 1/2^{10}}{\frac{\text{Fev}}{12}}$	
VCRK2: c <u>X</u> 0.976E-3 0.585E-1	ease II <u>SD1</u> 0.948E+0 0.344E-6	<u>SD2</u> 0.675E+0 0.290E-6	<u>SD3</u> 0.114E-3 0.212E-3	<u>SD4</u> 0.170E-3 0.197E-2	$\frac{h = 1/2^{10}}{\frac{\text{Fev}}{12}}$	
VCRK2: c <u>X</u> 0.976E-3 0.585E-1 VCRK2:	case II <u>SD1</u> 0.948E+0 0.344E-6 case III	<u>SD2</u> 0.675E+0 0.290E-6	<u>SD3</u> 0.114E-3 0.212E-3	<u>SD4</u> 0.170E-3 0.197E-2	$\frac{h = 1/2^{10}}{\frac{\text{Fev}}{12}}$ $\frac{h = 1}{12}$	
VCRK2: c X 0.976E-3 0.585E-1 VCRK2: X	ase II <u>SD1</u> 0.948E+0 0.344E-6 case III <u>SD1</u>	<u>SD2</u> 0.675E+0 0.290E-6	<u>SD3</u> 0.114E-3 0.212E-3	<u>_SD4</u> 0.170E-3 0.197E-2	$\frac{h = 1/2^{10}}{Fev}$ $\frac{12}{720}$ $\frac{h = 1}{Fev}$	
VCRK2: c _X	Ease II <u>SD1</u> 0.948E+0 0.344E-6 case III <u>SD1</u> 0.592E-3	<u>SD2</u> 0.675E+0 0.290E-6 <u>SD2</u> 0.312E-3	<u>SD3</u> 0.114E-3 0.212E-3 <u>SD3</u> 0.590E-2	<u>SD4</u> 0.170E-3 0.197E-2 <u>SD4</u> 0.296E-2	$\frac{h = 1/2^{10}}{Fev}$ 12 720 $\underline{h = 1}$ Fev 16	
VCRK2: c X	ase II <u>SD1</u> 0.948E+0 0.344E-6 case III <u>SD1</u> 0.592E-3 0.342E-13	<u>SD2</u> 0.675E+0 0.290E-6 <u>SD2</u> 0.312E-3 0.348E-13	<u>SD3</u> 0.114E-3 0.212E-3 <u>SD3</u> 0.590E-2 0.385E-9	<u>SD4</u> 0.170E-3 0.197E-2 <u>SD4</u> 0.296E-2 0.315E-9	$\frac{h = 1/2^{10}}{Fev}$ $\frac{12}{720}$ $\frac{h = 1}{Fev}$ 16 64	
VCRK2: c X	ase II <u>SD1</u> 0.948E+0 0.344E-6 case III <u>SD1</u> 0.592E-3 0.342E-13	<u>SD2</u> 0.675E+0 0.290E-6 <u>SD2</u> 0.312E-3 0.348E-13	<u>SD3</u> 0.114E-3 0.212E-3 <u>SD3</u> 0.590E-2 0.385E-9	<u>SD4</u> 0.170E-3 0.197E-2 <u>SD4</u> 0.296E-2 0.315E-9	$\frac{h = 1/2^{10}}{Fev}$ $\frac{12}{720}$ $\frac{h = 1}{Fev}$ 16 64 $h = 1/2^8$	
VCRK2: c X	<u>SD1</u> 0.948E+0 0.344E-6 case III <u>SD1</u> 0.592E-3 0.342E-13	<u>SD2</u> 0.675E+0 0.290E-6 <u>SD2</u> 0.312E-3 0.348E-13	<u>_SD3</u> 0.114E-3 0.212E-3 <u>_SD3</u> 0.590E-2 0.385E-9 <u>_SD3</u>	<u>_SD4</u> 0.170E-3 0.197E-2 <u>_SD4</u> 0.296E-2 0.315E-9	$\frac{h = 1/2^{10}}{\text{Fev}}$ $\frac{12}{720}$ $\frac{h = 1}{\text{Fev}}$ 16 64 $\frac{h = 1/2^8}{\text{Fev}}$	
VCRK2: c <u>X</u> 0.976E-3 0.585E-1 VCRK2: <u>X</u> 1.0 4.0 <u>X</u> 0.390E-2	$\frac{SD1}{0.948E+0}$ $0.344E-6$ $case III$ $\frac{SD1}{0.592E-3}$ $0.342E-13$ $\frac{SD1}{0.288E-3}$	<u>SD2</u> 0.675E+0 0.290E-6 <u>SD2</u> 0.312E-3 0.348E-13 <u>SD2</u> 0.390E-3	<u>SD3</u> 0.114E-3 0.212E-3 <u>SD3</u> 0.590E-2 0.385E-9 <u>SD3</u> 0.740E+0	<u>SD4</u> 0.170E-3 0.197E-2 <u>SD4</u> 0.296E-2 0.315E-9 <u>SD4</u> 0.601E+0	$\frac{h = 1/2^{10}}{Fev}$ $\frac{12}{720}$ $\frac{h = 1}{Fev}$ 16 64 $\frac{h = 1/2^8}{Fev}$ 16	

Variable Coefficients Explicit Runge-Kutta Methods:

M. NAKASHIMA

TABLE II

The largest step-size whose numerical processes are stable and functional evaluation per step of s-system equation (Fevs)

	Problem	<u> I </u>	<u> II </u>	III	IV	_ <u>V_</u>	Fevs
Explicit R-K Methods	Euler 1	$1/2^{6}$	$1/2^9$	$1/2^{19}$	$1/2^{16}$	$1/2^{13}$	s
	Heun 2 Nyström 3	$1/2^{6}$ $1/2^{6}$	$\frac{1/2^9}{1/2^9}$	$1/2^{19}$ $1/2^{19}$	$1/2^{10}$ $1/2^{16}$	$1/2^{13}$ $1/2^{12}$	2s 3s
Implicit R-K Methods	Euler 1	$1/2^{7}$	$1/2^{9}$	$1/2^{19}$	$1/2^{16}$	$1/2^{13}$	
	Gauss 2	$1/2^{7}$	$1/2^{10}$	$1/2^{20}$	$1/2^{17}$	$1/2^{13}$	
	Radau 3	$1/2^{7}$	$1/2^{10}$	$1/2^{20}$	$1/2^{17}$	$1/2^{13}$	
Variable Coefficients Explicit R-K Methods	VCRK1: case I	$1/2^0$	$1/2^{10}$	$1/2^{20}$	$1/2^{10}$	$1/2^{10}$	2s
	VCRK1: case II	$1/2^{0}$	$1/2^{10}$	$1/2^{20}$	$1/2^{3}$	$1/2^{8}$	2s
	VCRK2: case I	$1/2^{0}$	$1/2^{9}$	$1/2^{19}$	$1/2^{9}$	$1/2^{11}$	3s
	VCRK2: case II	$1/2^{0}$	$1/2^{4}$	$1/2^{9}$	$1/2^{9}$	$1/2^{10}$	3s
	VCRK2: case III	$1/2^{0}$	$1/2^{0}$	$1/2^{0}$	$1/2^{0}$	$1/2^{0}$	4s

Remark: (a) We define that the numerical process whose absolute error is bounded to be stable.

(b) We take step size in the form $h = 1/2^k$ $(k = 0, 1, \dots)$.

(c) The computations of implicit function $k_j^{(i)} = f(x_n + c_j h, y_n + h \sum_{l=1}^{j} a_{jl} k_j^{(i-1)})$

 $(i = 0, 1, 2, 3, \dots, m)$ are done by the simplified Newton iteration starting the first approximation to $k_j^{(0)} = f(x_n, y_n)$.

References

- A.I. Johnson and J.R. Barney, Numerical solution of large systems of stiff ordinary differential equations in a modular framework. Numerical Methods for Differential Systems (eds. L. Lapidus and W.E. Schiesser), Academic Press INC., 1976, 97-124.
- [2] J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations, John Wiley and Sons, 1987.
- [3] T.E. Hull, W.H. Enright and A.E. Sedgwick, Memorandum on methods for stiff systems of ordinary differential equations. Department of Computer Science, University of Toronto, 1972.
- [4] M. Nakashima, On the Stability of Variable-Formula Explicit Pseudo Runge-Kutta Method. Intern. Conf. at Benin Univ., 1992.
- [5] M. Nakashima, Variable-coefficient A-stable explicit Runge-Kutta methods. Kokyuroku, Kyoto Univ., 841, 175–182.
- [6] P.J. van der Houwen, Construction of Integration Formulas for Initial Value Problems. North-Holland, Amsterdam, 1977.
- [7] P.J. van der Houwen, On the time integration of parabolic differential equations. Lecture Notes in Mathematics 912, Springer, 1982, 157–168.