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Free Boundary Problem for the Equation of Spherically
Symmetric Motion of Viscous Gas (III)
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We study the spherically symmetric motion of viscous barotropic gas surrounding a solid
ball. We are interested in the density distribution which contacts the vacuum at a finite
radius. The equilibrium is asymptotically stable with respect to small perturbation, pro-

vided that v > %— and a is sufficiently small, when the equation of state is p = ap”, p

being the pressure and p the density.
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We are investigating the equations

dp dp Ou 2
a+u5;+pg+;pu—0,

Ou  Ou) op_ Ou  20u_2 \_pM
Plat T %ar) Tor V\Br2 Trar 2% ’
p=ap’,

where v, a, v are positive constants and 1 < v < 2. These equations govern the
spherically symmetric motion of a viscous barotropic gas. We consider these equa-
tions in r > 1 with the boundary condition

ul'r:l =0
and the initial conditions

pli=o = p°(r), ule=o0 = u°(r).
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These equations admit the equilibria

[ e

ay r u=0.
0 (R<r),

Here R > 1 is arbitrary. Since we are interested in the class of initial data which
includes these equilibria, we introduce the Lagrange coordinates

T = 47r/ p(s,t)s%ds.
1

Then the equations turn out to be

9p 29 2y _
1) 2L b amg? o (rPu) =0,
Ou 20p o O (4 Ou v M
(2) o + 4nr B 167 Y om (r "5 ZVsz pop
(3) p=ap’,
where
3 7 g 13
4 r= |1+ —/ ——] .
( ) [ 4n 0 p(f’t)

Normalizing the total mass, we consider the equations (1) (2) (3) (4)in0<z<1
with the boundary conditions

i}
(5) Uz =0, dmrPp— 167r21/7‘4p8—u =0
z

z=1

and the initial conditions
(6) Pli=o = po(x), ult=o = uo(x).

In this case the equilibrium is unique. We denote it by p = 5(z), p = p(z) = ap(z)”
and r = 7(z), who satisfy

200 M
(7) AnT 3 = —%7,
(8) S(1-2) <p(@) < C(1-2).

In the paper [2], we constructed global solutions under the following assump-
tions:
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(A.0) po€CI0,1], po(z)>0 for 0<z <1, po(0)=0,
total variation [pg] < +o00;

(A.1)  There exists a monotone decreasing function A(x) such that
1
dz
0 < A(z) < po(z) and / < +o0;
o Az)

(A2)  ug € Cl0,1];

(A.3)  This is a slightly complicated assumption concerning po and ug.
But it is satisfied at least if pg = ap” € C1[0,1] and ug =
See [2] for the details.

The global solution (p, u) constructed in [2] satisfies that, for any T,

9) p,u € L([0,T] x [0,1]) 0 C*([0, T]; L*(0,1)),

(10) puz € L=([0,T] x [0,1]) N 01/2([0: T); L2(07 1))

and there exists a constant C(T') such that

(11) C(T)po(a:) < plz,t) S C(Tpo(z) for 0<t<T, 0<z<1.

In the last paper [3], we showed that such a solution is unique.

In this paper we will show that the solution tends to the equilibrium as t — +o00
under some additional assumptions.

First we prepare some preliminary estimates. Here we apply the argument of
L. Straskraba [4].

PROPOSITION 1. There exists a constant C such that

(12) ple,t) <C for 0<2<1 and 0<t< +oo.

Here and hereafter C denotes various constants depending on the parameters
v, v, M, a and the initial conditions pg and uyg.

Proof. We rewrite the equation (2) as

2y uy = 4Anr?(dnvp(riu), — p)e — =

Integrating (2)" with respect to z from z to 1 and using the boundary condition
(5), we get

1
/ __dg; = —4n(dnvp(riu), — p) — / %dw.



202 S. MATUSU-NEGASOVA, M. OKADA and T. MAKINO

But, since 4mp(r?u), = —(log p); from (1), this can be rewritten
9 1[10 ['u
(13) at 8P 1/[4#815/,51"2:1c p¥ ]’
where
1 [Ta? 1 ['M
(14) H= —2—7;/2 T—sdm+g/z r—4dac.

Here we use the fact that r; = u.
Now we use the energy equality

d 11, 1 p M
(15) E/(; (E’U, +7—_i;—7> dz+Y() =0,
where
1 u2
(16) Y(t) = / (167r21/r4/mi + 21/;%) dx.
0

Let us denote

1
1 1 M
(17) E0=/ (—ug+—@——)dx
0o \2 Yy—1lpo 7o

Since 7 > 1, the energy equality (15) implies the boundedness of H, say H < H*.

Suppose p(zg,T) > H* for some T. Then there exists t; < T such that
i) t1 > 0, p(zo,t) > H* for t € [t1,T), p(xo,t1) = H* orii) t; = 0 and p(zo,t) > H*
for t € [0,T). Integrating (13) with respect to ¢ from ¢; to T', we see

! T) =1 LWL T e [ -
_ : 11 u —p)dt| .
o8 p(z0,T) =logp(zo,t1) + 7 | 1= / Al ), o)

But, since H — p < 0 along z = z¢, t; <t < T, and since

1 u
—Z—d.'lf
Zg T

< [ L 1 u2d:1:] . < [2(Eo + M)]Y/?,

0

we get
1
log p(z0, T') < max (log po (o), log(H*/a)l/”) +5—[2(Eo + M),

This completes the proof, since py € C[0, 1] is bounded.

PRoPOSITION 2. We have

1
(18) / u(z,t)?dr — 0 as t— +oo.
0
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Proof. We start with the energy equality (15), which can be rewritten as

d M/ ) 1 2 Mu
(19) E./o (—2—u dm) d:::+Y(1t)—/0 4mp(r u)zdx+/—r7dm—0.

Put

w=[[ Y(s)ds]”?

t—1

Since f t)dt < Eg+ M < 400, we see €(t) — 0 as t — +oo. Now we integrate
(19) with respect to t from s to t, and then integrate it with respect to s from ¢ — 1
to t. The result is

/—u dx—/tl/ —o? sdmds+/tl/ T)d7ds
=/t_lds/s dr [/0 47rp(r2u)xdx—/01 T—A/‘;dx} (1).

We see

0< /t il / Y (r)drds = /t il Y(r)r — (k= 1))dr < [ Y(r)dr = e(t)? — 0.

t—1
On the other hand, since
X
(20) u? = / Quuzdz < CY,
0

we see

¢ pl ¢
/ / lu2(s)dxds < C/ Y (s)ds < Ce(t)?> — 0.
t-1Jo 2 -1

Noting

we easily see

‘/t 1/ / p(r?u) dzdrds| < C [/t 1/ ( o puz) dmds]1/2 o

Here we use the result of Proposition 1, say p < C. Similarly

‘/t 1/ / - dzdrds <c[/t 1/ —dmds} < C'elt).
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This completes the proof.

Now we are going to estimate p from below to show p — 5. Then we must leave
the argument of I. Straskraba [4]. The reason is that 4] supposes that the external
force f(r) satisfies f'(r) < 0 and this plays an important role in his argument, but
in our case f(r) = — Y satisfies f'(r) = 2 > 0.

We assume

4
(A.4) 1> 3 and M >0
Moreover we assume temporarily

(a.1) po(r) < M(1 - z).

PROPOSITION 3. There exists a constant B(~y,v, E*, M*, R*) such that

Mﬂ$) *
21 B= su < B(y,v, E*, M*, R*),
1) 0$t<I-)|-oo p(z,t) — o )
0<z<1

provided that Eg < E*, M < M* and Ry < R*. Here

3 ! dz 13
Ry =r(1,0) = 1+—/ —] .
0=r(L,0) [ ar Jo po(z)

Proof. We write (13) (14) as

9 ol
22 —1 —-p= t
(22) 5 logp + -p = Az, 1),
where
vy 8 [fu v ftu? v /lM
23 A =——= [ dr+-— | —= — —dz.
(23) (2,8) Arv Ot f, r? m+27r1/ z 7'3d$+47ru - r4dm

Solving (22), we get

(24 (:’ 5= potx) [exp (- /0 t Ads) + Lpo(a) /0 " exp (- / t Adr) ds] .

We put

po(x)

T)= sup —%.

ﬂ( ) ogt§Z‘P($,ﬂ
0<z<1

This is finite by (11). Then we have

R(t)=r(1,t) = [1 + % /01 p(iacff)] v <K, (1 +ﬂ(T)1/7)1/3,
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where K1 = K1(R*) and
t 1, t 1
——/Ad‘rS——l— % dm—l/dT/ —dz
s drv J, rels dmv J, z T

2o ) e

< Ky -

for 0 < s <t < T, where Ky = 52-+/2(E* + M*). Applying this estimate to (24),

2y
we see

1 k2 arvK,* 1/ 4/3
8 S (1+ - (1+ﬂ(T) v) )

Here we use (a.1). Thus we get
4/3
B(T) < K3 (1 + (1 +,B(T)1/“’) ) , with K3 = Ks(vy,v,E*,M*, R").

Consider the function

_ g
K (14 (148"

»(B)

Then ¢(3) — +oo as  — 400, since v > % by (A.4). Thus ¢(8) < 1 implies
B8 < B* = B*(v,v, E*, M*, R*). Putting B(v,v,E*, M*,R*) = (B*)Y/7 we get (21).
This completes the proof.

Now we write (13) (14) as

1 1,2 1
10p 1 19 U _21_/ud M dz

- +-p= = —ar + —ar+ — —
pOt v v 8t J, T2 v/, rd dnv J, T

or
o (1 1 1 119 [
(25) —--= P _ - C Y dx
Gt\p P vp Arv p Bt J, r?
1 1/1 u? M1 (ldzx
2rvp J, T8 drvp J, ™
The equilibrium satisfies
1P M 1/1 dz
26 ——f=—=c | 3.
(26) vp arvp J,

Taking {(25) — (26)} x (% — 1) o, we get
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(27)
2 (1_1 2_1(e_z><1_1>,,
a™\p " 5) v\p B/\p 8/7

/luzd M (1 1 2/1dx
2 dr — = Z_Z hatd
I 4™ p P e T

Now we see

1 p\ /1 1 a(y—1 1 1\?
e 2 (2-D)(3-3)m=-Er (5-2) w20
v\p B/\p P v p P

where p = (/=1, +0(% - %))—1 with 0 < 8 < 1.
We assume temporarily

3@1_1/1£ lz(l_l_
47Wf9t(p<p ﬁ) z e )+ (po 0 357"

(a.2) po(z) < Cp(z) for 0<z<1
Then we get
2
1 1 1 1 1
Po(l—:> Sg, B <c, Po——:'SC @——:‘S—andsoon-
p P po’ P plp Bl po

Moreover we assume

(1— )t/

(a.3) po(z) = ol

Now, for 0 < g and 0 < 6 <1, we put

(29) Q= [ o (3- %) -

Qs is finite as least if 6 > 0.
Let § > 0. Then it follows from (28) that

1 1

d d M [0 z 1 Lde
2 Q5. < —F, - = 22} —— | =4
dt Qo < dt o + G v Jo Po (p ﬁ) (1—z)» /m 74 a:

M [*Pp (1 1 1 /1 1
dmv Jo  p \p ) Q—z)* J, \r
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where

1 /1 1 1 Ly
me=am ), 5 G5 ma [ Ae
1 1 1 Du
=y [ ( (G-3)+ %) aoap [ e
% po (1 Yol
27”/ o P (p )(l—x) /z Lo

First we consider the case y = 2. Then it is easy to see

1-6 - 1/2
(1—=z)?%de / 1741
|F5,5/4| < C/o -2 1/’y+5/4 uzdé < C'§1/4-1 uzdz

by (a.3), and
|G5’5/4| < C§57YAY  (see (20))

Here and hereafter C' stands for various constants independent of §. On the

other hand
_M (L 1) ds /%
amv Jo P\p7B) G-apri), 7

- Ml/l—'s 1_12 dx
STmE S, P\ 5 G-

M [Tl 1 d—"’/l oY
amv o p\p B) (-2t ), \rt 7

2

MBI de NI T (L) s
~ 4y | Jo po(l — )1/ 0 Po 0 P p p)(1-z)/*

1-6 2
1 1 dz
(v=1)/~ Ty =
e l/ ”°(p ﬁ) <1—w>1/4]'

Here we use the estimate

1_ é dz < CsO D/
p P

1
/1—-6
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by (a.3). Let us suppose

1/2 1/2
(a.4) B[/l__ix___] [/1(1—-ﬂd:p] <Ei_
o po(l— )t/ 0 Po 2Rt
Then
d d =6 1 1\? da
aQa,s/«; < aFa,s/‘; +Gs5/4 — Ot/O Po (; - 5) A—o7h
16 2 1/2
1 1 dx
s(r=1)/ / o)
where
M
o= —7.
8nvR
Suppose
(r=1)/ 1-5 2 12
o 0 p p) (1-z)V
Then

d d ad
;ﬁQ&,sM < aFa,sm + Gs5/4 — E—Qé""/“ for t>T.

Since Fs5/4 — 0 as t — +oo by Proposition 2 and

+0o0
/ (Gs/a(t)ldt < +o00,
0

it follows that Qs 5/4(t) — 0 as t — +o0 from the above differential inequality. This
is a contradiction, since

1-6 2
1 1 dz
> ) I L
Qs,5/4 = /0 Po (p ﬁ) 1= z)i/d

Therefore there exists a sequence £,(6§) — +o0o (n — +00) such that

1-6 2
1 1 dzx -
(30) /0 Po (; - 5) (T—_z)-m < ¢80 DY et t=t n(6)-

Next we take p = %. Then

(1—2)%dz
|F63/4|<C/ =2 1/7+3/4 u2d§<C" u2dm
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>0 by (A4)

1
>
|Gs,3/4] < CY,

since 1 — % = % > 0. And by a similar argument we get

d d 1-6 1 1 2 1/4
EQ6’3/4 < aF5,3/4+G573/4—OL A Po ; - —/_; (1—-z)/%dz

1-5 1 1\2 1/2
+ s/ [/ 20 (; _ _ﬁ) (1- x)1/4d:c]
0

under the assumption (a.4). Then, in this case, we have

t
Qs.3/4(t) < Qs,3/4(to) + Fs3/4(t) — Fis3/4(t0) +/ Gs,3/a(T)dr
to

t 1-6 1 1 2 1/2
+ 06(7_1)/7/ / Po (— - :) (1—z)/4dz (t)dr
to 1] P p
< Qs,3/a(to) + Fis.3/4(t) — Fs3/4(t0)

t
+/ Gsaja(r)dr + C'60" V(1 —t5),  for 0<to<t.

to

Take tg = 0. Assume

1 1 2y
(a.5) Qo,3/4(0) =/0 Po (;5 - %) Zl———i_)"'—/“ < 400.

Then, since F53/4 — Fp3/4 and Gg3/4 — Go 374, We see

Qozs/a(t) <C for t2>0

and
(31) Qo.3/4(t) < Qo3/alto) + Foa/a(t) — Foaa(to)
t
+/ Go,3/4(T)dT for 0<tg<t.
to

Here we note

1 1-6 1 1\? dz
tn(6)) < —= —__ - - < (3y—4)/2v
(32)  Qs3/a(ta(8)) < 61/2f0 Po(p ﬁ) oA <0 ,

from (30).
Finally take u such that

3 3
33 ° °_
(33) T <B<S
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N
[
o
|€2]

Since 3 — T-i= 3 - % > 0 by (A.4), this is possible, and we see

(1 - 2)Y%dz
[Fsul <C / 1 wilhﬂ u?dg < ¢’ u2dw,
1= V. V

i 1,1 =3 _
since 5 — u 7+1—2

Gs,ul < CY,

y

sincel —p>1-— % + 0. Then, assuming

1 1— 1/2 1 1/2
(1—z)t~# ] [/ dx } x 1
6 Bl =% 4 e | <TL
(26) [/ Po o p(l-—z1*| 2R

we get

QO:M (t) <C

by a similar argument to the case of p = %. Here we assume

1 1 1)2 dz
7 0) = Z-2) —E <t
(=7 Qou(0) /o 7o (Po p) (1-z)»
anduse 1 —p>1-(3-1)=22>0
Then we get
1 1 1\’ dz
Qo,3/4(tn(8)) = Qs,3/4(tn(8)) + /1_6 Po (; - 5) _(T—x—)3/4

< Qs,3/a(tn(8)) + 8~ *Qo,u (8 (6))
<C (5(3'7—4)/27 + 5#—3/4) .

It follows from (31) that

limsup Qo 3/4(t) < C (5(3’1—4)/27 + 5#—3/4) )
t—+oo

Since § > 0 is arbitrary, we get
Qo,3/a(t) — 0 as t— +oo.

This is our final goal.
We are going to give a sufficient condition for (a.1) (a.2) (a.3) (a.4) (a.5) (a.6).
We put the assumption

1 2

1 1 dzr 3

A5 / (— — :) ——— < 400 for some > -,
(A.5) o\ T5) oo w>
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This assumption (A.5) guarantees (a.5) (a.7).
On the other hand we consider the condition

(a.8) La(1—z)<pp <M1 -2x),

where L is a suitable constant depending upon v, v, E*, M* and R specified as
follows, where R = R(, ) is the solution of

_1_ Y e 1/(7—1)_/7?‘ l_l 1/(7—1)T2dr
ar\y—-1M L \r R '

Under the condition (a.8), we have
B < B(v,v, E*,M*,R")

provided that Eg < E* and M < M*. We see Ry < 2!/3 provided & =17 (+)'/7 <

1, since

L)

It is easy to see (a.4) and (a.6) hold if we take L sufficiently large so that

5(1 Y11 w1
L p_2RY
using (34). The conditions (a.1) (a.2) (a.3) are direct consequences of the condition

(a.8).
We note that, for the equilibrium,

IA

M —(—2v+1)/(y~-1) —_ M —(-3v+4)/(v-1) . 3
phinl — <p<L — — f < —
471_R (1 x)_p_47rR 1-z) if v< >
or
M——4 M—- 3
_ — <p< — > =
47rR (1-z)<p< 47rR (1-z) if v2> 5

Note that B — 1 as 3 — 0. Therefore py near p satisfies (a.8) for sufficiently
small a. Thus we have proved the following:

THEOREM. Under the assumptions (A.0) (A.2) (A.3) (A.4) (A.5), suppose
that a is so small that

La < M, where L= L(y,v,E*,M* R),
provided that Eg < E* and M < M*, and that the initial pressure po satisfies

La(l—z)<po < M(1-—1z).
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Then the global solution (p,u) satisfies
1
/ u(z, t)2dz — 0,
0

/01 po(z) (p(;’ 5 ﬁ(lx))z ; _di)-'i/“ —0 as t— +oo.

As a corollary, p{z,t) — p(z) a.e. z as t — +oo, and moreover, since p < C,

we know

1
/0 Iple,£) — Bla)|%dz — 0, (1< q < +o0)

as t — 400, for example. On the other hand, since % < %, we know
1
1 1
J I PR
0 p(.’L‘, t) p((L‘)

R(t)=1r(1,t) —T

as t — +o00.

REMARK 1. We conjecture that the assumption v > i;— can be removed in the
present case in which the effect of the self-gravitation is neglected. However if we
take into account the effect of self-gravitation, namely if we replace M by

M+47r/ pridr=M +z,
1

then the number of the equilibria is one when ~v > % and more than two when v < %
(see W.-Ch. Kuan and S.-S. Lin, [1]). Therefore the assumption that v > § may be
essential for the case with self-gravitation. We note that our proof can work with a
slight modification for this case with self-gravitation.

REMARK 2. We have not yet been able to remove the assumption that a is
sufficiently small, although this is a serious restriction of our result.

REMARK 3. It is difficult to describe our conclusion in terms of the Eulerian
coordinates, since in the Eulerian coordinates the support of p(-,t), [1, R(t)], which
corresponds to the fixed interval [0,1] in the Lagrangean coordinates, varies with
time 2.
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