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We s tudy  the  spherically symmetr ic  mot ion  of viscous baxotropic gas surrounding a solid 
ball. We are interested in the  densi ty  dis t r ibut ion which contacts  the  vacuum at a finite 
radius. The  equil ibrium is asymptot ical ly  stable wi th  respect  to small per turba t ion ,  pro- 
vided tha t  "y > 4 a n d a  is sufficiently small,  when the  equat ion of s ta te  is p = ap ~, p 
being the  pressure and p the  density. 
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We are investigating the equations 

I Op Op . Ou . 2 

f Ou Ou ~ Op f O2u 20u 2 u ~ pM 

p = ap'r, 

where ~, a, ~/ are positive constants and 1 < ~/ ~ 2. These equations govern the 
spherically symmetric motion of a viscous barotropic gas. We consider these equa- 
tions in r > 1 with the boundary  condition 

ulr=l  = 0 

and the initial conditions 

plt=o=p~ uIt=o----u~ 

* The  first au thor  was suppo r t ed  by Grant  of Czech Academy n ~ 201.93.2177. 



20O 

These equations admit the equilibria 

~ :  a~ 0~)] 
0 
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i/(;-i) 
(r < R) 

(R < r), 

~ ~ 0 ,  

Here _R > 1 is arbitrary. Since we are interested in the class of initial da ta  which 
includes these equilibria, we introduce the Lagrange coordinates 

x = 47r p(s, t)s2ds. 

Then the equations turn out to be 

9.  o 

(2) 

(3) 

where 

(:3--t + 4Ÿ = i61r2v r4p -- 2 v ~ p  r2 , 

p = ap ~, 

[ a lo ~ d~ ],i~ (4) r= 1 + ~  .(-~,t)7 

Normalizing the total  mass, we consider the equations (1) (2) (3) (4) in 0 < x < 1 
with the boundary conditions 

2 4 9"�91191 x=l  (5) ul==0 = 0, 4 ~ r 2 p -  16Ir ur P-~x ---- 0 

and the initial conditions 

(6) Plt=o = po(x) ,  '-'1~=o = Uo(X). 

In this case the equilibrium is unique. We denote it by p -- ~(x), p --- ~(x) -- a-~(x) ~ 
and r -- ~(x), who satisfy 

M 
(7) 41rr2~x -- ~2, 

(8) C(1  - x) _< ~(x) _< C ( 1 -  x). 

In the paper [2], we constructed global solutions under the following assump- 
tions: 
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CA.O) poEC[O, 1], po(x)>O for O<_x< 1, po(O)=O, 
total variation [Po] < +oo; 

(A.1) There exists a monotone decreasing function s such that  

lo 1 dx 0 <_ ~(x) y po(x) ana A - ~  < +oc; 

(A.2) u0 e C[0, 1]; 

(A.3) This is a slightly complicated assumption concerning Po and u0. 
But ir is satis¡ at least ir Po = aP ~ E C 1 [0, 1] and u0 = 0. 
See [2] for the details. 

The global solution (p, u) constructed in [2] satisfies that,  for any T, 

(9) p,u C L~176 T] x [0, 1]) N CI([O,T];L2(O, 1)), 

(lo) pu~ e L~ TI • [0, 1]) M C1/2([0, T]; L2(0, 1)), 

and there exists a constant C(T) such that  

1 
(11) C(T)PO(x)<p(x , t )<_C(T)po(x)  for 0 < t < T ,  0 < : x < l .  

In the last paper [3], we showed that  such a solution is unique. 
In this paper we will show that  the solution tends to the equilibrium as t --~ +oo 

under some additional assumptions. 
First we prepare some preliminary estimates. Here we apply the argument of 

I. Straskraba [4]. 

PROPOSITION 1. There exists a constant C such that 

(12) p(x , t )<_C for 0 < x < l  and 0 < t < + o o .  

Here and hereafter C denotes various constants depending on the parameters 
% v, M, a and the initial conditions Po and u0. 

Proof. We rewrite the equation (2) as 

M 
(2) '  u~ = 4 " r  2 ( 4 " . p ( r 2 ~ ) :  - p ) :  r~. 

Integrating (2)' with respect to x from x to 1 and using the boundary condition 
(5), we get 
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But, since 4Ÿ = - ( l o g p ) t  from (1), this can be rewrit ten 

olo~~ 1110L1;~~~ ] 
O---t v --~r-~ p + H , (13) 

where 

(14) 

Here we use the fact that  rt = u. 
Now we use the energy equality 

L 1  U 2 1 L 1 ~4  1 ~5 dx + dx. H =  ~-~~ -~r 

(15) 

where 

(16) 

Let us denote 

(17) 

d--t u2 + - -  dx + Y ( t )  = O, 
" y - l p  

Y($) --- L1 (167r2vr4pu2  + 2 v ~ 2 p l  dx. 

E 0  = Uo ~ + - -  
" ) ' -  lp0  

Since r > 1, the energy equality (15) implies the boundedness of H ,  say H < H*. 
Suppose p ( x o , T )  > H* for some T. Then there exists t i  < T such that  

i) t i  > 0, p(xo , t )  > H* for t E [ti ,T], p ( x o , t l )  = H* or ii) t i  = 0 and p(xo , t )  > H* 
for t �9 [0, T]. Integrat ing (13) with respect to t from ti  to T, we see 

-v ~ o dx + ( H  - p)dt  . 

But, since H - p < 0 along x -- x0, t i  < t < T, and since 

we get 

i - i - i/2 S. ~~~ ~ l i  u:~~/ ~ [2('EO -'t- M ) ]  1/2 , 
0 L 'j XO I 

[ \ 1 M)}ll 2. 

This completes the proof, since Po E C[0, 1] is bounded. 

PROPOSITION 2. We have 

(18) u (x , t ) 2dx  > 0 as t -+ +oo. 



(19) 

P u t  
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Proof. We start  wi th  the energy equali ty (15), which can be rewri t ten  as 

d~ol (~ ) ~o 1 [ MUdx u2dx dx + Y(t) - 47rp(r2u)xdx + j r2 = O. 

~,,, [L~,~),~] ~~~ 

Since f : ~  Y(t)dt < Eo + M < +c r  we see e(t) --+ 0 as t --+ +cr Now we integrate 
(19) with respect  to t f rom s to t, and then  integrate  it with respect to  s from t - 1 
to  t. The  result is 

~ol l u2 ( t )dx -  ~tt_l ~ol ~U2(s)dxds + ~tt_l ~stY(Ÿ 

= fftt_lds ~stdT [~o147rp(r2u)xdX- ~ol-~dx] (T) �9 

We see 

/ '/8' / ' /i 0 < Y(T)dTds = Y(T)(T -- (t -- 1))dT < Y(T)dŸ = ~(t)' --+ O. -1 -1 1 
On the other  hand,  since 

(20) 

we see 

Not ing  

we easily see 

~ X 

u 2 = 2uuxdx < C ~  

lu2,s,dxds < C Y(s)ds < Ce(t) 2 -* O. 
- 1  2 - 1 - 

1 p(r2u)x - 2Ÿ243 + pr2ux, 

I~ ~~/o 1 I [f'/ol( u~ ) 4 2 dxds ] 1/2 p(r2u)~dxd~-ds < C + r pu~ < Ce(t). 1 -- -1 ~P J -- 
Here we use the result of Propos i t ion  1, say p < C. Similarly 

I~ttt ~sst~o1-- ~ -  I [ft ~01U2"-W- 11/2 dxdrds < C < -1 - -1 r~P dxds Ce(t). 
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This completes the proof. 

Now we are going to estimate p from below to show p --* ~. Then we must leave 
the argument of I. Straskraba [4]. The reason is that  [4] supposes that the external 
force f(r) satisfies f '(r) <_ 0 and this plays an important role in his argument, but 
in our case f(r)  = - ~  satisfies f ' (r)  = ~-3 > O. 

We assume 

4 
(A.4) 7 >  5 and M > 0 .  

Moreover we assume temporarily 

(a.1) po(x) <_ M(1 - x). 

PROPOSITION 3. 

(21) B = 

There exists a constant B(7,  v, E* , M * , R* ) such that 

po(x) 
sup 

0~t<+~ p(x, t) 
0<x<l 

- -  < B(7, v,E*,M*,R*),  

provided that Eo <_ E*, M <_ M* and Ro <_ R*. Here 

R o = r ( 1 , 0 ) =  1+~-~~ 

Proof. 

(22) 

where 

(23) 

We write (13) (14) as 

O logp + ~-p A(x, t), 
Ot v 

47rv Ot -~dx + ~ -~dx + ~ dx. 

Solving (22), we get 

(24) p(x,l - l [exp ( -  ~otAds) + ~P~ ~o Po (x) 

p0(x) 
sup  

0<t<T p(x, t)" 
0~x<l  

~(T) = 

We put 

This is finite by (11). Then we have 

[ 3/o1 ~~1 ~,~ R(t) = r(1,t) = 1 + ~  p(-~,t) ~__ K 1 (1 + t3(T)I/'Y) 1/3 , 



Free Boundary Problem (III) 205 

where K1 = KI(R*) and 

~s t ~xl r~2 : "7 jfs t q AdT < "7 dx . . . . .  d T  d x  
- 47rv 47cv 

< /42 - "TM 4( 1 _ x) (1 + f l ( T ) l / n ) - a / 3 ( t -  s) 
- 4~rvK1 

for 0 < s < t < T, where K2 = _2_ V/2(E �9 + M*). Applying this estimate to (24), 2"/rv 
we see 

eK2 ( 1 < l + - -  
p(~,t----~ - p - ~  

4Ÿ (1 "F/3(T)l/7)a/3).  

Here we use (a.1). Thus we get 

/3(T)_< K3 ( 1 +  (1+/3(T)1 /7)4 /3) ,  with K 3 =  K3('7, v, E* , M* , R* ). 

Consider the function 

v ( / 3 )  = 
/3 

K3 (1 + (1 + q " 

4 by (A.4). Thus ~(/3) < 1 implies Then qo(q -+ +c~ as q -+ +o0, since "7 > ~ 
/3 </3* =/3*(%v,E*,M*,R*).  Putting B(%v,E*,M*,R*)  = (fl*)l/n we get (21). 
This completes the proof. 

Now we write (13) (14) as 

lOp 1 1 0 ~ i  u 1 ~ i u 2  M ~ i d x  

or 
O (~  ~ )  l p  __ 1 1 O ~1  U 

(25) O--t - v p 4~rv p Ot -r -q 
1 l ~ i u  2 M l ~ l d x  

-~dz  - - .  27tu p 47tu p r 4 

The equitibrium satisfies 

1 ~ _ M 1 f l  dx 
(26) v ~ 4zrv ~ J+ r -4" 

T~iog ~(25)-(20)~ x (1 _ ~)~0, we get 
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(27) 

1 Po _ - - d x  - - 
21rv p 

M P~ ( ~ - ~ ) j ~ l (  1 1 )  
41rv p ~-~ ~4 dx. 

Now we see 

(28) __1 (p__ ~ ) ( ~ _ _  ~)PO--a ( '7 -1)~" t  ( ~ _  j ) 2 p o  >_ O, 

where ~ =  (1 +0(1  _ 1))--1 with 0 < O < 1. 
We assume temporarily 

(a.2) po(x) ~_ C-ti(x) for 0 < x < 1. 

Then we get 

Po - ~ __ Po 1 Po 1 C 
Po p _ ~ C ,  Po - p  <C,  P - ~  ~--P0 andsoon.  

Moreover we assume 

(a.3) po(x) 
( l - x )  1/~ 

C 

Now, for 0 < # and 0 < �91 < 1, we put 

( 2 9 )  Q~'" = Joo PO -- (1 --x)"" 

Q~,~ is finite as least ir �91 > o. 
Let �91 > 0. Then it follows from (28) that 

d M fl-~po(1_1)2 1 1 
d Q~,~ <_ -~ F~,~ + G~,~ 4---~-v Jo \ v  v / (1--x)~ ~ ~ 4 dx 

M fol-�91 (~  ~)  1 j ~ x l ( i  
4~rv p - (1 ---x)" 

1 
~4 I d~dx, 
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where 

1 LI-6PO (~  ~)  1 L tu F 6 , . -  4~rv p- - (i --x)" ~-~d~dx, 

1 1 - 6  (pO(~ ~)"k (l_x)Z L ~22d~dx G6,.=~L (r2u)z - ~ )  1 1 

1 L1-6 P0 �89 ~ /  1 L 1 "�91191 
21tu -p- - (i - x) ;~ -r 5cl~dx" 

First we consider the case q = 5. Then it is easy to see 

IF&514, < C  f I-6 (l-x)ll2dx 7 L  I 7 L  1 J0 ( 7 ~ X ~  4 u2d~ ~ CI61/4-1/"/ u2dx 

by (a.3), and 

IG6,5/4I _< C6-1/4y (see (20)) 

Here and hereafter C stands for various constants independent of 6. On the 
other hand 

M LI_6 (~ ~)2 dx Lld~ 
4~rv Po - (1 - x)5/4 ~--~ 

-< 4Ÿ ~4 PO -- (1 -- X) 1/4' 

where R = ~(1), and 

< M B  fl--6 dx - 1 1 - dx) ~ ~ o  ~-~(I--~-.(LI-~~ ~~~+fl_~~ ~ 
MB [L  I dz_ ]1/2 [L  1 (1_x)1/4 l l /2 f l_  ~ (~  ~ )  dx 

-~ ~ ;o(~-x),,4j ?o ~~] Jo .o - (1-x--) 1/4 

[lo 1-~ ~ ~~ +C~ (v-1)/v P0 ( ~ -  ~ ) ( 1  _ x)l/4 

Here we use the estimate 
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by (a.3). Let us suppose 

( a . 4 )  

Then 

where 

Suppose 

Then 

[/o 1 dx ] 1/2 [j~01 ( 1 -  ~~1/4 q 7r 1 

d Q 5 , 5 / 4  <- --~ 5,5/4 + G6,5/4 - a Po - (1 -- X) 1/4 

i - 6  2 dx 
AC C‰ P0 - (1 - x ) l l  4 ' 

M 

a = 8 r v R  4 . 

2C5(~-1)/.y 1-6 2 dx 
a -< Po - (1 - -x) l /4  for t _> T. 

d F, a$ d Q£ <- -~ 6,~14 + G~,514 - --~Q£ for t >_ T. 

Since F6,5/4 --* 0 as t --+ +oo by Proposit ion 2 and 

0 +~ IG~,5/4(t)ldt < +00, 

it follows that  Q~,5/4(t) ~ 0 as t --* + ~  from the above differential inequality. This 
is a contradiction, since 

/o 1-~ (~ ~)~ ~~ Q~,5/4 ~ po - (1 - x) 1/4" 

Therefore there exists a sequence ta(6) --* +c~ (n --* +c~) such tha t  

/01-6 ( ~  ~ ) 2  dx C52(~_1)/~ t,~(6). 
(30) Po - (1 - x) l /4  <- at t -~ 

Next we take # = �88 Then 

~o i,l-~.~~IL~ i~o 1 [F6,3/a[ <_ C ( ~ ' _ - ~ 4  u2d~ < C'  u2dx, 
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1 1 3 1 since ~ "r ~ 4. 1 = ~ - ~ > 0 by (A.4) 

1G,~,3/41 < CY, 

since i 3 1 4 - ~ > 0. And  by a similar a rgument  we get 

dQ~,314 <_ -c~F5,3144.Gs,314-(~[ Po - ( l - x )  ,14dx 
JO 

4.C�91 [/ol-Spo ( ~ - ~ ) 2 ( 1 - x ) l / 4 d x ]  1/2 

under  the assumpt ion  (a.4). Then,  in this case, we have 

f2 Q~,3/4(t) < Q~,3/4(to) 4. Fs,3/4(t) - F~,3/a(to) -F Gs,3/4(7)dT 

4.C6('r-1)/"f/t: [ fO1-SpO(;--~)2(1--x) l /4dx]i /2(T)dT 

< Q~,3/4(to) + F~,3/4(t) - F~,3/~(to) 

f2 4- Gs,3/4('r)dT 4. C'5(~-l)/w(t - to), 

Take to = O. Assume 

( a . 5 )  Q o , 3 / 4 ( o )  = po - (1 - ~ )~ /4  < + o o .  

Then,  since F~,3/4 --+ F0,3/4 and G~,3/4 --+ G0,3/4, we see 

Qo,3/4(t)<C for t > 0  

and 

(31) 

for O < to <_t. 

Qo,3/4(t)  <_ Qo,3/4(• 4. F o , 3 / 4 ( t )  - Fo,3/4(to) 

f~ + GO,3/4(T)dT for 0_< to _< t. 

Here we note  

(32) Qs,3/4(tn(5)) <_ po - ( l  --3;) 1/4 -< CS(3q'-4)/2~f' 

from (30). 
Finally take/~ such tha t  

(33) 3 3 1 
4 < # < 2  7 

209 
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Since 3 2 
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43 ___ 3 _ ~ > 0 by (A.4), this  is possible, and we see 

~01(1-x)l/2dx(1 X)~/~§ vJ~ lr~ Cfoo' IFe,.I <_ c v i  u2dr < C' u2dx, 

qo,.(t) <_ c 

by a similar a rgumen t  to the  case of # = 3 Here we assume 

~ 0 1 ( 1 ; )  2dx  
(a.7) Qo,~(0) = po po (1 - x)~------fi < + c ~  

~ause 1 - . >  1 - ( ~ - ~ ) - - ~ J  > o  
T h e n  we get  

Qo,s/ , ( tn(5))  -- Qe,3/,(tn(5)) + -~P~ - (1 - x)3/4 

<_ Q~,3/4(t,~(~)) + ~"-3/4Qo,At~(~)) 
< c (~(s~-4)/~, + ~.-~/4), 

I t  follows f rom (31) t ha t  

l imsupQo,8/4( t)  ~ C (5 (3~-4)/a~ + 5t~-a/a) . t--*+oo 
Since 5 > 0 is a rb i t rary ,  we get 

Qo,3/4(t) , 0  as t --* +c~. 

This  is our final goal. 
We axe going to  give a sufficient condi t ion for (a.1) (a.2) (a.3) (a.4) (a.5) (a.6). 
We pu t  the  a s sumpt ion  

~1 (1 ~)2 dx 3 
(A.5) Po - (1 ----x)t* < +c~  for some /z > ~. 

since � 8 9 1 6 1  ~ + 1  = 3 1 # > 0, and  

{G~,. I <_ CY,  

1 2-~ > 0. Then ,  assuming s i n c e l - # > l - ~ + ~ =  2~ - 

(a.6) B [~1 (1---_x)l-#dz1 1/2 [~1 dx_ .tl/2 <: 7i"_1 
Po J po(1 -- X)l--q -- 2 ~4'  

we get 
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This assumption (A.5) guarantees (a.5) (a.7). 
On the other hand we consider the condition 

(a.8) La(1 - x) <_ Po ~_ M(1 - x), 

where L i s  a suitable constant depending upon % v, E*, M* and R specified as 
follows, where R = R(% ~ )  is the solution of 

1 W_ =fl (!_1) 4-Ÿ 1M) I/('/-I) " 
1/('y-1) 

r2dr. 

or 

(~.8). 
We note that,  for the equilibrium, 

MR(-3"r+4)/('~-I) (1 x) if < MR(-2"~+I)/('r-1)(1 - x) < ~ < ~ - 0' 3 

M 3 R - 4 ( 1 - x ) < ~ <  M R - I ( 1 - x )  if "y> ~. 
- 41r 

a 0. Therefore Po near ~ satisfies (a.8) for sufficiently Note that  R ~ 1 as ~ --* 
small a. Thus we have proved the following: 

THEOREM. Under the assumptions (A.0) (A.2) (A.3) (A.4) (A.5), suppose 
that a i s  so small that 

L a < M ,  where L = L ( % v , E * , M * , R ) ,  

provided that Eo <_ E* and M ~_ M*, and that the initial pressure Po satisfies 

L a ( l - x )  ~Po < M ( 1 - x ) .  

Under the condition (a.8), we have 

B < B ( % v , E * , M * , R * )  

provided that  Eo < E* and M < M*. We see Ro < 21/3 provided 3__2_ (~)1/-~ < 
- -  - -  - -  4 ~ r  3 ' - - 1  - -  

1, since 

Po - (1 - x ) l l  "y" 

It  is easy to see (a.4) and (a.6) hold if we take L sufficiently large so that  

(_~).,. ~ .1 
B - < ~ 4 '  # - 2  

using (34). The conditions (a.1) (a.2) (a.3) are direct consequences of the condition 
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Then the global solution (p, u) satisfies 

JC  u(x, t)2dx - -~  O, 

Z 1 ( 1  1 ) 2  
po(~) ~ ~~1 

S. MATUS•193 M. OKADA and T. MAKINO 

dx 
( l - -x)3 /4  0 a8 t--* +c~. 

jfl r M + 4~ pr2dr = M + x, 

4 then the number  of the equilibria is one when V -> 4 and more than  two when V 
4 (see W.-Ch. Kuan  and S.-S. Lin, [1]). Therefore the assumption tha t  ~/> g may be 

essential for the case with self-gravitation. We note that  our proof  can work with a 
slight modification for this case with self-gravitation. 

REMARK 2. We have not yet been able to remove the assumption tha t  a is 
sufficiently smaU, although this is a serious restriction of our result. 

REMARK 3. I t  is difficult to describe our conclusion in te rms  of the Eulerian 
coordinates, since in the Eulerian coordinates the support  of p(-, t), [1, R(t)], which 
corresponds to the fixed interval [0, 1] in the Lagrangean coordinates, varies with 
time t. 
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