Japan J. Indust. Appl. Math., 13 (1996), 519-532

Acoustic Diffraction from a Slit in an Absorbing Sheet
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The diffraction of an acoustic wave, by a slit in an infinite absorbing plane in the presence
of still air and moving fluid, is investigated. The problem is solved using integral trans-
forms, the Wiener-Hopf technique and asymptotic methods. It is found that the diffracted
field is the sum of fields produced by two edges of the planes formed by the slit and an
interaction field.
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Introduction

In recent years, noise has become a serious issue of environmental protection.
Noise abatement has, therefore, attracted the attention of many scientists. An ef-
fective method of noise reduction is to use barriers in Leavily built up areas [1, 2].
An ideal barrier should be such that it is a good attenuator of sound and econom-
ical at the same time. Such barriers have an absorbing lining on the surfaces and
satisfy absorbing boundary conditions. In case of noise radiated from aero engines
and for noise inside wind tunnels, it is necessary to discuss acoustic diffraction in
the presence of a moving fluid. The absorbing half plane was first considered by
Rawlins [3, 4]. He discussed the diffraction of an acoustic wave from a half plane
satisfying absorbing boundary conditions and determined how effectively the sound
radiation is reduced by an absorbing lining in the presence of a fluid flow. However,
no attempt has been made so far to discuss the acoustic scattering from a slit in
an infinite absorbing plane. This situation arises when there is a finite opening in
an infinite barrier intercepting the line of sight from the noise source to receiver.

The aim of this paper is to calculate the diffracted fields due to a plane wave
and line source incidences in an infinite absorbing plane in still air and in the
presence of a moving fluid. It is found that the two edges of the planes give rise to
two diffracted fields (one from each edge) and an interaction field (double diffraction
of the two edges). The field due to a slit in an infinite rigid barrier can be recovered
as a special case taking the absorption parameter to be zero.

1. Plane Wave Incidence

Let (z,y) define a system of cartesian coordinates with origin O. The absorbing
planes are at the positions z < z;, £ > z2 and a slit (aperture) is at z; < z < z;
as shown in the Fig. 1. The absorbing planes are assumed to be of infinitesimal
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Fig. 1.

thickness and satisfying the absorbing boundary conditions p—u,z = 0 [5] on both
sides of the surfaces. Here, p is the pressure, u, is the normal derivative of the
perturbation velocity and z is the acoustic impedance of the planes. The system
responds to an incident plane wave ; given by

; = exp(—ikz cos ¥y — ikysindy),

where 9 is the angle measured from the z-axis. The time dependence is assumed
to be of harmonic nature e™*“! (w is low angular frequency), with the free space
wave number of the form

k::w/c:k1+ik2, (1)

where c is the speed of sound. In Eq.(1), k has a small positive imaginary part which
has been introduced to ensure the convergence (regularity) of the Fourier transform
integrals defined subsequently (Eq.(10a)). On suppressing the time harmonic factor,
the wave equation satisfied by the total velocity potential ¢ is given by

%y 8%

ﬁ+a_y2+k2¢=0' (2)

On the absorbing plates, we have the boundary conditions

(3 + ikﬁ) b(z,0%) =0, {m <& 3)

Ay T > Ty

where 8 (= poc/z, po is the density of the undisturbed stream) is the small ab-
sorbing parameter. We remark that 8 = O corresponds to the rigid barrier and
B = oo corresponds to the pressure release barrier. The velocity potential ¢ and its
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derivative g—‘; are continuous on the slit, i.e.,

¥(z,0%) = ¥(z,07),
d d B {fcl ST < T (4)

In addition, we insist that v represents an outward travelling wave as r =
(2% + y?)1/2 — oo and satisfies the edge conditions [6]

¥(z,0) = 0(1),

as r-—2zf and z. (5)

A ey
By (z,0) = O(z™/*).

It is appropriate to split the total field ¢ as

Yitir+¢, y20,
w={@ y<Q,
where
¥, = exp(—ikz cos ¥y + ikysindy),

and ¢ is the diffracted field.
The boundary value problem can now be reformulated in terms of the diffracted
field ¢ through Eq.(6) as

32
3 f + a—f + k% = (%

subject to the boundary conditions

a .
~-6(z,0") + ikBo(z, 0F) + 2ikBe =% = q,

8y <z
5?;¢>(w, 07) — ikBe(z,07) =

¢($,O+) _ ¢(m,0——) — _2e—ikzcosﬂo,

A 8(@,07) = 7, 4@ 07). { ! 2

Oy
2. Solution of the Problem

We define the Fourier transform pair by
é(e,y) / d(z,y)e**dz,
27r

B(z,y) = 727 / o, yeiomda, (10a)
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where ¢ is a complex variable. In order to accommodate three-part boundary con-
ditions on y = 0, we split (e, y) as

Bl y) = by (0, )™ + ¢_(@,9)e'™™ + §1(a,y), (10b)

where

_ 1 o0

¢+(av y) = E (xay)eia(x_12)dza
z2

1 T2

hiloy) = 7= 5

1 Bt .
5 (o) = 7= / b(z,y)e= =) de.

#(z,y)e'**dz,

In Eq.(10b), ¢, (o, y) is regular for Ima > —Imk, ¢_(a,y) is regular for Ima <
Im k and ¢,(a, ) is an integral function. For this we recall that k is complex and ¢
represents an outward travelling wave of the form |¢| < exp(—kz|z|) as |z| — oo
for any fixed y. Taking Fourier transform of Eq.(7), we obtain

d2

dy?

é(a,y) — v*d(a,y) =0, (11)

where v = y/(a? — k?) and the a-plane is cut such that Re~ > 0. The solution of
Eq.(11) satisfying the radiation condition is given by

— A1(a)e_7y, Yy 2 01
Y) = 12
#(a,y) {Az(a)ew, y<0. (12)
Transforming boundary conditions (8) and (9), we get
T (0,0%) + ikGP_(a,0) 4 2RO (13a)
7 7 V2r(a —kcosd)
5,— (aa O—) - 1kﬂ$~ (Q, 0_) = 0’ (13b)
_ . _ 2kﬂe—ikcosﬂozg
’ + k +y _ —
¢, (a,07) +ikBed (a,07) Var(a— Foos o) 0, (14a)
¢\ (,07) = ikB, (a,07) =0, (14b)
&1(a,07) — ¢,(a,07) = 2iG(a), (15a)
#1(a,0%) = 41 (e, 07), (15b)
where )
— i(a—kcoso)z2 _ i(a—kcosdg)z1
6(e) = o= reoss) {e e JEGES
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Using the boundary conditions (13)-(15) in Eq.(12) and eliminating ¢/, and ¢,
we get

#)(a,0)

G ikd) +e*"1x_(a,0) = —iG(a), (16)

eia12?+ (Ot, 0) +

where

Eq.(16) is the standard Wiener-Hopf functional equation. For the solution of this
equation, we make the following factorizations:

v =K (0)K_(a) = (a + k) /*(a - k)'/?, (17)
and

(1-2) = L@t = 2, (18)

where L (o) and K (a) are regular for Ima > —Imk and L_{a) and K. () are
regular for Im ¢ < Im k. The factorization (18) has been discussed by Noble [7] and
is given by

Li(a)=1- i;r'q[(oz/k)2 ~ 17 Y2 cos 7} (£a/k). (19)

Thus, using Egs.(17) and (18) in Eq.(16), we obtain

. & (a,0 N .
e'**2%, (o, 0) + *—szla()as_za) + € "% _(,0) = —-iG(a), (20)
where S,(a) [= Ki(a)Li(o)] is regular for Ima > -Imk and S_(«)

[= K_(a)L_(e)] is regular for Ima < Imk.
With the help of Egs.(10b), (12) and (13a-15c), the unknown functions A;(c)
and As(a) are given by

24,(a) = €72 (3, (a 0) — B, (2 07)
+ € (¢_(a,0") ~ _(,07)) + 2iG(a)

kB [ iozs (= =
+ 2o (3, (0, 0%) + 8, (007)
£ (B(0,01) +3_(2,07) +2iG(e)}.  (21a)

—24;(a) = €% (§, (@,0%) — ¢, (,07))
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+ €71 (¢_(a,0%) = ¢_(,07)) + 2iG(a)
& . _ _
_ ﬂ{elm (3,(c,0%) + 8, (2,07))
Y
+ eioa:l (a_ (O{, 0+) + a_ (a, 0_)) + 210(0)} (21b)

We assert that k3/v is very very small provided |a/k| is not too near to 1. This
assertion can be justified under the assumptions of small absorbing parameter 3
and low frequency of the acoustic wave. Thus, using this approximation, Eqgs.(19)
and (21a, b) yield

Li(e) ~ 1% iaf/, (222)

241(a) = —24s(a) = €*** (¢, (a,0") — ¢, (,07))
+ €% ($_(e,0%) — $_(e,07)) + 2iG(). (22b)

Note that in writing Eqgs.(22a, b) we have retained the terms of the order O(3/%)
and neglected the terms of O(k3/7).

Now, multiplying Eq.(20) by S, (a)e™**2 and using the general decomposition
theorem [7] (§1.3, p.13) we obtain

ie—ik cos Jpzx2

S, (a)x, (a,0) +
+(@)X(2,0) V2m(a — kcosdg)
—igTikcosdoz2 G (K cosdy)

- V2r(a — kcosdy)
eiax2$,1 (a’ 0)

(S4(a) = Si(kcosdh)) + Uy () + Vi(a)

B A U_(a) = V_(a), (23)
where
S+(@)X_ (o, 0)e 7= 7%) = U(a) = Uy (@) + U~ (o),
Cjeialemm) ke hong (o)
V2 (o — k cos ) — V=@
and

_ 1 = U
U,(a) = ﬁ/_oo Eomde ma>o,
_ 1 = Ul
U_(a) = o . (E—a)dg’ Ima <0,
1L [ V()

Vila) = o) (E_a)dg, Ima > 0,

Vo{a) = —%/_(: ({V—(—Ei)dg’ Ima < 0.
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Now, multiplying Eq.(20) by S_(a)e™**1, we get

ie—ik cos Yoz1 S (a)

S (@R-(0) = e T R (@) Q)
B e o1 4! (a, 0)
S e .
where
S_(a)x, (a, 0)el*(=2=21) = R(a) = R, (a) + R_(a),
—jele(rz —x1)—ik cos doz2 S (a) _ _
Van(a Feosdy) | Q) =@ +Q-@),
and

R, (e) ! /°° () d¢, Ima>0,

- 2—7(‘1 —00 (E - Ot)
_ 1 [ R
2mi —oco (6 - a)

_ 1 [® Rl
Qi(a) = o /_oo (§—a)d£’ Ima >0,

_ 1 Q)
27 —oo ({-—a)

R_(a) = df, Ima < 0,

d¢, Tma <0.

Q-(a) =

Let fi(c) define a function equal to both sides of Eq.(23). Since the left hand
side of Eq.(23) is regular for Ina > —Imk and the right hand side is regular for
Im o < Im(k cos ) respectively, therefore, by analytic continuation, the definition
of fi(a) can be extended throughout the complex a plane. The form of fi(a)
is ascertained by examining the asymptotic behaviour of the terms in Eq.(23) as
|a] — oo. From Eq.(19), we note that |Li(a)| ~ O(1) as || — oo and with
the help of the edge conditions, we find that ¥, (o) and X _ (o) must be at least of
O(|a|~1/?) as |a| — oo. Using extended form of Liouville’s theorem, it can be seen
from Eq.(23) that fi(a) ~ O(|a|~'/?) and therefore, the polynomial representing
fi(a) can only be a constant equal to zero. Hence, from Eq.(23), we obtain

=/ ot 5, (X (€, 0)e =)

S+(Ot)5(_:_(01,0) + % cotic (£ — Ot)

je~ikcosPoz2 G (K cosdg)

_ =0, 25
V2r(a — kcosdg) (25)
where
: —ik cos Yoo
ie @,0),

7. (0, 0) + J—
X+ (2,0) \/2_7r(a—kcom90) X
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ie—ik cos 9oz

X-(2,0) V2r(a — k cos¥g) = X-(a,0).

Similarly, from Eq.(24), we have

oo+id o* i€(z2—21)
S_()¥* (a,0) — 1 / S_(&)x% (€, 0)e

2mi —oo+id (§ - Ol)

d¢ = 0. (26)

The unknown functions X (c, 0) and X_(c, 0) appearing in Eqgs.(25) and (26) have
been determined by using the procedure discussed by Noble [7] and are given by

274— (C!, 0) = $—+— (aa 0+) - $+ (O‘a 0_)

2i
= —m (Gi1(e) + C1(k)T (o)) , (27)
2?— (a7 0) = —(E— (Ol, 0+) - 5_ (O‘ao_)
2i
= Va5 (a) (G2(—a) + Co(k)T(~a)) (28)
where
1 TR\ G1 (k)T (k)
ok = (1= sm) {0+ S5 )
1 TR\ G, (k)T (k)
o) =57 (1 s2m) {0+ Zeng }
Gl(a) — Pl(a)e—ikcosﬂo:n _ Rl(a)e—ikcosﬂoxl’ (293.)
Gg(a) — Pz(a)e—ikcosﬂozl _ R2(a)e—ikcosﬂoz2, (29b)
_ Sy(a) — Si(kcosvy)
Pra(e) = - (a F kcos ) ’
Ry a(a) = Eo (Wy[—i(k £ kcos9p)(za — x1)] — Wo[—i(k + a)(z2 — x1)])
LA 27i(a F k cosdg) ’
T(a) = %EOWO[—i(k +a)(zs — )],
By — gein/2 €0

(z2 — 21)/2’

Wo(Z) = F(3/2)e2/2 (Z)_1/4W_3/4,1/4 (Z),
(W;,; is a Whittaker function and z = —i(k+a)(z2 —1)). Substitution of Egs.(27)
and (28) in Eq.(22b) yields

Ai(o) = v {m(G1(a) + C1(k)T(a))
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iaz
e 1

S_(a)

(Ga(—a) + Cz(k)T(—a))} +iG(a). (30)

Now, substituting the value of A;(a) in Eq.(12) and using the approximations
(29a, b), the field ¢(z,y) can be written as

¢= ¢Se"(m,y) +¢int(I,y),

where

¢°°P(z,y) = 1 /oo {K+(k cos ¥g) L4 (k cos g ) ek cos do)zz
, 2m K (a)Li(a)(a — kcosdp)
K_(kcos¥o)L_ (k cos ¥p)ei(@—kcos $o)z1
- K_(a)L_(a)(a — kcosdg) }
x e 7T g, (31)

— 00

iax
elaT2

27 J o Ky (a)Ly(a)

¢int($,y) — _l_/oo {(Rl(a)eikcosﬂom _Cl(k)T(Ot))

X e 71T q, (32)

Here, ¢°P(z,y) represents the field diffracted by the edges at z = z; and z = x4,
and ¢'™(z,y) gives the interaction of one edge upon the other. The integrals ap-
pearing in Eqgs.(31) and (32) can be evaluated asymptotically by using the steepest
descent method. For that, we put z = rcosd, y = rsind and deform the contour
by the transformation o = —kcos(¥d +iv) (0 < ¥ < 7, —00 < v < o). Hence for
large kr,

#P(2,5) = SV R (~kcos §)er=/9), (3)
V2mkr
iksin ¥

ﬁfg(—k cosd)el(kr /%), (34)
nkr

™ (z,y) =

where

K (k cos 9) L. (k cos g ) e~ k(cos d+cos do)z2

K, (—kcos¥)L,(—kcos¥)(cos? + cosJp)

N K_(kcos9) L_ (k cos ) e k(cos 9+cos Fo)z: } (35)
K_(—kcos9)L_(~kcos¥)(cosd + cosdy) |’

Fi(—kcosd) = {

Fo(—kcos®) = — (Ri(—kcosd)e *cosPom _ ¢ (k)T (—k cos 9))

e—ik cos ¥z

Ky (—kcos®)L4+(—kcosd)

X
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— (Ra(kcos9)e™*c0s%0%2 _ (k)T (k cos 9))

e—ik cos V1
“ K (—kcos9)L_(—kcosd)’ (36)

In Egs.(35) and (36), L..(.) are given by Eqs.(22a).

3. Line Source Incidence

In this section, we consider the diffraction of an acoustic wave due to a line
source from the slit. We consider the line source to be located at the position (zg, o)
and the inhomogeneous wave equation satisfied by the total velocity potential ¥
takes the form

ool 2L

3—1‘2‘+ a—z-—%kZW:é(a:—a:g)é(y—yo), (37)

subject to the boundary conditions

o <
— +ik8 ) ¥(z,0%) =0, { 38
(5 8) #(2,0%) o (38)
¥(z,0%) = ¥(x,07), {
5 N 5 ~ T, <z <79 (39)
The total velocity potential ¥ may be expressed as
U =0+, (40)

where U is the incident wave corresponding to the source term and ¥, is the solution
of the homogeneous wave equation that corresponds to the diffracted potential. The
solution of the inhomogeneous wave equation can be written in a straight forward
manner as

1 [ e—ie(z—zo)+i(k?—a?)'/?|y—yol
¥y = / ‘

i (k2 — a2)1/2 do,

— 00

= — O (Kl — 20)” + (1)), (1)

The diffracted field ¥y is obtained by using the procedure in Section 1 and is given
by

Tu(z,y) = U377 (z,y) + 05 (z, v),
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where
. . sind ik(r+r
VS (z,y) = ke Fi(—kcos 9)e*(mHro) (42)
TRz, y) = § sind Fo(—kcos 9)eik(r+ro). (43)

A7\ /rro

In Eqgs.(42) and (43)
r=(a®+y)2, 1o = (x5 +93)"%

and F;(—kcos®) and Fo(—k cosd) are given by Egs.(34) and (35) respectively.

4. The Effects of Convection

In this section, we make an assessment of the effects to be expected if the
sound is propagating in a moving fluid. We consider a small amplitude sound wave
on a main stream moving with velocity U parallel to the z-axis and discuss the
diffraction of a line source from the slit in a moving fluid. The perturbation velocity
u of the irrotational sound wave can be written in terms of the velocity potential
7, as © = grad n. The resulting pressure in the sound field is then given by

o 0
P=—p (EH]%) , (44)

where pg is the density in the undisturbed stream. Then our problem becomes one
of solving the following convective wave equation

0? 7] o2
2 : 2
{0 bty g ok b 0 ) = Ble =0y —30), (49
subject to the boundary conditions
17} e} T <z
M 4 =0 46
(2 7 omg £80) w0ty =0, {7 (46)
n(z,0%) = n(z,07), {
B3] 2] _ T Lz <x9 (47)
_n(za 0+) = —77(33, 0 )a

Oy dy

where M = LC]— is the Mach number. We assume that the flow is subsonici.e. |M| < 1
and make the following substitutions

z=(1-M»"X, z0=(01-M)"Xo, yo=Yo, y=Y,
11:(1—M2)1/2X1, $2:(1—M2)1/2X2,
k=(1-M)"?K, B=(1-M?)?B,

n(z,y) = p(X,Y)e HMX,
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Using these substitutions in Eqs.(45)-(47), we get

62 82 9 —iKMXg
o o X <X,
— B— +iK X,0%) =0 49
(6yq:M X 1 B)SO( ) ) ) {X>X2 ( )

P(X,0%) = o(X,07),
{X1 <X <X, (50)

(X,00) =

= 0-).
ach(X, )

oy ”?
As before, the Wiener-Hopf functional equation in case of the moving fluid is found
to be of the form

. — 7} 0 R _
e)aX2C+(a,O)+‘pj£a: )+6laX1C_(a,0)

YL(a)
eiKMXOei(KRo—‘rr/zl)

= S M)Ay R R @)

(51)

where
¢+(0"0+) - ¢+(a,0_) = 26-{-(‘1,0),
¢—(aa 0+) - @—(a’o_) = 22—(0"0)’
R}=X2+Y}, A=(a-K)'? =K, (0)K_(a),
L(a) = [1 —iB(Ma + K)/7).

In order to solve the Wiener-Hopf equation (51), we need to factorize the kernel
function L(a) as

L(a) = Li ()L (o), (52)

where E+(a) is regular for Ima > —Im K, and z_(a) is regular for Ima < Im K.
The factorization (52) has been obtained in Appendix A. It is important to note
that

|L+(@)| ~ O(|afT®), [C1 (@) ~ O(la| ™€), as |a| — oo [3],

where

s_ L 1-iMBY __1_
o ¥\1TriMB) fT27°

Now, following the same method of solution as in Section 1, the diffracted field 5
can be written as

n(2,y) = 1°P(z,y) + 1™ (=, y), (53)
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where

e——iKM(X—Xo) sin 9

") = S am gy RR DK s T, (5

e~ iKM(X—X,

— _ iK(R+Ro)
z,¥) = 1(1 Ry VENVEym - Fo(—K cosde . (55)

nint(

In Egs.(54) and (55)

R=(X*+Y?*)?,

~ [? K T —iK (cos 9+cos ¥99) X2
Fi(=K cos®) = ~+( cosﬁo)Lt(K cosYp)e
K (—K cos¥)Ly(—K cosd)(cos?d + cos )

3 I~(_(K cos ﬁo)z_(Kcosﬁo)e_iK(ms’HCOSﬂ")X‘
K_(~K cos9)L_(—K cosd)(cosd + cos )

Fa(—K cos¥) = — (R1(~K cos9)e K eosPom _ 0y (K)T(—K cos¥))
e—iK cos ¥ X2
X = =
K (—Kcos®)L(—K cos¥)
— (R2(K cos9)e K cosPoXz _ 0y (K)T(K cosd))
e—iKcos19X1

X = = .
K_(—K cos9)L_(—K cos?)

From Eq.(53), we observe that as a result of fluid motion the field is increased by
the factor (1 — M?)~1/2 in comparison to still fluid. Also, the field is independent
of the direction of the flow since the fluid velocity U appears as |U|? in the factor
(1— M?). These results also take care of acoustic diffraction from a slit in an infinite
rigid barrier in a moving fluid which can be obtained by putting 8 = 0 in Eq.(53).

APPENDIX A

The function Z(a) is given by

~ B(Ma+ K
L(a)=(l+ﬁ%),

The factorization of the function [14+ B(K — Ma)/(K? — a?)'/?] has been discussed
by Rawlins [3]. The same procedure can be adopted for Z(a). Thus, employing the
technique of Rawlins and omitting the details of calculations, the function Z(a)
may be factorised as

L(a) = Ly(a)L- (), (A1)
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where
Ls(e) = LsO)exp [ As(eddo, (A2)
and
Ly(0)=L-(0)=Vi+B
In Eq.(A2)
1 BK
M) = 5030 T Tr B
(M -—a)F(a, Kan) (M - o3)F(a, Kay)
(e ey 2):
A (=) [M=—m= —A4(a),
Flowan) = 5o (f(e) — flew),
N oK dt _ cos™'(P/K)
fp)= /K (t + P)(t2 — K2)1/2 - (K2 — p2)1/2’

—_1__ _ 2 _ p2 2 R2\1/2
a1,2_(1+B2M2)( MB?+(1— B% + M?B?) ) (A3)
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