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The diffraction of an acoustic wave, by a slit in an infinite absorbing plane in the presence 
of still air and moving fiuid, is investigated. The problem is solved using integral trans- 
forms, the Wiener-Hopf technique and asymptotic methods. It is found that the diffracted 
field is the sum of fields produced by two edges of the planes formed by the slit and un 
interaction field. 
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I n t r o d u c t i o n  

In recent  years ,  noise has  become a ser ious  issue of env i ronmen ta l  p ro tec t ion .  

Noise a b a t e m e n t  has, therefore,  a t t r a c t e d  the  a t t e n t i o n  of m a n y  scientists .  A n  ef- 

fective m e t h o d  of noise r educ t ion  is to  use bar r ie rs  in heavi ly  bu i l t  up  areas  [1, 2]. 

A n  ideal  ba r r i e r  should  be such t ha t  it  is a good  a t t e n u a t o r  of sound and  econom- 

ical a t  the  same t ime.  Such bar r ie rs  have an  abso rb ing  l ining on the  surfaces and  

sa t is fy  absorb ing  b o u n d a r y  condi t ions .  In case  of noise r a d i a t e d  from aero engines 

and  for noise inside wind  tunnels ,  i t  is necessary  to  discuss acous t ic  dif f ract ion in 

the  presence of a moving  fluid. The  abso rb ing  ha l f  p lane  was first  cons idered  by  

Rawl ins  [3, 4]. He discussed the  dif f ract ion of  an acous t ic  wave f rom a ha l f  p lane  

sa t i s fy ing  absorb ing  b o u n d a r y  condi t ions  and  d e t e r m i n e d  how effectively the  sound  

r ad i a t i on  is r educed  by  an  absorb ing  l ining in the  presence of a fluid flow. However,  

no a t t e m p t  has  been  mm:le so far to  discuss the  acoust ic  sca t t e r ing  from a slit  in 

an  infini te absorb ing  plane.  This  s i tua t ion  arises when there  is a f inite open ing  in 

an  infini te ba r r i e r  i n t e rcep t ing  the  line of s ight  from the  noise source to  receiver.  

The  a im of th is  p a p e r  is to ca lcu la te  the  d i f f rac ted  fields due  to a p lane  wave 

and  line source incidences  in an infini te abso rb ing  p lane  in st i l l  air  and  in the  

presence  of a moving  fluid. Ir  is found t h a t  the  two edges of the  p lanes  give rise to  

two dif f racted fields (one f rom each edge) and  an  in te rac t ion  field (double  dif f ract ion 

of the  two edges).  T h e  field due to  a slit  in an  infini te rigid bar r ie r  can  be  recovered 

a s a  special  case t ak ing  the  abso rp t ion  p a r a m e t e r  to  be zero. 

1. P l a n e  W a v e  I n c i d e n c e  

Let  (x, y) define a sy s t em of  ca r tes ian  coord ina te s  wi th  or igin O. The  absorb ing  

p lanes  are at  the  pos i t ions  x < x i ,  x > x2 a n d a  slit  ( ape r tu re )  is a t  x i  < x < x2 
as shown in the  Fig.  1. T h e  absorb ing  p lanes  are assumed  to be  of inf in i tes imal  
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Fig. 1. 

thickness and satisfying the absorbing boundary conditions p -  u,~z = 0 [5] on both 
sides of the surfaces. Here, p i s  the pressure, un is the normal derivative of the 
perturbation velocity and z is the acoustic impedance of the planes. The system 
responds to an incident plane wave r given by 

r  = exp ( - ikx  cos ~o - iky  sin 00), 

where z90 is the angle measured from the x-axis. The time dependence is assumed 
to be of harmonic nature e - i~t  (w is low angular frequency), with the free space 
wave number of the forro 

k = w / c  = kl  + ik2, (1) 

where c is the speed of sound. In Eq. (1), k has a small positive imaginary part which 
has been introduced to ensure the convergence (regularity) of the Fourier transform 
integrals defined subsequently (Eq.(10a)). On suppressing the time harmonic factor, 
the wave equation satisfied by the total velocity potential r is given by 

02r 02r 
ox~ + ~ + k2r = 0. (e) 

On the absorbing plates, we have the boundary conditions 

(o ) 
+ ikZ r 0 • = 0, ( X <~ Xl (3) 

x > x 2  

where q (= poc/z ,  Po is the density of the undisturbed stream) is the small ab- 
sorbing parameter. We remark that f~ -- 0 corresponds to the rigid barrier and 
q -- oo corresponds to the pressure release barrier. The velocity potential r and its 
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or derivative ~ are cont inuous on the slit, i.e., 

r +) = r  

~r = ~r 
{ xi  _< x < x2 (4) 

In addition, we insist tha t  r represents an outward 
(x 2 + y2)1/2 > oc and satis¡ the edge condit ions [6] 

r 0) = o ( 1 ) ,  

~(=,o) = o(=-~/~). } 

travelling wave as r = 

It is appropr ia te  to split the total  field r as 

{r +r162 
r  r 

where 

y > 0 ,  
- ( 6 )  

y _ < 0 ,  

~br = e x p ( - i k x  cos V~o + iky sin zg0), 

and r is the diffracted field. 
The  boundary  value problem can now be reformulated in terms of  the diffracted 

¡ r th rough  Eq.(6) as 

02r 62r + k 2 r  (7) 
Ox--- ~ + Oy-- ~ 

subject  to the b o u n d a r y  conditions 

~r + + = 0, x < xi 0 + ) ik/3r 0 + ) 2ikl3e -ik= COB'~ o 

{ (s) ~r x, 0 - )  - i k ~ r  = 0, x > x2 

r 0 +) - r 0 - )  -- - 2 ~  -'k= c~ , 

~r = ~r 
{ x i  < x _< x2 (9) 

2. S o l u t i o n  o f  t h e  P r o b l e m  

We define the Fourier t ransform pair  by  

r - v ~  ~ r  

r  v ~  
(lOa) 

as x >x + and x~.  (5) 
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where a is a complex variable. In order to accommodate three-part boundary con- 
ditions on y = 0, we split r  y) as 

r v) = r y)~'~=~ + r  (~, y)~~~=' + r v), OOb) 

where 

-r (~ ,  v )  - 

- r  - 

~ - ( ~ , v )  - 

j~OO 
1 r y)ei'~(=-=2)dx, 

1 f=== 1 1L 
V ~  r  y)e ic'(=-xl)dx. 

In Eq.(10b), r  is regular for I m a  > - I m k ,  r  is regular for I m a  < 
Im k and e l ( a ,  y) is an integral function. For this we recall that  k is complex a n d r  
represents an outward travelling wave of the forro 1r < exp(-k2]x]) as ]x I , oo 
for any fixed y. Taking Fourier transform of Eq.(7), we obtain 

d 2 _ 
dy 2 r y) - 72r y) = 0, (11) 

where 7 = V/(a 2 - k2) and the a-plane is cut such that  Re7 > 0. The solution of 
Eq.( l l )  satisfying the radiation condition is given by 

{ A l ( a ) e  -~v, y >_ O, (12) 

-r = A2(a) e'yy, y <_ O. 

Transforming boundary conditions (8) and (9), we get 
2k/3e-ik cos ~o=1 

r (a, 0 +) + ikflr (a, 0 +) + 
v ' ~ ( ~  - k cos ~o) 

CŸ (a, 0 - )  - ikfl-r (o~, O- ) = O, 

= 0 ,  (13a) 

(13b) 

2kt3e-ik cos Oox2 
r (a, 0 +) + ikflr 0 +) - v/~~(( x _ k cos v%) 

CŸ (a, 0-)  - ikflr ((x, 0-)  -- O, 

= O, (14a) 

(14b) 

where 

r (a, 0 +) - r (a, 0-  ) = 2iG(a), 

SŸ (,~, o § = ~Ÿ o-) ,  

c(~)  = v ~ ( ~  - kco~~o) 

(15~) 

(15b) 

(15c) 
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Using the boundary conditions (13)-(15) in Eq.(12) and eliminating r and r 
we get 

�9 _ ~~(~,0) . 
e~'~~aX+(ee, 0) + (-7 7 i ~ )  + e"~~lX- (a 'O)  = - i G ( a ) ,  (16) 

where 

~+(~ ,  o +) - 7+(~ ,  0 - )  = 2~+(~,  0), 
~ _ ( ~ , 0  +) - 7 _ ( ~ , 0 - )  = 2~_(~ ,0) .  

Eq.(16) is the standard Wiener-Hopf functional equation. For the solution of this 
equation, we make the following factorizations: 

7 = K + ( a ) K _ ( a )  = (a + ]g)l/2(& _ k)1/2,  (17) 

and 

1 - = L + ( a ) L _ ( a )  = L(a) ,  (18) 

where L+(a)  and K + ( a )  are regular for I m a  > - I m k  and L _ ( a )  ana K _ ( a )  are 
regular for I m a  < Im k. The factorization (18) has been discussed by Noble [7] and 
is given by 

L i ( a )  = 1 - ifl [ (a /k )  2 - 1]-W2 eos-l(_}_o~/k).  (19) 
7F 

Thus, using Eqs.(17) and (18) in Eq.(16), we obtain 

~.i~x=~+(~,0)+ SŸ + e i ~ ~ , ~ _ ( ~ , 0 ) = _ i a ( ~ ) ,  (20) 
s+(~)s_(~) 

where S+(a)  [= K + ( a ) L + ( a ) ]  is regular for I m a  > - I m k  and S _ ( a )  
[= K _  ( a ) L _  (a)] is regular for Im a < Im k. 

With the help of Eqs.(10b), (12) and (13a-15c), the unknown functions A 1 (of) 
and A2(a)  are given by 

2Al(a)  = e '~.2 (r  0 +) - r  0 - ) )  

+ e i~xl ( r  +) - r  0 - ) )  + 2iG(a) 

ikfl {ei~Z~ + - -  (7+(~, 0 +) + 7+(~, 0-)) 

+ ~i~~1 ( ~ _ ( ~ , 0 + ) +  7 _ ( ~ , 0 - ) ) +  2 ia (~ ) } .  (21a) 

- 2 A e ( a )  = e i~x= (r  0 +) - r  0 - ) )  
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+ e i~~' (r  +) - r  0-)) + 2iG(a) 

ik~ {e '~ (~+(~,o+) + ~+(~, o-)) 

+ e  i~x~ (r 0 +) + r  2iG(a)}. (21b) 

We assert that k~/"/ is very very small provided la/k Iis not too near to 1. This 
assertion can be justified under the assumptions of small absorbing parameter 
and low frequency of the acoustic wave. Thus, using this approximation, Eqs.(19) 
and (21a, b) yield 

L+ (a) ~ 1 + iae/3,, (22a) 

2Al(a) = -2A2(a) = e i~x2 (r 0 +) - r  0-)) 

+ e i~xl (r 0 +) - r  0-)) + 2iG(a). (22b) 

Note that in writing Eqs.(22a, b) we have retained the terms of the order O(q 
and neglected the terms of O(k~/~). 

Now, multiplying Eq. (20) by S+ (c~)e - i ax2  and using the general decomposition 
theorem [7] (w p.13) we obtain 

ie-ik cos Ooz2 
s+  (~)~+ (~, 0) + ~ _ ~ ( ~  _ k cos ~0) ( s+  (~) - s+  (k cos ~0)) + U+ (~) + V+ (~) 

_ie-ik r ~o~2 S+ (k cos ~0) 
z 

v ~ ( ~  - k cos ~0) 

ei~237 (~, 0) 
S_ (a) U_ (a) - V_ (a), (23) 

where 

and 

s+ (~)~_ (~, o)~ -~<*~-*,) = u(~)  = u+ (~) + u_ (~), 

_ie- iC~(z2-z ,  ) - ik  cos O0xx S-{- ( a )  

v ~ ( ~  - k cosO0) = V(~) = V+(~) + V_ (~), 

1 /_~o _U(~) d~, I m a > O ,  

U_(a) - 1 /_~ U(~) d~, I m a < O ,  
2~i o~ (~ ~ ~ )  

1 f_~ V(~) d(, I m a > O ,  v+(~)  = ~~i o~ (~ - ~) 

1 f_~o V(Q d~, Imce<O. 
V _ ( a ) -  2~ri oo ( ~ -  a) 
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Now, multiplying Eq.(20) by S_(a)e -~a:~~, we get 

ie-ik cos ~oxl S_ (a) 

s_(~)~_(~,  o ) -  v ~ ( ~ -  k cosOo) + R_(~ ) -  Q_(~) 

- - - -  e - i c ~ x ' ~ Ÿ  O) -- R+(a)  + Q+(a) ,  
S+(~) 

where 

and 

s_(~)~+(~,  0)e ~~ = R(~) = R+(~) + R_(~), 

-iei~(~~-r176176 -- Q(a)  = Q+(c~) + Q_(a ) ,  

v ~ ( ~  - k cos ~0) 

1 i ?  _R(~_) d~, I m a > 0 ,  R + ( ~ ) = ~ ~ i  ~ ( ~ - ~ )  

1 i_,o _R(~) d~, I m a < O ,  
R_(a)-- 27ri ~ ( ~ - a )  

1 i~~  Q(~) d~, I m a > 0 ,  Q + ( ~ ) = ~  ~ ( ~ - 3 )  

1 i ?  Q(~) d~, Ima<O. 
Q_ (a) -- 2zri oo (~ --- ~) 

(24) 

Let f l ( a )  define a function equal to both sides of Eq.(23). Since the left hand 
side of Eq.(23) is regular for I m a  > - I m k  and the right hand side is regular for 
Im a < Im(k cos zg0) respectively, therefore, by analytic continuation, the definition 
of f l ( a )  can be extended throughout the complex c~ plane. The forro of f l ( a )  
is ascertained by examining the asymptotic behaviour of the terms in Eq:(23) as 
la I ~ oo. From Eq.(19), we note that IL+(a)l ..~ O(1) as la I > oc and with 
the help of the edge conditions, we find that  ~+ (~) and ~_ (a) must be at least of 
O(la1-1/2) as la I > oo. Using extended form of Liouville's theorem, it can be seen 
from Eq.(23) that fl(c~) ~ O(la1-1/2) and therefore, the polynomial representing 
f l  (a) can only be a constant equal to zero. Hence, from Eq. (23), we obtain 

1 foo+~~ S+(~)~.(~,0)e-~~(=~-~~) 
s+(~)~:~(~,0) + 2~-~ J-oo+ic t - -J ) )  d~ 

_ ie-ik cos ~o=2 S+ (k cos v~0) = 0, (25) 

v ~ ( a  - k cos 00) 

where 

ie-ik cos ~ox2 

~+(~,0) + v ~ ( ~  - keos#0) = ~:~(~,0), 
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ie-ik cos OoXa 

~ _ ( ~ , 0 )  - v ~ ( ~  - kco~~0) 
= 2 " _  ( a ,  o ) .  

Similarly, from Eq.(24), we have 

1 loo+id  S_(~)X;(~, O)e i((x2-:cl) 
S_ (a)N*_ (a, O) - ~ J-oo+id (~ -- a) d (  = O. (26) 

The unknown functions ~+(a ,  0) and ~_ (a, 0) appearing in Eqs.(25) and (26) have 
been determined by using the procedure discussed by Noble [7] and ate given by 

2~+ (a, 0) = r (oq 0 +) - r  (o~, 0-  ) 
2i 

= - v / ~ S + ( a )  (a l (a )  + Cl(k)T(oO), (27) 

2 ~ _ ( ~ , o )  = ~ _ ( ~ , o  +) - ~ _ ( , ~ , o - )  
2i 

- (c~(-~) + C ~ ( k ) T ( - ~ ) ) ,  
v~s_(~) 

(28) 

where 

Ct(k) _ 1 ( T 2 ( k )  '~-1 / G1 (k)T(k) } 
s+(k)  ~ s~(k) ] c,(k) + S+(k) ' 

C2(k) - 1 ( i  T2(k ) ~ - i  C2(k)T(k) 
s+(k) s~_(k)j {a,(k)+ s+(k) }' 

Gl((::x) = pl(o:)e -ikc~ _ Rl(o�91 (29a) 

G2(o<) = p2(ct)e-ikc~ _ R2(o0e-ikcosOo=,, (29b) 

&,2(,:d = s + ( ~ )  - S•  
(~ T k cos ~o) ' 

R~,~(~) = E0 (W0[-i(k + k cos#0)(x~ - x~)] - W0[-i(k + ~)(~~ - ~1)]) 
27ri(a =F k cos 0o) 

T(a) = 2~lEoWo[-i(k + a)(x2 - Xl)], 

Eo = 2e bv/2 
eik(x2-xl) 

(zz - 21) 1/2' 

Wo (z) = r ( 3 / 2 ) e  z/2 (z ) -  1/4 w - s / 4 , i / 4  (z), 

(Wid is a Whittaker function and z -- - i ( k  + a)(x2 - x i ) ) .  Substitution of Eqs.(27) 
and (28) in Eq.(22b) yields 

i f e iax2  
Al(a)  - I W - - 7 ~ ( G l ( a ) + C l ( k ) T ( a ) )  v~~ 
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eic~:cl I 
+ S _ - - ~ ( C 2 ( - a )  + C2(k)T(-a)) + iC(a).  

527 

(30) 

Now, substituting the value of A~(a) in Eq.(12) and using the approximations 
(29a, b), the field r y) can be written as 

(~ = (~seP(X, y ) ~-(~int(x, y) ,  

where 

i f ~  {K+(kcosSo)L+(kcosSo)ei(,~-kr 
Cs~P(x, y) 

K_ (k cos O0)L- (k cos 8o)e i(a-k cos #o)x, 

i /_~ { (a)e ik~~ e io=~ (~int(x'Y) = ~ oo (R1 - -  Cl(k)T(a)) K + ( a ) L + ( a )  

eiaxl I + (R2 (-(~)e -ik cos ~o~2 _ C2 (k)T(-a))K_ (~)L_ (c~) 

(31) 

(32) 

Here, csep(x, y) represents the field diffracted by the edges at x = x2 and x = xi ,  
and r (X, y) gives the interaction of one edge upon the other. The integrals ap- 
pearing in Eqs.(31) and (32) can be evaluated asymptotically by using the steepest 
descent method. For that ,  we put  x = r cos 8, y = r sin ~ and deform the contour 
by the transformation a -- - k c o s ( 0  + ir)  (0 < 8 < % - o o  < v < co). Hence for 
large kr, 

i sin O 8)ei(kr_Tr/4), 
Csop(z,y) = v ~ ~ ~ 7 1 ( - k  cos 

ik sin 8 cos 8)e i(kr-~r/4) , r  = 4 ~ - ~ ; J = : ( - k  

(33) 

(34) 

where 

.T'l(-kcos8 ) = [ tŸ237176176 e-ik(c~176176 
[, K+(-k cos 8 ) 5 +  ( - k  cos O)(cos 8 + cos 80) 

_ K-(kcosv%)L-(kcos8o) e-ik(r176162176176 } 
K_ ( - k  cos ~)L_ ( - k  cos 8)(cos ~9 + cos 80) ' 

J=2(-k cos 8) = - ( R l ( - k  cos 8)~ -ik ~ ~o~1 _ C l ( k ) T ( - k  cos 8))  
e--ik cos vQx2 

X 
K§ ( - k  cos 8)L+ ( - k  cos tg) 

(35) 
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- (R2 (k cos ~)e -ik ~o~ ~o~2 _ C 2 ( k ) T ( k  cos ~))) 

e - i k  cos ~~cl 
>( 

K_ ( - k  cos ~))L_ ( - k  cos ~))" 
(36) 

In Eqs.(35) and (36), L~:(. ) are given by Eqs.(22a). 

3. L ine  S o u r c e  I n c i d e n c e  

In this section, we consider the diffraction of an acoustic wave due to a line 
source from the slit. We consider the line source to be located at the position (x0, Yo) 
and the inhomogeneous wave equation satis¡ by the total velocity potential kV 
takes the form 

02g, 02g, 
Ox ~ + ~ + k2kV = 5(x - xo)5(y - Yo), (37) 

subject to the boundary conditions 

( 0 ~  +ik~)kV(x,0  +) = 0 ,  { x < x i  
(3S) 

x > x 2  

~v(x, 0+) = ~(x,0-), 

~+(x,0+) = ~+(x,0-) .  
{ xi < x < x2 (39) 

The total velocity potential ~P may be expressed as 

~v = ~o + ~vd, (40) 

where ~0 is the incident wave corresponding to the source term and kV d is the solution 
of the homogeneous wave equation that corresponds to the diffracted potential. The 
solution of the inhomogeneous wave equation can be written in a straight forward 
manner as 

1 q  e-ia(x-xo)+i(k2-a2)l/2•y-yot 
~Vo = ~ _o~ ~ - : ~  ~~' 

1 H0~l)(k[(x - x0) 2 + (y - y0)~]1/2). (41) 
4i 

The diffracted field kVd is obtained by using the procedure in Section 1 and is given 
by 

ed(x,  y) = e i ~  y) + e~~ y), 
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where 

s ino  ~.m(_kcosO)eik(T+ro) (42) 
k~dCP(x, y) = i47rkx/~~ 

sin 
~~nt  (X, y) = i - -  .T'2(-kcosO)e ik(r+~'~ (43) 4~r rv~ 

In Eqs.(42) and (43) 

r = (X 2 + y 2 ) 1 / 2 ,  ,F0 = (X02 ~_y02)1 /2  

and 9~1(-k cos 0) and  ~ - 2 ( - k  cosO) are given by Eqs.(34) and (35) respectively. 

4. T h e  E f f e c t s  o f  C o n v e c t i o n  

In  this section, we make  ah assessment  of the  effects to be  expec ted  ir the 
sound is p ropaga t ing  in a moving fluid. We c o n s i d e r a  small  ampl i tude  sound wave 
on a ma in  s t r eam moving  with  velocity U paral lel  to the x-axis  and  discuss the 
diffraction of a line source f rom the slit in a moving  fiuid. The  pe r tu rba t i on  velocity 
u of the i r rota t ional  sound  wave can be wr i t t en  in t e rms  of the  velocity potent ia l  
7, as u = grad ~?. The  resul t ing pressure in the  sound field is then  given by 

(0~0) 
P = - P 0  ~ � 9 1  Ox 77, (44) 

where  Po is the densi ty  in the  und i s tu rbed  s t ream.  T h e n  our p rob lem becomes  one 
of solving the following convective wave equa t ion  

( 1  - M 2) + 2ikM + - -  + k 2 ~(x, y) = 6(x - xo)6(y - Yo), (45) Oy 2 

subjec t  to the b o u n d a r y  condit ions 

0 T 3 M  -4-ik3 7 / ( x , 0 + ) = 0 ,  (46) 
X>X2 

~(~,o § = ~(x, o-) ,  
{ X  1 <~__ X < X 2 ~y~(X, 0+) = ~y~(X, 0-), 

(47) 

where M = u is the  Mach  number .  We assume tha t  the  flow is subsonic i.e. IM I < 1 c 
and make  the following subs t i tu t ions  

x = (1 - M2)l/2X, x0 = (1 - M2)1/2Xo, Yo = Y0, Y = Y, 

x l  = (1 --  M2)1/2X1, x2 = (1 - M2)l/2x2, 
k = (1 -- M2)l/2K, q = (1 - M2)1/2B, 

~( x, y) = r X, Y )e -q MX. 
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Using these substitutions in Eqs.(45)-(47), we get 

( 02 ~ ~ ~ ) (Ie-iKMX~ - -  
+ + K 2 ~a = M 2 ) l / 2 6 ( X  - Xo)6(Y - Yo), (48) 

- ~  T M B  i i K B  ~o(X, 0 +) = 0, (49) 
X > X2 

~(x, 0+) = ~(x,0-),  
{x~ < _< (50) X X2 0 + 0 

b-~~(x,0 1= b-~~(x,0-). 

As before, the Wiener-Hopf functional equation in case of the moving fluid is found 
to be of the form 

~~~x~~+(~, o) + - -  ~~ (~, o) + ~~~x~ ~_ (~, o) 

e i K M X o e i ( K R o - T r / 4 )  

2(1 - M2)~/%,~-R--~ G(a)' (51) 

where 

~ + ( ~ ,  o +) - ~ + ( ~ ,  o - )  = 2~+(~,  o), 

~ _ ( ~ ,  0 +) - ~ _ ( ~ ,  o - )  = 2~_(~ ,  0), 

R=o = Xo = +Yo  =, ~ = (~~ _ K~)~/~ : ~ + ( ~ ) ~ _ ( ~ ) ,  

/ , (a)  = [1 - iB(Ma + K)/'~]. 

In order to solve the Wiener-Hopf equation (51), we need to factorize the kernel 
function L(cr) as 

~(~) = ~+(~)~_(~), (52) 

where L+(~) is regular for I m a  > - I m K ,  a n d / , _ ( a )  is regular for I m a  < I m K .  
The factorization (52) has been obtained in Appendix A. It is important  to note 
that  

IZ+(~)I ~ o([~1~£ I~+(~)l ~ o(1~1-~) ,  a~ I~l ----* oo [3], 

where 

1 ( 1 - i M B )  1 £ 
---- 2 - ~ a r g \ l + q  ' e =  ~ - 

Now, following the same method of solution as in Section 1, the diffracted field r/ 
can be written as 

n(x ,v)  = ns~ v) + nint(x,v), (53) 
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where 

e - i K M ( X - X ~  s i n o  . ~_ I (_KcosO)e iK(R+Ro)  ' 
~seP(z' Y) ---- i(1 - M 2 ) l / 2 4 r K ~  (54) 

e - iKM(X-X~ sin 0 -T2( -K c o s  O)e iK(R+R~ 
~ i n t ( x ' Y )  = i(1 - M 2 ) l / 2 4 7 r  R ~ - ~  (55) 

In Eqs.(54) and (55) 

R = ( X  2 + y2)1/2, 

' K +  (K cos 00)L+ (K c o s  0o)e -iK(c~ 0+cos ~0)X2 

~~(-~cosO) = L ~ c ~ ~ ~ + ~ o ~ ~ o )  

K_ (K cos O0)L- (K cos O0)e -iK(~~ e+cos o0)x, "~ 
- ~ - - ~ _ ~ ~  f '  

5~2 ( - K  cos 0) ---- - (R1 ( - K  cos O)e - iK cos Oox, _ C1 ( K ) T ( - K  cos 0)) 

e - - iK  cos vQX2 

K+ ( - K  cos 0)L,+ ( - K  cos 0) 

- (R2 (K cos O)e - iK cos ~oX~ _ C2 ( K ) T ( K  cos 0)) 

e -  iK cos vqx1 
X 

K_ ( - K  cos O)L_ ( - K  cos O)" 

From Eq.(53), we observe that  as a result of fluid motion the field is increased by 
the factor (1 - M2) -1/2 in comparison to still fluid. Also, the field is independent 
of the direction of the flow since the fluid velocity U appears as [UI 2 in the factor 
( 1 -  M2). These results also take care of acoustic diffraction from a slit in ala infinite 
rigid barrier in a moving fluid which can be obtained by putting q ---- 0 in Eq. (53). 

A P P E N D I X  A 

The function L(a)  is given by 

( B ( M a _ + K ) ~  
L,(a)= 1+ (K 2_a2)1 /2)  , 

The factorization of the function [1 + B ( K -  M o O / ( K  2 - a2)1/2] has been discussed 
by Rawlins [3]. The same procedure can be adopted for L(c~). Thus, employing the 
technique of Rawlins and omitting the details of calculations, the function L(a)  
may be factorised as 

L,(a) = L,+(a)[,_(a),  (Al) 
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where 

and 

In Eq.(A2) 

S. ASGHAR, T. HAYAT and B. AHMAD 

L+((~) = L+(0)  exp / A+(a)da, 

L+ (0) = L_ (0) --- ~/1 + B. 

1 B K  
A + ( a ) -  2 ( a + K )  + ( l + B 2 M 2 ) ~  

( ( M  - cq)F(c~, K c q )  (M - a2)F(c~, K a 2 )  ) 
x - ( ~ : ~  - - ( ~ : ~ )  , 

~-(-~) iM=-M= --~+(~), 
1 

F(t~, ~o) - ( f ( a )  - f ( a o ) ) ,  (~ (}tO) 

/K 
O K d t 

f (P)  = (t + P)(t 2 - K2)1/2 
cos- ' (P/K)  

(K 2 _ p2)1/2' 

__ 1 ( _ M B 2 + ( 1  B 2 M2B2)I/2) 
al,2 (1 + B 2 M  2) - + ' 

(A2) 

(A3) 
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