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In this paper, we analyze the error of a fictitious domain method with a Lagrange multi­
plier. It is applied to solve a non homogeneous elliptic Dirichlet problem with conforming
finite elements of degree one on a regular grid. The main point is the proof of a uniform
inf-sup condition that holds provided the step size of the mesh on the actual boundary is
sufficiently large compared to the size of the interior grid.

Dans cet article, nous etudions l'erreur d'une methode de domaine fictif avec multipli­
cateur de Lagrange. Nous l'appliquons a. la resolution d'un problema elliptique avec con­
dition de Dirichlet non-homogene au bord par une methode d'elements finis conforme de
degre un sur une grille uniforme. Ceci repose sur la demonstration d'une condition inf-sup
uniforrne qui est satisfaite lorsque Ie pas de la discretisation sur la frontiere du dornaine
d'origine est suffisamrnent grand compare au pas de la grille interieure.

Key words: Lagrange multiplier, finite elements, boundary mesh, uniform interior mesh,
inf-sup condition, approximate boundary

1. Introduction

This paper follows two preceding articles of Glowinski, Pan and Periaux [11, 12]
that describe a fictitious domain method and discuss its practical implementation
when applied to several elliptic problems with non homogeneous Dirichlet boundary
conditions. The principle of this method is to solve the problem in a larger domain
(containing the domain of interest) with a very simple shape, the fictitious domain,
and to impose the boundary condition by the introduction of a Lagrange multiplier
on the boundary. Its advantage is that the problem in the fictitious domain can
be discretized on a uniform mesh, independent of the boundary, thus skipping the
time-consuming construction of a boundary-fitted mesh. This approach is discussed
in [11, 12], where the problems considered are discretized with conforming standard
finite elements of degree one on a uniform triangular grid in the fictitious domain
and the Lagrange multiplier is discretized by piecewise constant functions on a
regular grid on the boundary. The interesting point is that the two grids are chosen
independently of each other, except that the boundary mesh size is larger than
the mesh size in the domain. The purpose of the present paper is to derive error
estimates of this method, provided that the ratio between the boundary mesh size
and the mesh size in the domain is approximately two or three. The crucial step is
the proof of a uniform discrete inf-sup condition via the construction of a suitable
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restriction operator.
The idea of imposing a boundary condition by means of a Lagrange multi­

plier is not new. It dates back to the work of Babuska [3]' Aziz and Babuska [2],
Babuska, Lee and Oden [4], which established error estimates when the ratio be­
tween the boundary mesh size and the mesh size in the domain is greater than some
constant depending on the domain. Unfortunately, the constant can be large and
its dependence on the domain is not straightforward. Their results were refined by
Pitkaranta in [15] and recently by Agouzal in [1], but in both papers, the boundary
mesh points are directly related to the mesh points of the interior grid, whereas in
the present paper these mesh points are independent. In addition, we do not use the
same argument to establish the discrete inf-sup condition. In the last two references,
the negative boundary norm is replaced by the L 2 norm on the boundary through
an inverse inequality and the discrete inf-sup condition is replaced by a sufficient
condition that must be checked in the applications. In this paper, this negative
boundary norm is eliminated by constructing an adequate restriction operator, the
existence of which is equivalent to the discrete inf-sup condition.

This paper is organized as follows: Section 2 describes the fictitious domain
formulation of the problem and it discusses its general approximation. Section 3 is
devoted to the numerical analysis of one of the problems solved by Glowinski, Pan
and Periaux [11], in the simplified case where the boundary is a polygon and the
effect of approximating a curved boundary by a polygon is sketched in Section 4.

We end this section by recalling some Sobolev spaces that will be used in the
sequel. For a domain il in R", we shall mostly use the classical Sobolev spaces,

H 1(fl) = {v E L2(fl); ::i E L2(fl), 1::; .< n},

2 1 ( a2
v 2

H (fl) = {v E H fl); ax.ax. E L (fl),1 s i, j ::; n},
• J

both equipped with their graph norms denoted respectively by II . IIHI(!]) and
II . IIH2(!]). We shall also use their seminorms

(

n ) 1/2

~ II ::i 1112 (!])

Finally, we shall also use the fractional Sobolev spaces H 1/ 2 (fl ) and H 3 / 2 (fl ),
obtained respectively by interpolating between L 2 (fl ) and H 1 (fl ) and between
H 1(il ) and H 2 (fl ). The reader can refer to Lions and Magenes [14] for properties
of these fractional spaces.
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2. A Fictitious Domain Formulation and Its Abstract Discretization

Let w be a bounded domain of R2 with a Lipschitz-continuous boundary /.
We want to solve the following model problem:

For f given in L2(w) and g given in H I /2(, ), find u in HI(w) such that

au - II~U = f in w,

u = 9 on /'

(2.1)

(2.2)

where a ~ 0 and II > 0 are two given constants. It is well-known that this problem
has a unique solution u.

The fictitious domain formulation of problem (2.1), (2.2) is obtained by in­
cluding w in a larger square or rectangular domain fl.!. whose boundary r has sides
parallel to the axes, such that w (S n. Next, we let f denote an extension of f in
L 2 (fl ), we choose a convenient closed subspace X of HI(fl), equipped with the
norm of HI (fl), and we define on X x X the following bilinear form:

'<Iv EX, '<Iw E X, an(v,w) = 1 (avw + II\!V' \!w)dx.

Then we consider the following mixed problem:
Find a pair (u, x) in X x H- I / 2 (, ) such that

'<Iv E X, an(u,v) = 11vdX+ (v,>.)")''

'<IJ1 E H- I
/

2
(, ) , (u,J1)")' = (g,J1)")',

(2.3)

(2.4)

where (., .)")' denotes the duality pairing between H I / 2 (, ) and its dual space
H- I / 2 (, ) .

By applying the BabuSka-Brezzi's Theorem (cf. Babuska [3] or Brezzi [5]), it
is easy to prove that Problem (2.3), (2.4) is well-posed. Indeed, define the bilinear
form

and let V denote the kernel of b:

V = {v EX; v = 0 on / }.

Then Problem (2.3), (2.4) is well-posed if an is elliptic on V: there exists a constant
K > 0 such that

(2.5)

and if b satisfies the inf-sup condition: there exists a constant (3 > 0 such that

b(v,J1)
sup II II ~ (311 J1IIH-l/2(oy)'
vEX V Hl(n)

(2.6)
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On one hand, owing to the Poincare Inequality, the bilinear form an is elliptic on
V for all values of nonnegative a and strictly positive u, On the other hand, the
inf-sup condition (2.6) (with f3 ~ 1/J2) is an easy consequence of the fact that on
H- I / 2 (r ), the mapping

is a norm equivalent to the norm

II II
(J1-, ())-y

J1- H-l/2(-y) = sup II II
OEH1/2(-y) () Hl/2(-y)

Hence, Problem (2.3), (2.4) has a unique solution pair (u, >.). It is easy to check
that

au - vtiu = 1in wand in n\w,

and

U = 9 on 'Y-

Thus the restriction of uto w is the (unique) solution of (2.1), (2.2). Furthermore,
the Lagrange multiplier>. satisfies

[au]
>. = -v an -y'

where [g~] -y denotes the jump of g~ across r, i.e.:

(2.7)

(2.8)[au] aul aulan -y = an w- an n\w'

and n denotes the unit normal to r ~terior to w.

Depending upon the extension f of f, the regularity of r and the boundary
conditions imposed on the functions of X, the solution uof (2.3), (2.4) mayor may
not belong to H 2 (n ). Nevertheless, if r is of class CI,I and if X = HI (n), HJ (n) or
has periodic boundary conditions (that are the three most common choices), then
u restricted to w (resp. n\w) belongs to H 2 (w) (resp. H 2 (n \ w)) and>. belongs to
H I / 2(r ).

To discretize Problem (2.3), (2.4), we introduce two parameters h > 0 and
TJ > 0 that will tend to zero and two families of finite-dimensional spaces X heX
and M", C H- I / 2 (r ); it is convenient to assume that M", contains the constant
functions. Consider the discrete problem:

Find a pair (Uh'>'",) in Xh x M", such that

VVh E x; an(Uh' Vh) = llvhdx + (Vh' >'",)-y,

VJ1-", EM"" (Uh' J1-",)-y = (g, J1-",)T

(2.9)

(2.10)
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It follows from the abstract discretization theory of mixed problems (cf. for instance
Girault and Raviart [10] or Brezzi and Fortin [6]) that good error estimates can
be established for the solution of Problem (2.9), (2.10) if the bilinear form an
satisfies an ellipticity condition and b satisfies an inf-sup condition, both uniform
with respect to hand TJ. More precisely, let

Then an is uniformly elliptic on Vh if there exists a constant It* > 0, independent
of h and TJ, such that

(2.11)

and b satisfies a uniform inf-sup condition if there exists a constant (3* > 0, inde­
pendent of hand TJ, such that

(2.12)

On one hand, the ellipticity condition (2.11), for all nonnegative Q and strictly
positive u, follows readily from the assumption that MT/ contains the constant func­
tions. Indeed we have

Vh C {v EX;1uda = O},

and it is easy to prove that for the space in the right-hand side, the mapping

v f-+ IvIHl(n) is a norm equivalent to II v IIH'(n).
But on the other hand, the inf-sup condition (2.12), which is a compatibil­

ity condition between the spaces X h and MT/' will not necessarily hold for every
choice of spaces. Besides, it is usually not easy to establish in practical examples,
in particular because it involves the norm of H-l!2(r), and this norm is hard to
handle. The following result proved by Fortin [9] in an abstract situation, allows to
eliminate this norm.

LEMMA 1. Assume that b satisfies the inf-sup condition (2.6). Then the dis­
crete inf-sup condition (2.12) holds if and only if there exists a restriction operator
tt, E £(Xj Xh) with the two properties:

Vv E X, II Ih(v) IIH1(n) ~ GJI v IIH1(n),

where C > 0 is a constant independent of hand TJ, and

(2.13)

(2.14)

The next two paragraphs will be mainly devoted to the construction, for a
particular choice of spaces, of an operator Ih satisfying (2.13) and (2.14).



492 V. GIRAULT and R. GLOWINSKI

3. An Example: the Case of a Polygonal Boundary

To simplify the discussion, we assume on one hand that the boundary ! is
polygonal, with the restriction that its angles at corners are not too small, and on
the other hand that X = H 1(Q). The finite element spaces chosen here are the
same as in Glowinski, Pan and Periaux [11]. Namely, we subdivide Q by a uniform
square grid and we divide each square (along the same diagonal) into two triangles,
as in Figure 1. Let h denote the length of the longest side of these triangles (i. e.
the diagonal) and let 7h denote the corresponding triangulation of Q. We take

Figure 1.

(3.1)

where PI denotes the space of polynomials, in two variables, ofdegree less than or
equal to one. AB far as M1] is concerned, we divide each side of ! into straight line
segments S, not necessarily with equal length, but with length not less than 3h and
not more than Lh, where L is fixed once and for all. Let TJ be the maximum length
of these line segments and denote by 81] the corresponding subdivision of !. Then,
we set

(3.2)

which indeed contains the constant functions.
Although 51] and 7h are constructed independently of each other, the fact that

the length of each segment of 81] is not less than 3h and the assumption that the
angular points of ! are not too sharp, imply that for each S, we can find a node
as of 7h such that the macro-element t::..s consisting of the six triangles of 7h with
common vertex as satisfies the following properties:
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(i) S intersects at least one interior segment of !:i.s at a distance from as that
is not larger than half the length of this segment; in other words, as is the
nearest end point of this segment to S;

(ii) the end points of S do not belong to the interior of !:i.s ;
(iii) if Sand S' are any two segments of Srj' !:i.s n!:i.~ is either empty or reduced to

a node or a segment of Th ; in other words, the macro-elements related to Srj
do not overlap.

Figure 2.

Figure 3.

As it is not necessarily unique, let us choose one such node as for each segment
S of S.". Figure 2 shows an example of the intersection of a segment S and its
macro-element !:i.s.

Now, let Rh be the regularizing operator, associated with Xh, introduced by
Clement in [8]. Recall that for any v in H1(fl), Rh(V) belongs to Xh, and Rh
satisfies the following local error estimates for any T in Th , for m = 1 or 2, and for
all v in Hm(DT ) , where DT denotes the un ion of the triangles of Th that share a
vertex or a side with T (D T consists of 13 triangles when T is far from the boundary
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r, as in Figure 3):
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II Rh(V) - v 11£2(T) ::; CIhm[vIH""(DT),

IRh(V) - VIHl(T) ::; C2h
m-IlvIH",,(DT)·

(3.3)

(3.4)

Then for any v in HI (Q), we propose the following restriction Ih(v):

Ih(v) = R~(v) + L CS'Pas,
SES"

(3.5)

where 'Pas denotes the basis function of Xh, with support li. s , that takes the value
1 at the node as and 0 at all other nodes of Th' and each constant cs is chosen
(hopefully) so that

Is Ih(v)do- = Is uda, (3.6)

Owing that the functions of Mr, are constant on S, this last equality implies that
Ih(v) satisfies (2.14).

It remains to show that such constants cs exist and to establish the stability
inequality (2.13). First, by substituting (3.5) into (3.6), condition (3.6) reads:

r(Rh(V) - v)da + L co r'Pauda = o.
is UES" is

But, owing to properties (ii) and (iii), for any U in STJ

Is 'Pau da = 0 if S =I- U,

and owing to property (i)

Is 'Pas do- > o.

Therefore, the above sum reduces to a single term and it is easy to explicit the
expression of the constant cs:

Cs = - J 1 do- r(Rh(v) - v)da.
s 'Pas is

(3.7)

To derive an upper bound for the numerator of (3.7), we require the next two
lemmas.

LEMMA 2. Let T denote the reference unit triangle and let i be any stmight
line segment that intersects T. Then, there exists a constant C, independent of i,
such that

(3.8)
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(0,1)
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(0,0) (8,0)

Figure 4.

(1,0)

Proof. By the trace theorem, we know that there exists a constant, say R,
such that if i is any side of T, (3.8) holds with the constant R. Therefore, we can
assume that i does not coincide with any side of T. Moreover, there is no loss of
generality in supposing that, in T, ihas the parametric representation:

fj = ax + (3 for xE [0, a], with 101 s:; 1,

otherwise, we interchange x and fj. Then for any smooth function iii, we have

But

and

Hence

I $ 11~2(i) < (02+ 1)1/2{11 $ II~2(i,) + II wII~l(n)}'

where i l denotes the orthogonal projection of i on the side fj = 0 of T and Tl

denotes the trapezoidal region of T bounded by i and t; as in Figure 4. Thus
applying the trace theorem and using the fact that 101 s:; 1, we derive for all smooth
functions $:.
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By density this inequality carries over, with the same constant, to all functions w
in H1(T). 0

Note that the statement of Lemma 2 still holds when i intersects partially T,
i.e. its end points need not lie on the boundary of T.

LEMMA 3. Let £ be a stroight line segment that intersects a non degenerote
triangle T and let i be its image on the reference unit triangle T by the affine
tronsformation that maps Tonto T. Let B T denote the matrix of this tronsformation
and let II B T II be its Euclidean norm. Then,

(3.9)

We skip the proof, because it is straightforward. The above remark concerning
the statement of Lemma 2 is also valid for Lemma 3, namely the end points of e
need not lie on the boundary of T. The next lemma derives a lower bound for the
denominator of (3.7). This lower bound is not optimal but it is sufficient for our
purpose and it has a simple proof.

LEMMA 4. We always have:

(3.10)

Proof. Previously, we have assumed that S is a straight line segment, but
this proof can be easily derived in the more general case where S is a broken line
segment with end points on the sides ofthe triangles of ~s; this will be useful in the
next section. Then, using property (i), there is no loss of generality in assuming that
the intersection point of S nearest to as is either on an oblique side as in Figure 5 or
a vertical side as in Figure 6. Consider the case of Figure 5; the argument is similar
but somewhat more intricate in the case of Figure 6. Let T1 and T2 denote the two
triangles sharing the oblique side, let £1 and £2 denote the portions of S intersecting
respectively T1 and T2 and let (8, c) denote the coordinates of the intersection of S

(1,1)

I\,

L..... • a
(1,0)(0,0)

(0,1)

Figure 5. Figure 6.
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with the oblique side. First, since 'Pas ~ 0, we have

r'Pasda ~1 'Pasda .1s llUl2

Next, switching to the reference element, we obtain

497

(3.11)

Then, using parametric representations of £1 and f;, we easily derive that for i = 1
and 2,

r'Pasaa ~ ~6'I~I,h 2

where 6' ~ 1/2, since as is the segment's end point nearest to the intersection of 8.
Thus

~ 'Pasaa ~ ~I~I,t:
and (3.10) follows by substituting this lower bound into (3.11). 0

Now, we are in a position to establish the inf-sup condition (2.12) for the pair

of spaces (3.1) and (3.2).

THEOREM 5. Assume that the length of the segments of 8'1 is not less than
3h and that 'T/ ~ Lh. Then, there exists a constant {J* > 0, independent of hand 'T/,

such that (2.12) holds.

Proof. Let us show that the operator Ili; defined by (3.5) satisfies the stability
estimate (2.13) with a constant C independent of hand 'T/; (we have already checked
that it satisfies (2.14)). We can write the proof in the more general case where the
segments 8 are broken line segments, as in the proof of Lemma 4. For any v in
H 1(il ), we have

II Ih(v) IIHl(n) < II Rh(V) IIHl(n) + II L CS'Pas IIHl(n).
SES~

As each 'Pas has support /j,s and these supports are all disjoint, the above sum
reduces to

Let T be any triangle in /j,s and, as in Lemma 3, let B T be the matrix of the affine
transformation that maps Tonto T. Then
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where C1 is a constant that depends only on T. Similarly,

where C2 is also a constant that depends only on T. Hence there exists a constant
C3 , independent of S, hand 'f/, such that

(3.12)

Next, let us find a bound for Cs. From (3.7) and (3.10), we have

Let ii denote the straight line segments of Sand T; the element of T,. intersected
by ii. Thus

Then switching to the reference element and applying Lemmas 2 and 3, we obtain

where 8 is the constant of Lemma 2. Now, switching back to Ti, we have

Hence

Icsl::; 4~CLI£iI1/2I\BT; 1\1/2!det(BT;)/-1/2
i

(3.13)

As the triangulation T,. is trivially regular (d. Ciarlet [7]), (3.13) and (3.12) yield
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where in the above sum, T runs over all the triangles of 7h intersected by I and
C4 is another constant independent of hand 'TJ. Then the estimates (3.3) and (3.4)
with m = 1 yield

and (2.13) follows from this bound and another application of (3.2) and
(3.3). 0

The lower bound of the ratio between 'TJ and h in the first assumption of The­
orem 5 ensures that the macroelements t:i.s do not overlap and this simplifies sub­
stantially the stability proof of Ih. Indeed, when the macroelements overlap, the
constants Cs are not defined explicitly by (3.7), but instead they satisfy a system
of linear equations which does not easily yield a bound for ICs I. But of course, this
condition is only sufficient and good numerical results (cf. [11,12]) are obtained
when this ratio is approximately 3/2.

Since oo is uniformly elliptic and b satisfies the uniform inf-sup condition, we
have immediately the following error bound.

PROPOSITION 6. Under the assumptions of Theorem 5, problem (2.9),

(2.10) has a unique solution (Uh' A'1) and there exists a constant C, independent

of hand 'TJ, such that

II u- Uh IIlfl(fl) + II A- A'1 IIH-l/2(')')

~ C( inf II U - v« IIHl(fl) + inf IIA - 1t'1 IIH-l/2(')'»).
vhEXh ~~EM~

Thus, the error estimates depend solely upon the regularity of the solution
(u, A). In the worst case, u belongs to H 3/ 2- €( il ) for any e > 0 and in the best
case, ubelongs to H 2 (il ). In either case, since the triangulation Th is regular, the
estimates for u are standard:

(3.14)

where s = 1/2 - e or s = 1.
As far as the Lagrange multiplier is concerned, A belongs at least to £2(1), but

since we have assumed that I is a polygon, in the best case, A does not belong to
H 1/2(1); it belongs instead to H 1/2(1i ), for each straight line segment Ii of I' To
derive an estimate for A, we first prove the following auxiliary result.

LEMMA 7. There exists a constant C, independent of'TJ such that for all A in
£2(1),

(3.15)
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Proof. On each segment 8 of STJ let us choose

JlTJ = ps(A) = I~I is Adu,

the orthogonal projection of Aon the constant functions. Then, we prove (3.15) by
a straightforward duality argument. For this choice of JLr" we write

But

is (A - JL.,)<pdu = is (A - JLTJ)(<p - ps(<p))du.

Obviously, for all <p in £2(8),

II <p - ps(cp) 1I£2(s) ~ II <P 11£2(s),

and an easy calculation yields for all <p in HI(8):

with a constant GI , independent of '1]. Now, take any segment "'Ii of "'I and let

Then on one hand

and on the other hand

Hence, by interpolating between these two results, we obtain

where the constant C, is independent of '1]. Thus, summing over all segments Ii of
I I we obtain

and for <p in H I / 2 (r), this gives
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whence (3.15). 0

Obviously, when A belongs to L 2 (r ), the above choice of JL'1 yields

501

and when A belongs to H 1
/

2 (ri ), for each straight line segment /i of /, the same
choice of JL'1 and the argument of Lemma 7 yield

Therefore, in the worst case, when u belongs to H 3 / 2 - e: (n) and A belongs to
L 2 (r ), we obtain

II u- Uh IIHl(f.?) + II A- A'1 IIH-l/2(-y)

s C(h1/2-e: II U IIH3/2-«f.?) + J1711 AII L2(-y)).

(3.16)

But, as mentioned in Section 2, it may frequently occur that the restrictions of u
to w and n\w are both smooth, even though u does not belong to H 2 (n ). In this
case, A belongs to H 1/ 2 (ri ) and Proposition 6 and Lemma 7 yield

II u- Uh IIHl(f.?) + II A- A'1 IIH-l/2(-y)

<C(h1/2- e: 11U IIH3/2-«f.?) + r{L: II A11~1/2(-yi) f/2).
i

Finally, when u belongs to H 2 (n), the jump of its normal derivative vanishes across
/ and A = o. In this case, Proposition 6 gives the estimate

Except in this last case, Proposition 6 does not yield optimal estimates con­
sidering that the solution U of the original problem may belong to H 2 (w) while the
extended solution ubelongs only to H 3 / 2 - e: (n ). This remark is strongly supported
by the numerical results obtained in [11], where the error of the discrete solution
Uh restricted to the interior of w is indeed of the order of h in the HI norm and
h2 in the Loo norm, while the normal derivative of the exact solution has a jump
across the actual boundary /. It is likely that in the interior of w, Uh satisfies local
error estimates that involve only the values of U in w. This behaviour has been ex­
tensively studied and established by Schatz and Wahlbin (cf. Schatz and Wahlbin
[16] and Wahlbin [17]) in the case of an elliptic problem. Of course the situation
here is more complicated because we are dealing with a saddle-point problem, but
it is conjectured that the arguments of [16] carryover to our problem. This would
account for the good numerical results observed for this fictitious domain method.
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4. The Case of a Curved Boundary

When I is a curve, we must approximate it by an adequate polygonal line in
order to apply the fictitious domain method described in the preceding sections.
The error analysis of this method is somewhat long and technical and we shall only
sketch the most salient results.

777$;181$;77·

Figure 7.

Throughout this section, we assume that I is at least of class C1,1 (d. Grisvard
[13]). We take the same parameters hand 17, satisfying the relation of Section 3.
Let 81) be a partition of I into curved line segments 8 such that for some fixed
constant T > 0, independent of TJ,

We assume that 17 is sufficiently small for 8 to be parametrized either by

y = Ys(x) for x E [as,bs] or x = xs(Y) for y E [as, bs]. (4.1)

To simplify the discussion, we shall only consider the first case, otherwise, we in­
terchange x and y. As I is C1,1, each derivative y~ is Lipschitz-continuous, with a
Lipschitz constant k that can be bounded independently of 8. As a consequence,
there exists a constant B, independent of 8, such that

and

\Ix E [as, bs], ly~(x)1 ~ B, (4.2)

Now, let us choose a segment 8 of 81)' We approximate 8 by a polygonal line
S inscribed in 8 (possibly reduced to a chord), made of Ns straight line segments
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f j for 1 :::; j :::; N s , as in Figure 7. In the present case, each segment f j has the
parametric representation

(Strictly speaking, these four parameters also depend upon S, but we suppress the
index S to simplify the notations.) As y~ is Lipschitz-continuous, we can easily
prove on one hand that

(4.3)

and on the other hand,

(4.4)

We denote by 8'7 the set of all such segments 8 and by ;Y the corresponding inscribed
polygonal line that approximates "t-

REMARK 8. More accurately, we should assume that the length of f j is
bounded by some constant 8; then (4.3) and (4.4) would hold with 8 instead of
17. However, to avoid a multiplicity of notation, we have preferred not to introduce
this extra constant. 0

With the same notation, the curved segment S can be parametrized on the
reference interval [0,1] by

Fs(t) = (x(t), ys(x(t))) where x(t) = (bs - as)t + as.

The Jacobian of this transformation is

and it satisfies

Similarly, each straight line segment f j of S is parametrized by

Besides M'7' we define on , the finite element space

where P 1 denotes the space of polynomials (of one variable) of degree one. Similarly,
we define on ;Y the finite element space

(4.5)
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p(,X) = PS(,X) .

SB
<,

~S
1

Figure 8.

(4.6)

Note that the functions of M'1 have a natural extension on ::y: since they are constant
on each segment 8 of 8'1' we give them the same constant value on the inscribed
segment S. We also denote this space by M'1 without distinction.

Recall the projection operator defined on M'1 in the proof of Lemma 7: for all
8 E 8'1 and for all ,\ E £1(8), we define Ps(,\) E R by

Ps(,\) = 1~ll MD,

and on each segment 8 E 8'1 we set

p(,\) = ps('\).

Next, on 8'1 we define the following regularizing operator analogous to the reg­
ularizing operator of Clement [8J. Let 80 , 8 1 and 8 2 be three consecutive segments
of 8'1' let A and B denote the end points of 81 and let 8 A and 8 B denote the
curved segments of I "centered" respectively at A and B, i. e. 8 A is the union of
the portion of 80 parametrized by t E [1/2,1] and the portion of 8 1 parametrized
by t E [0,1/2J, as in Figure 8. Then for any function 9 E LIb), we define T'1(g)l s l

as the restriction to 8 1 of the function of 8'1 that interpolates the two values PSA (g)
and PSB (g). Clearly, the function r'1 (g) with such restrictions belongs to 8'1'

Finally, we define the following interpolation operator on 8'1: for any function
9 E Cab), we define J'1(g) E 8'1 by

~(g)(aj) = g(aj),

for all end points aj of e; for all segments i j of S and for all S E 8'1"
As noted in the proof of Lemma 7, P satisfies

and

(4.7)
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Then by interpolating between these two bounds, we derive

Next, it can be easily proved that T71 satisfies the local estimate

and the global estimate

505

(4.8)

(4.9)

(4.10)

Although this appears to be a trivial estimate, it serves to prove the following
important inverse inequality.

THEOREM 9. There exists a constant C, independent of t], such that

(4.11)

Proof. The negative norm in the right-hand side suggests to prove (4.11) by

duality. Thus we write

(4.12)

Let us construct an operator II71 defined on £2(r), with values in a finite­
dimensional subspace of W1,oo(r), such that on one hand, there exists a constant
C ll independent of n, with

and on the other hand,

i.e.

This construction is similar to that of the operator IIh of the preceding section. On
[0,1] define the "bubble" function

b= 4t(1 - t),
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and in each S, set bs = boFi I
. Then take

IITJ(g) = TTJ(g) +L esbs,
s

where each constant cs is chosen so that

This condition is fulfilled by

Then an easy calculation yields

and with (4.10), this in turn implies

On the other hand, an inverse inequality in each S gives

where C is an equivalence constant independent of S, and in turn, this implies

Thus, IITJ E £(L2 b );L2 b )) n £(L2 b );HIb)) and by interpolation between these
two spaces, IITJ E £(L2b); H 1

/
2 b )) with

Hence, we have the inverse estimate

Finally, going back to (4.12), we can write
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and from this, we easily deduce (4.11). <>
Now, let us discretize the surface integrals in (2.9), (2.10). For any Vk E X k

and >'1/ E MT/' we approximate Joy vh>'T/da by

Similarly, for any 9 E H 1b ) and P1/ E MT/' we approximate Joy !LTIgda by

(~(9),fLT/}OY'T/ = _~ kfTj (g)p1/ da.
SES'l

Thus, we replace (2.9), (2.10) by:
Find a pair (Uh, >'1/) E Xk x MTj such that

'r/Vh E Xk, an(Uk' Vk) = Ll vkdx + (Vh' >'Tj}OY,Tj,

'r/p"I E MTj' (Uh' PTj}OY,Tj = (In (g), !LTI}'Y,Tj'

The kernel of the constraint (4.14) is the space

Vk = {Vh E Xh; 'r/PTj E MTj' (Vh' P"I}OY,1/ =O}.

(4.13)

(4.14)

Therefore, instead of (2.11), we must check the following discrete ellipticity condi­
tion: there exists a constant K, > 0, independent of hand 17, such that

(4.15)

and instead of (2.~2), we must check the following discrete inf-sup condition: there
exists a constant (3 > 0, independent of h and 17, such that

(4.16)

In order to establish these two properties and adequate error estimates for the
scheme (4.13), (4.14), we shall make the following assumption: there exists a con­
stant B, independent of 17 such that

(4.17)

REMARK 10. Assumption (4.17) is not very restrictive. Indeed, without this
assumption, we always have
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Moreover, when r is a circle, 181-181 = 0(1]3). Therefore, assumption (4.17) holds
when the radius of curvature of r is not too large, or also when 8 consists of
sufficiently small straight line segments. 0

To derive some error estimates, we shall use the following lemma. Note that

its proof does not require (4.17).

LEMMA 11. Let T"'I denote the set of triangles ofTh intersected by r and by;Y.
There exists a constant C, independent of hand 1], such that for any oX E H 1

/
2(r ),

we have

(4.18)

Proof. Let us split the left-hand side of (4.18) into

Considering that p is a projection operator and applying (4.8), we easily derive an
upper bound for the first term:

As far as the second term is concerned, its contribution to an arbitrary segment 8
of 8'7 has the form

I>s(oX) l bj

{Vh(X, ys(x))(1 + y~(x)2)1/2 - Vh(X, ajx + ,6j)(1+ a])1/2}dx.
J 3

Each integral in this sum can in turn be split into

ps(oX) l bj

vh(x,ys(x)){(1 + y~(x)2?/2 - (1+a])1/2}dx
3

+ps(oX) l bj

{Vh(X,yS(X)) -vh(x,ajx+,6j)}(I+a])1/2dx.
3

Owing to (4.4), the sum of the first integral over the index j is bounded by

To simplify the estimate of the second integral, we assume that for all x E raj, bj ],

the points (x, ys(x)) and (x, ajx+,6j) belong both to the same triangle T (otherwise,
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we split the path between these two points). Then Vh is a polynomial of degree one:

8Vh
Vh = va + VIX + v2Y where in particular V2 = 8y'

and as V2 is a constant, we can write

Therefore, in view of (4.3), summing over i, we find

IpS(A)L l bj

{Vh(X,yS(x)) - vh(x,ajX + ,6j)}(l + a;)1/2dxl
J 3

where Ts denotes the union of all triangles of Th intersected by Sand S. We easily
derive (4.18) by collecting the above estimates. 0

A variant of Lemma 11 permits to prove the discrete ellipticity condition (4.15).

COROLLARY 12. There exists a constant 'flo> 0 such that (4.15) holds for all
'fl ::; 'flo·

Proof. For all Vh E Vh, we have in particular

1Vh da 1Vh OO - (Vh' 1),,7)'

Therefore, the argument of Lemma 11 with A = 1 implies that

Then (4.15) follows from this inequality and the fact that the mapping

v f-+ (Ivl~l(!1)+ 11 vdan 1/2

is a norm on H1(n) equivalent to II . IIH1(!1)' 0
As in the preceding section, the proof of the discrete inf-sup sondition (4.16)

can be achieved by construct~ng an adequate restriction operator Ih. In addition,
it will be convenient to use Ih for deriving error estimates. Therefore, instead of
proving the analogue of (2.13), we shall prove a sharper error estimate for it; And
of course, we shall construct ii, so as to satisfy the analogue of (2.14):
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(4.19)

(4.20)

This can be achieved by an operator of the form

llh(V) = Rh(V) + L: cs<Pas,
SES.,

where the node as is chosen as in Section 3 and the constant Cs is chosen so that
(4.19) holds, namely

Cs= fslfJ:s du (l uda - hRh(V)du) .

The following lemma gives a lower bound for the denominator in the above expres­
sion. Here again, this bound is not optimal but it has a simple proof.

LEMMA 13. There exists a constant 711 > 0, such that for all 71 :::; 711>

(4.21)

Proof. This lower bound can be derived directly, but it is simpler to take
advantage of Lemma 4. To this end, let S denote the polygonal line whose end
points are the intersections of S and the triangles crossed by S. Then we can write

In view of (4.3) and (4.4), using the arguments of Lemma 11 and the fact that
o:::; lfJas :::; 1, it is easy to prove that

Then (4.21) follows immediately from Lemma 4 and the fact that *:::; L. 0

As far as the numerator of (4.20) is concerned, let us prove the following
auxiliary lemmas.

LEMMA 14. There exists a constant C, independent of hand 71, such that for
all v E Hm(tJ) with m = 1 or 2, we have the local estimate

(4.22)

where Ds denotes the set of all neighbouring triangles of Ts.
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Proof. Let T j be any triangle crossed by S. An easy variant of the argument
used to prove Lemma 2 yields

where R is the constant introduced in the proof of Lemma 2. Then (4.22) follows
from the approximation properties (3.3) and (3.4) of R h . 0

LEMMA 15. There exists a constant C, independent of h and "I, such that for
all v E H m (!?) with m = 1 or 2, we have

(4.23)

Proof. The argument is similar to but sharper than that of Lemma 11. We
have

Is Rh(v)da - hRh(v)da

~ l bi

(Rh(v)(x, Ys(x)) - Rh(V)(X, O:jX + ,8j))(1+ 0:;)1/2&
3 j

+~ l bi

(Rh(V) - Ps(v))(x, Ys(x)){(1 + y~(x)2)1/2 - (1+ 0:;)1/2}dx
3 j

+~ l bi

ps(v){(l + y~(x)2)1/2 (1+ 0:J)1/2}dx.
3 j

In view of (4.6) and assumption (4.17), the last term has the bound

Owing to (4.4), (4.22) and (4.7), we can estimate the middle term

I~l bi

(Rh(V) PS(V)) (x, ys(x)){ (1+ Y~(X)2)1/2 - (1+ 0:;)1/2}dx l

3 j

::; kB'T}3/2(1I V Rh(v) 11£2(s) + II v - Ps(v) 11£2(S))

::; C 1'T}3/2(hm
-

1
/

2
11 v IIH"'(Ds) + "1

m
-

I
II ~~~~~ 11£2(S))'
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Finally, the first term is estimated as in Lemma 11:

ILt {Rh(V)(X,ys(x)) - Rh(v)(x,ajx + ,6j)}(1 + a;)1!2dxl
1 3

and (4.23) follows by collecting these three inequalities. 0

These two lemmas give the following upper bound for the numerator in (4.20).

LEMMA 16. There exists a constant C, independent of hand 'TJ, such that for
all v E H'"'(Q) with m 1 or 2, we have

(4.24)

Finally, combining (4.21), (4.24) and the approximation properties (3.3) and
(3.4) of Rh , we derive the following error estimate for ii;

THEOREM 17. In addition to the hypotheses of Theorem 5, we suppose that
(4.17) holds. Then there exists a constant C, independent of hand 'TJ, such that for
all 'TJ ~ 'TJl, we have for all v E H'"'(Q) with m = 1 or 2:

where 'TJl > 0 is the constant of Lemma 13.

The next lemma derives an upper bound for the error on the boundary data.
We skip the proof because it uses the same techniques as Lemma 15.

LEMMA 18. Assume that (4.17) holds and that each segment S of S'l is of
class C2. Then there exists a constant C, independent of hand 'TJ, such that for all
g E H 3!2('y), we have

The above results allow us to establish an error bound for the scheme (4.13),
(4.14).

THEOREM 19. Let 'TJ2 > 0 denote the minimum of'TJo and 'TJl' In addition to
the hypotheses of Theorem 5, assume that (4.17) holds and that each segment S of
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S1/ is of class C2 . Then there exists a constant C, independent of hand 7], such that
for all 7] :::; 7]2,

II Uh - UIIH1(n) + II A1/ - A IIH-1/2(-y)

:::; C(7]11 A IIHl/2(-y) + 7]11 g IIH3/2(-y) + II llh(U) - UIIH1(n)).

Proof. For any Vh E X h and any J.L1/ E M1/' we can write

an(llh(U), Vh) = an(llh(u) - u, Vh) +Ll vhdx + (Vh,p(A))'Y,1/

+{i vhAdu - (Vh'P(A))'Y'1/} '

(llh(U),J.L1/)'Y'1/ = (J1/(g),J.L1/)'Y,1/ + {i gJ.L1/du - (J1/(g),J.L1/)'Y,1/}'

As the inf-sup condition (4.16) holds, there exists Zh E Xh such that

and

(4.26)

owing to (~25) and the inverse inequality (4.11). In addition, llh(U) - Uh - Zh
belongs to Vh and satisfies for all Vh E Xh

an(llh(U) - Uh - Zh,Vh)

= an(llh(u) - u, Vh) - an(zh, Vh) + (Vh,p(A))'Y,1/ - (Vh, A1/)'Y,1/

+{i vhAdu - (Vh,P(A))'Y,1/} .

Let us choose Vh = llh(U) - Uh - Zh. Since an is elliptic on Vh, we derive

;ill llh(U) - Uh - Zh IIH1(n) :::; C2 (11llh(U) - UIIH1(n) + II Zh IIH1(n))

f Vh Adu -'- (Vh,p(A))'Y,1/+ sup l' .
vhEXh II Vh IIH1(n)

Hence
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Finally, to upbound the error on A, we write

Then (4.18) and the inf-sup condition (4.16) yield

(4.28)

Then (4.26) follows from (4.27), (4.28) and (3.15). <)

Theorems 17 and 19 lead to the conclusion that the order of convergence of this
fictitious domain method is not modified by approximating the curved boundary I
by an adequate polygonal line.
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