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It is proved that  for a system of linear partial differential equations with polynomial co- 
eiticients, the GrSbner basis in the Weyl algebra is sufficient for the computation of the 
characteristic variety. In particular, this yields a correct algorithm of computing the sin- 
gular locus of a holonomic system with polynomial coefficients. The characteristic variety 
is defined analytically, i.e. by using the ring of power series, and it has not been obvious 
that  it can be computed by purely algebraic procedure. Thus the algorithm of computing 
the characteristic variety and the singular locus of a system of differential equations with 
polynomial coefficients can be readily implemented on a computer algebra system. 
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Introduction 

In this paper, we considera system Ad of linear partial differential equations 
with polynomial coefficients. More concretely, Ad is given by the system of equations 

~ P~juj -- 0 (i = 1, . . . ,  s) 
j = l  

for unknown functions u l , . . . ,  uf, where P~j are linear partial differential operators 
of n variables x] . . . .  , x~ with polynomial coefficients (i.e. elements of the Weyl 
algebra A~). 

The characteristic variety Char (Ad) of Ad is by definition an analytic subset 
of the complex cotangent bundle T*C n and it represents the analytic nature of 
the system Ad. For example, the holonomicity, ellipticity, and hyperbolicity of Ad 
ate all defined through Char (Ad). In particular, Ad is called a holonomic system 
ir the dimension of Char (Ad) as an analytic set is minimal; i.e., equal to n. The 
projection Sing (Ad) of Char (Ad) \ 0 to the x-space C n is an analytic subset of C ~, 
where 0 denotes the zero section of T* C n. We call Sing (Ad) the singular locus of 
Ad. When Ad is holonomic, Sing (Ad) is a proper analytic subset, and it was proved 
by Kashiwara [K1] that  any local analytic solution of Ad is continued to an analytic 
solution on the universal covering space of C n \ Sing (Ad). 

The characteristic variety is defined analytically, i.e., through the sheaf of rings 
~D of linear partial differential operators with analytic coef¡ Hence even for 
a system of equations with algebraic (i.e. polynomial) coefficients, ir is not obvious 
that  its characteristic variety can be computed purely algebraically, i.e. without 
any computation in the ring of the power series. 
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The aim of this paper is to show that  there is a correct and purely algebraic al- 
gorithm which, given a system Ad with polynomial eoefficients, computes Char (Ad) 
and Sing (Ad). 

The key point of our argument is the Theorem in Seetion 2, which asserts that  
for a system Ad with polynomial eoeffieients, the GrSbner basis in the Weyl algebra 
with an appropriate monomial order gives a so-called involutive basis. Then by stan- 
dard methods, we can eompute the eharacteristic variety and, if Ad is holonomie, 
the singular loeus and the rank of Ad almost immediately. 

We note that the GrSbner basis algorithm in the Weyl algebra was initiated by 
Galligo [G] and has been extended and applied to actual computation by Takayama 
[Takl], [Tak2]. 

1. G r S b n e r  B a s e s  for  M o d u l e s  o v e r  t h e  W e y l  A l g e b r a  

In this paper, we use the following three kinds of rings of linear partial differ- 
ential operators (we use the notation 0i = O/•xi): 
(i) The ring of differential operators with polynomial coeificients (the Weyl al- 

gebra) 

An := C [ x l , . . .  ,Xn](Ol,... ,Onl, 

(ii) The ring of differential operators with rational function coetticients 

/~n : :  C ( x l , " ' , X n ) ( O l , . . - , O n ) ,  

(iii) The ring of differential operators with convergent power series coefficients 

Ÿ O : :  C { X l , . . . , X n } ( O l , . . . , O n } .  

These are non-commutative C-algebras with fundamental relations 

x~x~ = xjx~,  o~oj = o j o .  

XiO j -- OjX  i = - -S i j  for 1 < i, j < n, 

where C denotes the field of the complex numbers and 5ij is the Kronecker delta. 
The first two rings are algebraic (cf. [Bj]), and the GrSbner basis algorithm is applied 
effectively as was shown in [G], [C], [NI, [Takl], [Tak2]. On the other hand, the ring 
Do (more precisely, the sheaf T) of differential operators with analytic coefficients 
whose stalks are isomorphic to 7)0) is used a s a  fundamental tool in the theory 
of the system of linear partial differential equations (cf. [K1], [K2], [SKK]). Our 
motivation is to find relations among modules over these three rings. 

Let us review the GrSbner basis theory for modules over the Weyl algebra. 
First we define a lexicographic order < in N n by 

c~ -4 ~ if and only if there is some k with 1 < k < n such that  

c~k < ~ k  and a i = ~ i  fo rany  i < k  



Computation of Characteristic Variety and Singular Locus 487 

for (~ = (C~l,...,c~n) and q = (q  fin). Here we write N = {0, 1 , 2 , . . . }  and 
Ic~ I = a l  + . . .  + c~n. T h e n  we define a to ta l  order  (a monomial  order) in N 2~ by 

(a,  fl) -< ( a ' , f l ' )  if and only if (lfl[ < lq 

or (191 --I/3'1 and fl -~ ti') 

or (ti=ti' and I'~1 <IEI) 
or ( /3= /3 '  and I~l=l~'l ana ~ ~ ~ ' )  

f o r c  h q c~ I, q E N n �9 
Ah element P of Ah is wr i t ten  a s a  finite sum 

P = E a~#x~O# 

w i t h  x ~ xŸ . caz 0 f l  Olfli . .  O n f l n  = . . x~  , = . , % #  E C f o r a  = ( a l , . . . , a n )  and 
/3 = ( /3i , . . . , /3~) .  T h e n  we define the leading exponent  lexp(P) ,  the  order  o rd (P) ,  
and the leading coefficient lcoef(P)  of P by 

l exp(P)  ---- max.~{(a , /3)  E N 2n I aa4 76 0}, 

o r d ( P )  = max{I/3l I aafl r 0}, 

l coef (P)  = a~~ with (c~,/3) = lexp(P) ,  

where max  _< denotes the  max imum element with respect  to  the  monomial  order -~ 
in N 2n. When  o rd (P )  _< m we write 

~,lN=m 

with ( = ( (1 , . . .  , (n) .  [f o rd (P )  = m, we write simply G(F) = a~(P) and call it 
the  principal symbol  of P .  

Moreover, for an r -vector  /5 = ( P i , . . . ,  Pr)  E (Ah) r, we define its order,  the 
leading point  lp(q the  leading exponent  and the leading coefficient by 

ord(/5)  = m a x { o r d ( P , )  I u = 1 , . . . ,  r},  

lp( t i )  -- max{y  ~ { 1 , . . . ,  r} I o r d ( P , )  = ord(/5)}, 

l e x p ( q 1 6 1  with u - - l p ( P ) ,  

lcoef(/5) = lcoef(P~) with L, = lp(P) .  

Let  N be a left A~-submodule  of (Ah) ~. Then  the set E(N) of leading expo- 
nents  of N is defined by 

E(N) = {lexp(/5) I q �9 N, q 76 0} C N 2n x { 1 , . . . , r } .  

We introduce a to ta l  order  -~ in the set N 2~ x { 1 , . . . ,  r} by 

(a,/3, u) -~ (a ' ,  ti', z/) if and only if (t/31 < 1/3'1) 

or (I/31 = I/3'1 and ~, < , ' )  

or (i/31.=1/3'1 and u=u' and (a,q 
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for a,  q a ' , /3 '  E N ~ and ~, v'  E { 1 , . . . ,  r}. 

DEFINITION. A finite subset G of a leff A~-submodule N of (A~) ~ is called a 
GrSbner basis of N if 

holds, where we put 

E ( N )  : U (lexp(q + N2~) 

~EG 

(a,/3,~,) + N 2~ = {(a + c~',/3 +/3 ' ,~ , ) I  a ' , /3 '  E Nn}.  

The algorithm of constructing a GrSbner basis from a given set of generators 
of N is similar to the Buchberger algorithm for ideals of polynomial rings ([Bu], 
[BW], [CLO]) and is described in [Takl] in a more general setting. 

2. GrSbn er  B a s e s  and  I n v o l u t i v e  B a s e s  

Let N be an A~-submodule of (An)  r. Then N is generated by a finite set 
{/~1,...,/~~}- Write f i i =  ( P i l , . . . , P i ~ )  for i = 1 , . . . , s .  Then in the theory of 
systems of linear part ial  differential equations, it is natural  to regard the system 

i P i j u j  = 0 (i = 1 , . . . , s )  
j : l  

as a sheaf of :D-modules M : :  (7))r/Al with Al := 7 ) 6  + ' "  + 7)q 
Let us denote by 7)(m) the subsheaf of 7) consisting of operators  of order at 

most rn. Define a ¡  {Al (m) } of Al by Al (m) : Al N (7)(m))r and let 

:: ( ~  x(m)/x (m-l) 
m_>0 

be the graded module associated with the filtration. Then ~ is a sheaf of O[~]- 
submodules of (O[~]) ~, where O denotes the sheaf of holomorphic functions of x. 
Pu t  ~ = (O[~])~/ff.  It  is obvious by definition that  

~ :  (~{~(f)I ~ eH(m)}, 
mEO 

where a(/~) = (a,~(P1), . . . ,  am(Ps))  for P = (P1 , . . . ,  Ps) and m = ord(/~). 
The characteristic variety Char (AA) of A4 is the subset of the cotangent bundle 

T * C  = = C n x C n defined as the support  of the sheaf Oc~•  | A~t on T*C n, 
where Oc~ • denotes the sheaf of holomorphic functions in (x, ~). For a sheaf 
on C n and a point p E C m we denote by ~p the stalk (i.e. the set of germs) of .T 
at p. For c~ = ( ( h , . - . ,  c~n), q = (/31,.-.,/3~) �9 N n we set 

v 9 = (max{~~, ~~}, ..., m~x{~~, ~~}). 
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THEOREM. Let N be an A~,-submodule of (Ah) ~ and assume that G is a 
GrSbner basis of N .  Then for any point p of C n, the module Afp is generated 

Pro@ Pu t  (~ = {PI , . . . , /Os}  and set lexp(/~i) = (ai,/~i, vi) for i = 1 , . . . ,  s. 
We may assume lcoef(fi i)  = 1 for any i wi thout  loss of generality. For two dist inct  
i , j  �9 { 1 , . . . , s }  we put  

f x  ~~~o fh~, i f v i = v j ;  
Sij t 0, otherwise 

with aij := a i  V a j  - a i  and q :=/3i  V q - q Then  since G is a Gr6bner  basis 
we have 

8 

s, j f i  - sji6 = ~ Qijk;~ (1) 
k=l 

with some Qijk E A~ such tha t  

le~p(Q~jkfk) ~ (~~ v ~j, ~~ v ~j, a )  (2) 

ir "i = ~j (cf. [Takl]).  Pu t  

with mi -- I~il and mij = Ifli V~jl .  Thcn  it follows from (1) and (2) t ha t  if vi = vj, 

8ijPi -- 8jiPj = s qijk lexp(qijkŸ -~ (al V aj ,  q V ~j, vi), 
k=l 

where lexp is defined in the same way as for (A,~) ~ with 0 replaced by ~. This  
implies tha t  a ( G ) : =  {a(/~) [ f i  e G}  is a GrSbner  basis of the C[x , ( ] - submodule  

N := C[x,~]o'(P1) ~-"" -~-C[x ,  ~]o'(Ps) 

of (C[x, ~])~. In view of the  theory  of the  GrSbner  basis for the polynomial  ring, 
the first syzygy module  for a (G) :  

8 

{ ( f l , . ' ' , S s )  C (C[x,~]) s E S k P k  : 0 }  
k=l 

is generated by the  set {gij I 1 ~_ i < J ~- s} with 

(i) (J) 
vij := (0 , . .  ~ " ., 8ij , . . . , - - s j i , . . . , O )  -- (q i j l , . . . ,q i j s )  �9 (C[x,~])s.  

(See e.g. [BW], [CLO] for the proof  for the case r = 1. The  proof  for the  case r > 1 
is similar.) Hence we have an exact sequence of C[x, ~]-modules: 

(C[x,~])( ; )  ~ ,  (C[x,~])  ~ ~,  (C[x , r  (3) 
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where the homomorphisms ~ and %b are defined by 

~ ( ( f l , . . . , f s ) )  = ~ f k f k ,  r  = E f i j g i j  
k=l  i < j  

for fk ,  f~j e C[x, ~]. Since Op ~- C{x} is flat over C[x] (cf. [Bou, Ch. 3]) and 

op | c[x, ~] = %[~], 

we get from (3) an exact sequence of Op[~]-modules: 

(o~[~])(~) ,~> (%[,q)s ~> (o~[,~]) ~, (4) 

where the homomorphisms ~ and ~ are defined by 

~ ( ( f l , . . . , f ~ ) )  = ~-~~Skga, r = ~-~~ f~j77~j 
k=l  i < j  

for A ,  f~j c o~[~]. 
Now let P be an arbitrary element of N'p. Our aiIn is to show that  there exist 

Q 1 ,  . . . , Q s  E :Dp w h i c h  s a t i s f y  

= QllP1 + " "  + QsPs (5) 

and 

ord(Qkfik) _< ord(P) for any k e {l,...,s}. (6) 

For this purpose, let us take an expression (5) which minimizes the quantity 

m := max{ord(Qk/~k) I k = 1 , . . . ,  s}. 

Assume rn > ord(fi). Then taking the principal symbol of order m of both sides of 
(5), we get 

~~~ (%)~~~ (f~) = 0 
k=l  

with mk := ord(q and mi  := m - mk. In view of the exact sequence (4), there 
exist fiy E Op[~] which are homogeneous of degree m - mi j  in ~ so that  

(a~Ÿ (O1),- . . ,  ~~~ (es))  = ~ f~ j i j .  
i < j  

Put 
(i) (i) 

Vij := ( 0 , . . . ,  S i j , . . . , - S j i , . . . , O )  - ( Q i j l , . . . , Q i j ~ )  E (A,~)L 
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Take Fij �9 79p sat isfying Crm-,~ u (Fij)  = fij a n d  define Q Ÿ  Q~~ by  

( Q Ÿ  : (QI ,  . . . ,  Q~) - ~ F~j~j. 
i<j 

T h e n  it follows 

8 

f '/~ = E Qk k + E FoVijmat(fil'" .,Ps) 
k = l  i<j  

8 

4 9 1  

I t  is easy to see t h a t  

holds if and only if 

(Oc~xc~)p. | (z;(~)/~(~-~))p = (Oc~• for ~ = l , . . . , r .  

k = l  

where m a t ( / ~ l , . . . ,  fis) denotes  the  s x r ma t r ix  wi th  q  lgs as row vectors.  This  
contradic ts  the definit ion of rn since ord(Q~fik)  _< m - 1. Hence we have proved 
tha t  there  exists an expression (5) with the  condi t ion (6). This  implies 

~(f) c o~[~]~(~~) +... + o~[~]~(f~). 

This completes the proof. 

3. Characterist ic  Varieties and Singular Loci 

PROPOSITION 1. Under the same assumptions as in the Theorem, put 

G~ : { ~  e G I lp(f )  : .} 

for each , E { 1 , . . . ,  r} .  Then the characteristic variety of Ad is given by Char  (Ad) : 

U:=l v~ with 

V, = { (x , ( )  E T * C  '~ ] ~ ( /~ ) , ( x ,~ )  = 0 for any P E G~,}, 

~here ~,(f)~ denotes the ~,-th eo~po~ent of the rector ~(P).  

Pro@ We use the  same no ta t ion  as in the proof  of the  T h e o r e m  of Section 
2. For each ~ E { 1 , . . . ,  r},  define a sheaf  s  of O[( ] -modules  by 

s  f o r # > , } .  

Then  s 1 6 3  can be regarded as a subsheaf  of O[~] and we have s = ~ .  By 
the definition of the  character is t ic  variety, we have 

Char  ( A d ) =  {p* - - ( p , q )  �9 T ' e n  I ( O c ~ x c ~ ) , *  | Afp = (Oc~• 
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Hence in order to prove Proposition 1, it suffices to show t h a t  (s is 
generated by {a(q [ q E G~}. To prove this fact, let f = ( f l , . . .  , f  r) be an 
arbitrary element of (s We put l p ( f )  = max{# [ f ,  ~ 0}. Then we may 
assume lp ( f )  = u. In view of the Theorem, there exist q l , . . . ,  qr E Op[~] such that  

/ =  q~g~ + . . . *  - -~-  (7) 

Put # = max{lp(qkgk) I k = 1 , . . . ,  s} ana assume # > u. Let us denote by ( / ) ,  
the #-th component of the rector j~ Put  S ,  = {k E {1 , . . . ,  s} I lP(~k) = #}. We 
can now assume S~ = {1 , . . . ,  s ~} by a permutation of the elements of G. Moreover, 
sinee {cr(/3) I f i  E G, lp(P) _< #} also constitutes a GrSbner basis of the module 
which it generates, we may assume # = r without loss of generality. Note that (7) 
implies 

8 ! 

k = l  

Sinc~ {g~ , . . . , f i ~ }  is a Gr~bner ba~is in (C[~,r  ~, so is {(gk)~ I lP(~k) = ~} in 
C[x,  ~]. Put  

(i) (J) 

~,..' (0,.. ~ , :=  ., 8~~ , . . .  , - 8 ~ , . . .  ,0)  - (q~~l , . . . ,  q~ss,) E (C[x ,r  J 

Then by the same argument as that  in the proof of the Theorem, there exist fij  E 
OpiO] such that  

( q l , . - . , q s ' ) :  E f i j ~ i / .  
l~i<j~_s I 

Since gq  ,q = 0, we get 

8 ! 

k=l k=s'+l 

8 ! 

~ s~~(~~~~- j ; -  ~~~~~~~) + ~ ~~~~ 
l<_i<j<_s' k = l  k=s'+l 

l<i<j<s' k=s'+l k=s'+l 

Thus f i s  represented a sa  linear combination of elements of {a(/~) I q E G, lp(P) _< 
r - 1} over OpiO]. By induction, we can show that f i s  represented a s a  linear 
combination of elements of {a(/3) I q E G, lp(P) _< y}. Hence we have proved that  
(s163 is generated by {a(q I q E Gu}. This completes the proof. 

PROPOSITION 2. Under the same assumptions as in the Theorem, let Ir be 
the ideal of C[x,~] generated by {cr(/~)v [q E G~}. Put 

J~i = {f(x) E C[x]I f(x)~i ~' E I .  for some fli E N}. 
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Then the singular locus of Ad is given by 

493 

6 n 
Sing (Ad) = U { x  �9 e n I f ( x )  = o for any f �9 Jvi}. 

y = l  i=1 

Proof. Let 7r : T*C n ....... , C ~ be the projection defined by 7r(x,~) = x. Then 
the singular locus is by de¡ the union of the algebraic sets Ÿ \ 0), where 0 
denotes the zero section of T*C n. On the other hand, Ÿ \ 0) is the zeros of the 
ideal N~~I J-~ in view of the projective extension theorem of [CLO, Chap. 8]. This 
completes the proof. 

4. R a n k  o f  a H o l o n o m i c  S y s t e m  

Suppose Ad is holonomic on U := C n \ Sing (Ad) 5~ 9. Then by virtue of a 
theorem of Kashiwara ([K1],[K2]), there exists an integer ro so that  Ad is locally 
isomorphic to (9 TM as (9-module on a neighborhood of each point of U. This implies 
that  the holomorphic solutions of Ad on the universal covering space of U constitute 
ah r0-dimensional vector space over C. This integer ro is called the rank of Ad. We 
define the projection 

w :  N 2~ • { 1 , . . . , r }  --~ N ~ • { 1 , . . . , r }  

by w(a ,  ti, ~,) = (q z,). 

PROPOSITION 3. Let Ad, N ,  G be as in the Theorem. Put 

E = {(a ,~)  �9 N n x { 1 , . . . , r }  I (a,q t~) �9 lexp(/5) + N  2n 

for some q �9 G, ~ �9 N~}, 

r 0 : ~ ( N  n x { 1 , . . . , r } \ E ) ,  

where ~ denotes the cardinaIity of a set. Then, i f  ro is finite, Ad is holonomic on 
(3 ~ \ Sing (Ad) r ~ and its rank is given by ro. 

Proof. Put  NR = Rn/51+" " "+ Rn/3~ C ( Rn) ~. It is known that  Ad is holonomic 
on a Zariski open set of C n if (R~)~/NR is finite dimensional over C(x),  and its 
dimension is equal to the rank of Ad (see e.g. [OS] for the proof). A vector t3 in 
(Rn) ~ can be written 

/3= 1_~ 
a(x) 

with a(x) e C[x] and �91 e (Ah) ~. Then we define lPR(/3) �9 {1, . . . , r }  and 
lexpR(/3 ) �9 N n • {1 , . . .  , r}  by 

lp~(P) = lp(O), 
lexp~(P) = ~(lexp(O)). 
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Let us show 
E = ER(N) := {lexpR(P ) ] /~ E NR, P ~ 0}. 

Since G is a Gr5bner basis of N, we have E -- w(E(N)). Hence the inclusion 
E C ER(N) follows from N C NR. In order to prove the converse inclusion, assume 

E NR. Then there exists a polynomial a(x) such that  a(x)P E N. Hence we get 
lexPR(P ) ---- lexPR(a(x)P ) E E. This completes the proof since the dimension of 
(Rn)r/NR over C(x)  is equal to ~(N ~ x { 1 , . . . ,  r} \ En(N)). 

5. Algorithm and Examples 

Let N and A/[ be as in Section 2. For a polynomial f(x,~) E C[x,~] we write 
subst(f ,  ~i, 1) the result of the substitution ~i = 1 in f .  

Algorithm. 
I n p u t :  A set G of generators of N; 
G := % GrSbner basis of N";  
E := U~~G w(lexp(16)) + N~; 
for  u := 1 t o  r do  { 

G~ :-- { f  E G I lp(P) = u}; 

} 
ro := ~(N n x { 1 , . . . , r }  \ E); 
if  ro < c~ then 

f o r u : = l t o r d o  
f o r i : = l t o n d o  { 

I , i  := {subst(f,  ~i, 1) I f E I ,};  
G . i  := '% Gr5bner basis of the ideal of C[x,~] 
generated by I~i with respect to the monomial order -~"; 
J~i := Gvi n C[x]; 

} 
O u t p u t :  {I~}, ro, {J~i}; 

From the output  of this algorithm we get 

Char(J~4) = 0 { ( x , ~ )  I f (x ,~ )  = 0 for any f E I ,} ,  
v = l  

and if ro is finite, AA is holonomic of rank ro on C m \ Sing (A4) ~ 0 with 

Sing(A/I) = 0 O{ xlf(x)=~ for any f E J~i}. 
u = l  i=1  

The correctness of the computation of Sing (A/I) follows from the arguments in 
[CLO, Chap. 8]. 

The following computation has been performed by using our implementation 
of the above algorithm on a computer algebra system Risa/Asir (cf. [NT]). 
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Example 1. Let us consider the system of Maxwell's equations in the vacuum. 
This is the system for the rector  ~7 -- (E, H)  of 6 unknown functions: 

A/t : / ~ . ~ 7 = 0  ( i - - 1 , . . . , 8 ) ,  

where in the coordinate (t, x, y, z) instead of (xi, x2, Xa, x4), we set 

P~ = ( o~ ,G ,  Oz,O,O,O), 

P~ = ( o , - O z , G , . o . o , o ) ,  

P~ = ( - G ,  o~, o, o, o, , o A  

P~ = (o, -~a~, o, oz, o, - G ) ,  

P2 = ( o , o , o , G , G , G ) ,  

f4 = ( O z , O , - 0 ~ , o , ~ 0 . o ) ,  

;~  = ( - ~ 0 .  o, o , o , - o ~ , G ) ,  

~a = (o, o, -~o~,  - G ,  0~, o). 

Hence this system is apparently overdetermined. Let N be the submodule of (A4) 6 
generated by {fi l , . . . , - f is}.  Then we get a s a  GrSbner basis of N, (3 = {q ,/~s, 
/~9,...,/~13} with 

~9 = (~~o,~ 2 - o~ 2 - G 2 - o~ 2, o, o, o, o, o), 

P~o = (o, ~~o~ 2 - G ~ - G 2 - o~ 2, o, o, o, o), 

P~~ = (~o~o. o, o, G o l ,  G ~ + o~ ~, o), 

P12 = (o~G,  o~G,  ~.o~ ~ - G ~ - G L  o, o, o), 

P~s = (o, ~OzO~, - ~ G o .  - o ~  ~ - G ~ - o~ ~, o, o). 

In fact, this computation is the Gr5bner basis algorithm for polynomials since the 
above vectors of operators are with constant coefficients. Thus, in the notation of 
Propositions 1 and 2, we get 

V1 = { ( t , x , y , z , % G ~ ? , ~ )  

V2 = { ( t , x , y , z , % G ~ h ~ )  

V3 -- { ( t , x , y , z ,~ - ,~ ,V ,~ )  

v~ = { ( t , ~ , u , z , ~ , ~ i v , ~ )  

115 = { ( t , x , y , z , % G ~ h r  

V6 = { ( t , x , y , z , % ~ , T h ~ )  

where we write (% ~, ~, ~) instead of (~1, ~2, ~3, ~4). Hence we have 

Char (A4) = {(t, x, y, z, T, ~, ~/, ~) I ~#~_2 _ ~2 _ ~~ _ ~2 = 0}. 

~(f~)~(~,~,  ~, r = o}, 

~(flO)~ = o}, 

~(f~)~ -- ~ ( G ) ~  = o}, 

,~(P~)4 = o-(P~~)4 = o}, 
o'(P4) 5 = o'(Ps) 5 = o'(Pll)5 : 0}, 

~(P~)~ = ,~(P~)~ = o-(~~)~ = o-(P~)~ = o}, 

Example 2. Using the coordinate (x, y) instead of (xi, x2), let us consider the 
system for Appell's q 

.MI : P l u  = P2u = O 

with 

P1 := x(1 - x)O~ 2 + y0~0~ + {~/-  (a + q + 1)x}0~ - aq 

P~ := y(1 - y ) G  2 + x o ~ G  + {~ - (~' + ti' + 1)u}G - ~'Z'- 
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T h e n  we get {P1, P2, P3, P4} a s a  GrSbner  basis of the left ideal I :=  A2P1 + A2P2 
with 

lexp(P1) = (2 ,0 ,2 ,0 ) ,  lexp(P2) = (1,0, 1, 1), 

lexp(P3) = (0, 2, 1, 2), lexp(P4) -- (1, 4, 0, 3). 

Hence the rank  of Ad on C 2 \ Sing (Ad) is 4. Moreover we have 

_rl = { ~ ( ( - x  ~ + x)~ + u,7), ~(x,~ + ( - u  ~ + u)~),  u~~~(~ - (u - 1)~~), 

u 2 ( u  - 1 ) ( x u  - x - u ) ~ 3 } ,  

J,1 = { x 2 ( x -  1 ) ( x y -  x -  y)}, J12 = {Y2(Y-  1 ) ( x y -  x -  y)}. 

Hence the characteris t ic  variety and  the s ingular  locus are given by  

Char  (Ad) = {x = y = 0} L2 {~ = ~7 = 0} U {x = r / =  0} U { x - -  1 = r / =  0} 

t 2 { y = ~ = 0 } U { y - - l = ~ = 0 } U { x y - - x - - y = ~ - - ( y - - 1 ) 2 r / = 0 } ,  

Sing (Ad) = {(x, y) G C 2 I xu(x - 1)(y - 1)(xy - x - v) -- 0}. 
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