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In this paper the nonnegative splitting theory, playing a fundamental role in the conver- 
gence analysis of iterative methods for solving laxge linear equation systems with monotone 
matrices and representing a broad class of physical and engineering problems, is formu- 
lated. As the main result of this theory, it is possible to make the comparison of spectral 
radii of iteration matrices in particular iterative methods. 

Key words: linear equation systems, iterative methods, monotone matrices, eigenvatues, 
eigenvectors, (regular, nonnegative, weak nonnegative and weak) splittings, comparison 
theorems 

1. I n t r o d u c t i o n  

The nonnegative splitting theory provides many comparison theorems as useful 
tools in the convergence analysis of iterative methods for solving large linear equa- 
tion systems with monotone matrices represented by different types of splittings. 
Many physical and engineering problems with monotone matrices are characterized 
by so called M-matrices and H-matrices which properties were studied by many 
authors. The results presented in the paper are related to monotone matrices rep- 
resenting a broader class of matrices. 

The nonnegative splitting theory based on the Perron-Frobenius theory of non- 
negative matrices is a generalization of the regular splitting theory originated by 
Varga [1] and improved later in developments of prefactorizationing methods known 
under the name the AGA two-sweep iterative methods [2, 3, 4, 5, 12, 13, 14]. In 
the next section the background material, well known in the theory of nonnegative 
matrices [1] and frequently used, is given for completeness of description. In Sec- 
tion 3 the main results of the nonnegative splitting theory proven under natural 
hypotheses easily verifiable in practice are presented. Section 4 demonstrates the 
application of some results of this theory in the convergence analysis of iterative 
methods. Section 5 deals with the author 's comments on his earlier regular theory 
splitting results [2], finding a continuous interest in the literature [7, 8, 9, 10, 11, 15, 
16], in relation to other developments [7, 15] as well as new extensions of nonnega- 
tive splitting theory results proven under weaker conditions but more cumbersome 
in its verification. In Section 6 further extentions of nonnegative splitting theory are 
presented. Reference [16] is one of n o t a  few works which uses the earlier author 's 
results in immediate applications. 

The previous version of this paper (consisting basically of the material in 
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Sections 2, 3 and 4) prepared in 1989 was presented in internal seminars and re- 
cently in The Second Conferenee of International Linear Algebra Society (Univer- 
sity of Lisbon, August  1992, Lisbon, Portugal),  The 1992 Shanghai International 
Numerieal Algebra and its Applieations Meeting (Fudan University, October 1992, 
Shanghai, P.R. China) as well as in International Workshop on Nonnegative Ma- 
triees, Applications and Generalizations (Technion, 31 May-4  June, 1993, Haifa, 
Israel). Its preprint  have been distributed among many people (among others Pro- 
fessors G. Alefeld, G.H. Golub, Erxiong Jiang, Keisuke Kobayashi,  M. Neumann, G. 
de Oliveira, R.S. Varga). The author is indebted to people who by their criticism, 
comments and suggestions encouraged the author to further studies of nonnegative 
splitting theory. Referring to results of other authors [7, 15] discussed in Section 5 
was also inspired by the suggestions of Professor G.H. Golub. 

Thus, in last few years this work was under a continued development and 
the present paper  is supplemented by many  new comparison theorems included in 
Sections 3, 5 and 6, and the extension of Section 4. 

2. T h e o r e t i c a l  B a c k g r o u n d  

Throughout  the paper  all matrices will be square with the order of n in R n• 
where II~ n• denotes the vector space of all n • n real matrices. For a matr ix  
A = (aij) C l~nxn the set of Ÿ i, j -- 1, 2 , . . .  n will be denoted by S. In the 
assumed notat ion a matr ix  A i s  nonnegative or A _> 0 if aij  _> 0 for each i, j E S 
and there exists at least one pair of indices k, l E S for which akz > 0. If  aij ~ 0 for 
each i, j E S, A is positive or A > 0. Let A and B be two matrices, then A > B (or 
A > B) is equivalent to A - B _> 0 (or A - B > 0). In the case of a vector x E R a 
with n components,  R n denotes ll( n• because column vectors are n • 1 matrices, 
the sarne notat ion and rneaning for the terms nonnegative and positive are used. 
Thus, according to the above definitions of nonnegativity, with the notation A _> B 
and x _> y the equality is excluded. 

However in the case of multiplication of a nonnegative and singular matr ix  A by 
other nonnegative and singular rnatrix B or by a nonnegative vector x it may occur 
that  the product  will be the null matr ix  or the null rector,  respectively. Such a case 
is included by the following notation A B  > (--) 0 or A x  > (--) 0 which means tha t  
A B  (Ax) may be either a nonnegative rnatrix (vector) or the null matr ix  (vector). 
Thus with the notat ion A > (--) B and x _> (---) y the equality is not excluded. 

DEFINITION 2.1. A matr ix  A is monotone if A is nonsingular and A -1 _> 0. 

DEFINITION 2.2. A matr ix  A is reducible if there exists a nonvoid index set 
R, R C S and R ~ S such that  aij  = 0 for i E R and j C S - R, otherwise the 
matrix A is irreducible. 

It  is evident tha t  each positive matr ix  is irreducible. 

DEFINITION 2.3. For a matr ix  A with eigenvalues Ai, i C S, the quanti ty 

; ( A )  = m ~  IA~I for all  i c S 
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is the spectral radius of the matrix A. 

LEMMA 2.1. Let A and B be two matrices. Then 
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p(AB)  = p (BA) .  

LEMMA 2.2. Let A and B be two matrices, with A >_ IB] >_ 0. Then 

p(A) > p(B) 

with the strict inequatity sign when the matrix A is irreducible. 

THEOREM 2.1. Ir G is a matrix with p(G)  < 1. Then I - G is nonsingular 
and 

(I - G)  -1 = I + G + G 2 + . . .  (2.1) 

the series on the right hand side is converging. Conversely, i / the  series on the right 
hand side converges, then p(G)  < 1. 

The Perron-Frobenius theory of nonnegative matrices provides many  theorems 
concerning the eigenvalues and eigenvectors of nonnegative matrices. The most 
important  results are contained in the two following theorems [1]. 

THEOREM 2.2. I /  A > 0 then 
1. A has a nonnegative real eigenvalue equal to its spectral radius. 
2. To p(A) > 0 there corresponds an eigenvector x >_ O. 
3. p(A) does not deerease when any entry o Ÿ  is increased. 

THEOREM 2.3. Let A > 0 be an irreducible matrix. Then 
1. A has a positive real eigenvalue equal to its spectral radius. 
2. To p(A) there corresponds ah eigenvector x > O. 
3. p(A) increases when any entry o Ÿ  increases. 
4. p(A) is a simple eigenvalue of A .  

3. N o n n e g a t i v e  S p l i t t i n g  T h e o r y  

All considerations are referred to the iterative solution of the following linear 

equation system 
AC = c (3.1) 

where A E ~n• is a given n • n nonsingular matrix, r 6 R n and c C II~ n are 

column vectors with n components,  with unknown r and c being given. 
The iterative solution of Eq. (3.1) can be expressed in the following form 

M e  (t+l) = N r  (t) + c, 

where r denotes the successive iterates and 

A = M - N  

t > 0 (3.2) 

(3.3) 
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represents the single splitting of A (iterative methods based on the double splitting 
of A ate analyzed in [5]). The above iterative scheme is convergent to the unique 
solution 

r = A - l e  (3.4) 

for each O (~ if and only if M i s  a nonsingular matr ix  and the corresponding iteration 
matrix 

G = M - 1 N  (3.5) 

has the spectral radius p(~) < 1. Eq. (3.2) can be written in the following equivalent 
form 

r = Gr + M - l c ,  t _> 0. (3.6) 

The rapidity of convergence in a given iteration method is defined by the 
(asymptotic) tate of convergence 

R(G) = - l n p ( G ) .  (3.7) 

The rate of convergence increases as the value of the spectral radius decreases. The 
reciprocal of R(G) can be used a s a  practical measure of the number  of iterations 
required to reduce the norm of the error vector c (t) = r (t) - r (r denotes the exact 
solution) by a factor e -1 .  

Thus, the spectral  radius of an iteration matrix plays an important  role in the 
comparison of the efficiency of different iterative methods. 

DEFINITION 3.1. For matrices A, M and N the following decomposition 

A = M - N  

is called a convergent splitting of A, if A and M are nonsingular matrices and 
p ( M - 1 N )  < 1. 

THEOREM 3.1. Let A = M - N be a splitting of A .  Ir A and M ate nonsin- 
gular matrices, then 

M - 1 N A  -1 = A - 1 N M  -1 

the matrices M - I N  and A - 1 N  commute, and the matrices N M  -1 and N A  -1 
commute too. 

o f  

Proof. From the definition of the splitting of A, it follows tha t  

M -1 = (A + N) -1 = A - I ( I  + N A - l )  -1 = (I + A - 1 N  ' - 1 A - 1  

A - 1  __ M - 1  + M - 1 N A  -1 = M -1 + A - 1 N M  -1 

which implies tha t  

(3.8) 

(3.9) 

M - 1 N A  -1 = A - 1 N M  -1. (3.10) 
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Hence M - 1 N A - 1 N  = A - 1 N M - ] N  or N M - 1 N A  -1 = N A - 1 N M  -1. �9 

The following concepts of the splittings of monotone matrices A will be central 
to the subsequent discussions. 

DEFINITION 3.2. For matrices A, M and N the following decomposition 

A = M - N  

is called a regular splitting of A, if M i s  a nonsingular matr ix  with M -1 _> 0 and 
N>_O. 

DEFINITION 3.3. For matrices A, M and N the following decomposition 

A = M - N  

is called a nonnegative splitting of A, if M i s  a nonsingular matr ix  with M -1 _> 0, 
and M - 1 N  > 0 and N M  -1 > 0. 

DEFINITION 3.4. For matrices A, M and N the following decomposition 

A = M - N  

is called a weak nonnegative splitting of A, if M i s  a nonsingular matr ix  with 
M -1 > 0 and either M - 1 N  = G _> 0 (the first type) or N M  -1 = G" _> 0 (the 
second type ). 

The definition of the regular splitting has been introduced by Varga [1] and 
Definition 3.3 is equivalent to the definition of the weak regular splitting due to 
Ortega and Rheinboldt [6]. However it should be mentioned that  M -1 ~ 0 and 
only M - 1 N  > 0 (without the condition N M  -1 ~ 0) is defined as the weak regular 
splitting of A = M - N by other authors, but in this case it is necessary to use 
additional assumptions in comparison theorems [10, 11]. 

It  is evident tha t  with the above definitions the Ÿ corollary holds. 

COROLLARY 3.1. Any regular splitting of a matrix A is a nonnegative split- 
ting of A and any nonnegative splitting of A is a weak nonnegative splitting of A, 
but the converse is not true. 

Thus the above corollary tells us that  the properties of (weak) nonnegative 
splittings apply to regular splittings. The properties of weak nonnegative splittings 
are summarized in the following theorem. 

THEOREM 3.2. Let A = M -  N be a weak nonnegative splitting of A.  Ir 
A -1 _> 0, then 

1. A -1 > M -1 

2. p ( M - 1 N )  = p ( N M  -1) < 1 
3. Ir M - 1 N  > 0, then A - 1 N  _> M - I N  and ir N M  -1 _> 0, then N A  -1 >_ 

N M - 1  
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4. p ( M - 1 N )  - P ( A - 1 N )  (3.11) 
1 + p ( A - 1 N )  

5. Conversely, if  p ( M - 1 N )  < 1, then A -1 >_ O. 

Pro@ 
(1) From Theorem 3.1 it follows 

A -1 = M -1 + M - 1 N A  -1 = M -1 + A - 1 N M  -1 

and since M - 1 N  2 0 or N M  -1 > 0 by hypotheses then 

M - 1 N A  -1 = A - 1 N M  -1 > 0 

which gives us immediately that  A -1 _> M -1. 

(2) Let us assume that  M - 1 N  > 0. Then one can write 

A-1  _- M - 1  + M - 1 N A  -1 = M -1 + M - 1 N ( M  -1 + M - 1 N A  -1) 

= [I + M - 1 N ] M  - t  + ( M - 1 N ) 2 A  -1 

= II + M - 1 N  + ( M - 1 N ) 2 ] M  -1 + ( M - t N ) 3 A  -1 

= [I + M - 1 N  § ( M - 1 N )  2 + . - -  + ( M - 1 N ) k - 1 ] M  -1 

+ ( M - 1 N ) k A  -1. (3.12) 

The existence of nonnegative matrices A - 1 ,  M -  1 and M - 1 N  implies tha t  the series 

I + M - I N  + ( M - 1 N )  2 + . . .  

is eonvergent and by Theorem 2.1 p ( M - 1 N )  < 1. Similarly, when only N M  -1 _> 0 

one obtains 

I +  N M  -1 + ( N M - 1 )  ~ + - . . .  

Using the result of Lemma 2.1 one obtains p ( M - 1 N )  = p ( N M  -1) < 1. 

(3) In Eq. (3.12) for k --* oc ( M - 1 N )  k --* 0 ana  

I + M - 1 N  + ( M - l i )  2 + . . . .  (I - M - 1 N )  -1 > I > 0 (3.13) 

and 

or  

A -1 = ( I -  M - 1 N ) - I M  -1 

A - 1 N  = ( I -  M - 1 N ) - I M - 1 N  > M - 1 N .  

In the case when N M  - t  > 0 it can be similarly shown tha t  

N A  -1 > N M  -1. 

(3.14) 

(3.15) 
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(4) Commutative properties of M , 1 N  and A - 1 N  imply that both matrices 
have the same eigenvectors, that is, 

M-1Nxi  = )~q 

A-1Nxi  = Ÿ161 

for all i 6 S and from Eq. (3.15) one can write 

(I - M - 1 N ) - I M - 1 N x i  = 7-q 

OF 
M_INxi  = Ti xi 

l+T~ 

but this gives us the eigenvalue relationship 

Ti (3.16) Ai= 1 + ~.i. 

Since from the assumption M - 1 N  and A - 1 N  are nonnegative matrices, then by 
Theorem 2.2 one obtains the relationship for the spectral radii that is 

p ( M - 1 N ) =  P(A-1N) 
1 + p(A-1N)" 

(5) The nonnegative character of the matrix ( I - M - 1 N )  -1 when M - 1 N  >__ 0 
with p(M-1N) < 1 (or ( I -  NM-1)  -1 > 0 when N M  -1 ~ 0 with p (NM -1) < 1) 
implies that A -1 ~ 0. �9 

The result of Eq. (3.11) has been proved by Varga [1] in the case of regular 
splitting of A. As a consequence of this theorem the following corollary can be 
stated. 

COROLLARY 3.2. Each weak nonnegative splitting of a matriz A with A -1 >__ 0 
is a convergent splitting of A and conversety, for each convergent weak nonnegative 
splitting of A, A -  1 >_ O. 

Now the following theorems will be proven. 

THEOREM 3.3. Let A = M1 - N I  = M2 - N 2  be two weak nonnegative 
splittings of A where A -1 > 0. Ir one of the following inequalities 

(a) A-1N2 > A-1N1 >__ 0 

(b) A-1N2 k N1A-1 ~ 0 

(c) N2A -1 k N1A-1 -> 0 

(d) N2A -1 > A-1N1 > 0 

is satisfied, then 

(or M~-IN2 > Mi-iN1 __k 0) 

(of M~-IN2 _> N1M11 > 0) 

(of N2M21 k N1M1-1 -> 0) 

(or N2M21 > Mi-iN1 >_ 0) 

P(M11N1) _< p(M~IN2) < 1. (3.17) 
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Pro@ By Lemmas 2.1 and 2.2 and Theorem 3.2 where p ( M - 1 N )  is mono- 
tone with respect to p (A-~N)  the result (3.17) follows immediately. In the case of 
inequalities given in parentheses the proof is obvious by Lemmas 2.1 and 2.2. 

THEOREM 3.4. Let A = M 1 - N i = M2 - N2 be two weak nonnegative 
splittings of A of the same type, that is, either M~-IN1 > 0 and M ~ I N 2  > 0 or 
N1M11 _> 0 and N2M~ -1 > 0, where A -1 > O. I f  N2 > N1, then 

P(M11N1) _< p(M21N2)  < 1. (3.18) 

Pro@ The inequality N2 _> N1 implies that  either A-1N2  > A-1N1 > 0 or 
N2A -1 _> N I A  -1 _> 0. Using the same argument as in the proof of Theorem 3.3 
the result follows immediatety. �9 

The same result of Theorem 3.4 has been proven by Varga [1] for the regular 
splitting of A and with the strict inequality in (3.1S) when A -1 > 0. It is evident 
that  by Corollary 3.2 the case of nonnegative splittings of A is included in both the 
above theorems. 

In iterative methods it is not always possible to compare matrices N (except 
the Jacobi and the Gauss-Seidel methods), but  very often matrices M -1 can be 
compared. One might expect that  the "closer" M i s  to A, the faster the method 
will converge. Now the nonnegative splitting theory will be discussed from the 
viewpoint of the influence of M -1 on the behaviour of p ( M - 1 N ) .  

The following theorems are generalizations of Theorem 3.4. 

THEOREM 3.5. Let A = M~ - N1 -- M2 - N2 be two nonnegative splittings 
of A where A -1 > O. I f  M11 > M~ 1, then 

p(M11N1) < p(M21N2)  < 1. (3.19) 

Pro@ By Theorems 2.2 and 3.2, and Lemma 2.1 one obtains A 1 = p(N1M~ -1) 
= p(Mi-lN1) < 1 and A2 = p(M~-ZN2) < 1 where the corresponding eigenvectors 
xi  and x2 are nonnegative. Thus 

N1M~-Ix1 = Alx 1 _> 0 (3.20) 

and 
x~M~IN2 = A2x ~ > 0. (3.21) 

Let us multiply Eq. (3.20) on the left by A -1 and Eq. (3.21) on the right by A -I, 
one obtains 

A-1N1M~- lx l  = A1A- lx l  (3.22) 

and 
xTM21N2 A-1  = A2xTA -1. (3.23) 
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The relation 

implies that 

o r  

A -I = M~ -1 + M21N2A -1 = M~ -1 + A - 1 N I M 1 1  

M 2 1 N 2 A  -1 - A - 1 N I M 1 1  = M~ -1 - M21 > 0 

M~- 'N2A -1 _> A-1 N1 M ~  -1 _> 0 

and according to the definition of nonnegativity given in Section 2 

M 2 1 N 2 A - l x l  > (=) A - 1 N I M 1 1 X l  = AIA-lxl . 

Multip]ying Eq. 
obtains 

and 

hence 

As x T A - l x l  

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.27) on the left by x T and Eq. (3.23) on the right by x~ one 

x T M 2 1 N 2 A - l x 1  > Alx2TA-lxl (3.28) 

x T M 2 1 N 2 A - 1 x 1  = A2xTA- lx l  (3.29) 

A l x T A - l x l  < A 2 x T A - l x l .  (3.30) 

> 0, it follows that  A~ < A2 which corresponds to the inequality 
(3.19). The case when x T A - l X l  = 0 is discussed in Remark given at the end of 
this section. �9 

A somewhat stronger version of this theorem is given below. 

THEOREM 3.6. Let A = M1 - N i  = M 2  - N 2  be two nonnegative spIittings 
o Ÿ  where A -1 > O. Ir M~ -1 > M~ -1, then 

P ( M l l N 1 )  < p(M2-1N2) < 1. (3.31) 

Proof. It is easy to notice that the assumption M11 > M21 > 0 implies the 
strict inequality in (3.26), that  is 

M~-IN2 A-1  > A-1NIM1-1 > 0 (3.32) 

but  this leads to the change of the non-strict inequality sign into a strict one in all 
remaining inequalities of the proof of Theorem 3.5 providing us the result A1 < A2 
which with the notation )~1 = P(MI-IN1) and A2 = p(M21N2) proves the theorem. 
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The importance of both the above theorems lies in extending the class of 
iterative methods in the analysis of convergence. Both of these theorems have been 
originally proven by the author [2, 3] in the case of regular splittings of A, a s a  
generalization of the results of Varga [1], by means of the Perron-Frobenius theory 
using only Theorems 2.2 and 2.3. The proofs from the work [2] are included in 
Section 5. 

It is easy to verify that  in the case of weak nonnegative splittings of a monotone 
matrix A, the assumption N2 >_ N1 implies M~ -1 > M~ -1 >_ 0. From N2 >_ N1 ir 
follows that  

M2 - A > M1 - A (3.33) 

but this implies that  M~ -1 > M~ -1 > 0. This result is included in the following 
lemma. 

LEMMA 3.1. Let A -- M 1 - N 1  -- M 2 - N 2  be two weak nonnegative splittings 
o f A .  If  N2 _> N1, then M11 > M~ -1 _> 0. 

The converse statement need not be true [2, 3]. As will be shown in examples, 
N1 and N2 may have different locations of nonzero entries in spite of the fact that  
M~ -1 > M~ -1. It should be mentioned that  these observations were renewed later by 
other authors (see, for example [7, 8, 10, 11]). Thus the assumption M 1  ~ > M21 
is weaker than assumption N2 _> N1, which motifies the generalization of Theorem 
3.4, and in many cases is a verifiable condition only. 

Now the case of weak nonnegative splittings of A will be considered. 

THEOREM 3.7. Let A = M1 - N I  = M2 - N 2  be two weak nonnegative 
splittings of A but of different type, that is, either M~-IN1 > 0 and N2M~ -1 _> 0 
or N1M~ -1 _> 0 and M~-IN2 _> 0, where A -1 >_ O. Ir M~ -1 > M21, then 

p(M11N1) _< p(M2-1N2) < 1. (3.34) 

Proof. Assuming the case when M11N1 > 0 and N2M2 -1 > 0, one can write 
that  

y T M 1 1 N  1 = Aly T (3.35) 

and 
N2M~-ly2 = A2y 2 (3.36) 

where by Theorems 2.2 and 3.2, and Lemma 2.1 A 1 = p(M~-IN1) < 1 and A2 = 
p(M~-IN2) -- p(N2M21)  < 1 and the corresponding eigenvectors Yl and Y2 are 
nonnegative. Multiplying Eq. (3.35) on the right by A -1 and Eq. (3.36) on the left 
by A -1 gives us 

y T M 1 1 N 1 A - 1  _-- AlYŸ -1 (3.37) 

and 
A-1N2M~- ly  2 = A2A-ly2 . (3.38) 
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From the relation (3.24), (3.10) and the assumption M~ -1 _> M21, it follows that  

A - 1 N 2 M ~  1 _> M~-IN1A -1 _> 0 (3.39) 

o r  

yTA-1N2M21  _> (=) yTM~-IN1A-1 : AlyTA -1. (3.40) 

Again multiplying Eq. (3.40) on the right by Y2 and Eq. (3.38) on the left by yT, 
one obtains 

T - 1  - 1  Yl A N2M2 YB -> A~YffA-lY2 (3.41) 

and 
yTA-1N2M21Y2 = A2yTA- ly  2 (3.42) 

a n d a s  Y Ÿ  > 0, it follows that  )h _< ~2, which proves the inequality (3.34) 
for the case when M~-IN1 _> 0 and N21M1 _> 0. The case when N1M~ -1 ~ 0 and 
M~IN2  > 0 is discussed in the proof of Theorem 3.5. �9 

THEOREM 3.8. Let A = M1 - N1 -= M2 - N2 be two weak nonnegative 
splittings of A b u t  of different type, that is, either M~-IN1 _~ 0 and N2M~ 1 > 0 
of N1M~ -1 > 0 and M ~ l N 2  >_ 0, where A -1 > 0. Ir M ~  1 > M21,  then 

p(M~-~N1) < p(M~-IN2) < 1. (3.43) 

Proof. Similarly as in the proof of Theorem 3.7 it is evident that  the assump- 
tion MI -1 > M21 ~ 0 implies the strict inequality in (3.39), that  is, 

A-1N2M~ -1 > M~-lNi A-1 ~ 0. (3.44) 

The above inequality implies replacing the non-strict inequality sign to the strict 
one in the corresponding inequalities in the remaining part of the proof of Theorem 
3.7, which proves the validity of the inequality (3.43). �9 

It is easy to notice that  the case of two mixed sp]ittings of A (that is, when 
one of them is nonnegative and the second is weak nonnegative) is fulfilled by the 
assumption of Theorems 3.7 and 3.8. For completeness reasons this case is included 
in two following theorems. 

THEOREM 3.9. Let A -- M1 - Ni  be a weak nonnegative splitting of A and 
A = M2 - N2 be a nonnegative splitting of A of  inversely. Ir A -1 > 0 and ir 
MI -1 _> M2 l, then 

p ( M l i N i )  < p(M2iN2)  < 1. (3.45) 

THEOREM 3.10. Let A -= M 1 - N I  be a weak nonnegative splitting of A and 
A = M2 - N2 be a nonnegatwe splitting of A of  inversely. I] A -  1 > 0 and i f  
MI -1 > M~ 1, then 

p ( M l l N i )  < p(M~-IN2) < 1. (3.46) 
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Now the question arises whether the inequality p(M~-:N1) < p(M~-:N2) < 1 
is valid when both weak nonnegative splittings of A are the same type, that is, 
either M 1 1 N :  _> 0 and M21N2 > 0 or NIM~ -1 > 0 and N2M~-: > 0 with the 
assumption that A - :  _ 0 and M11 _> M21 > 0. To give an answer to this question 
ir will be interesting to consider some splittings of the monotone matrix A derived 
from the following example of 3 • 3 matrix [1: ~] [~,1] 

A =  0 1 - where A - : =  2 1 . (3.47) 
-1 0 1 1 

As can be seen in Table representing twelve splittings of the above matrix A, 
the first four splittings are weak nonnegative of the first type ( M - 1 N  > 0), the 
fifth is also weak nonnegative but of the second type ( N M - :  > 0), the next three 
are nonnegative and the last four are regular. By the inspection of this table it 
follows that  for M11 > M31 > 0, p (M11N: )  < p (M3:N3)  but on the other hand 
for M21 >_ M31 > 0 there is p (M~:N2)  > p (M3:N3) .  A similar behaviour can be 
observed with strict inequalities, e.g. for Mi- :  > M a :  > 0 and M31 > M~ -1 > 0 
it can be seen that  p (M11N: )  < p (M;1N 4 )  and p (M3:N3)  < p(M~-IN4) but for 
M2 -1 > M ;  1 > 0 there is p(M2-1N2) > p (M4:N4) .  

- -1  - -1  - -1  - -1  Moreover the inequalities M1,2,3,4, 5 :> M 6 an d  M1,2, 3 > M9,10,11,12 are an 
-1 M s :  for Theorem 3.8, M 6 :  > M~,~ for illustration for Theorem 3.10, M1,2, 3 > 

- 1  Theorem 3.6, and M 7 :  >_ M s :  and M9,10,11 _> M~ -1 for Theorem 3.5. 
Thus, on the basis of the above examples one can conclude that  in the case 

of weak nonnegative splittings of A which are of the same type with A - :  _> 0 (or 
A -1 > 0) the assumption that M~ -1 >_ M~-: (or M~-: > M~-:) is n o t a  sufficient 
condition for proving that  p(M~-:N:)  _< p(M21N2)  (or p ( M l l N 1 )  < p(M2-1N2)). 

However, as will be pointed out the assumption that A and at least one of M1 
and M2 are symmetric matrices is a sufficient condition for proving the following 
theorems. 

THEOREM 3.11. Let A = M:  - NI  = M2 - N2 be two weak nonnegative 
splittings of a symmetric matrix A, where A - :  >_ O. Ir M i :  >_ M2: and at least 
one of M1 and M2 is a symmetric matrix, then 

p ( M i i N 1 )  < P(M21N2) <: 1. (3.48) 

Pro@ Let us assume that  both weak nonnegative splittings of A are the 
second type, that  is, N :M~ -1 _> 0 and N2M21 ~ 0. Then by Theorems 2.2 and 
3.2, and Lemma 2.1 one obtains that  A 1 = P(NIM~-: ) = P ( M I : N 1 )  < 1 and 
A2 = P(N2M2 -1) = p (M~IN2)  < 1. Thus, one can write 

N : M ; : x :  = A:x: > 0 (3.49) 

and 
N2M2-1x2 = A2x2 k 0 (3.50) 
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where xi _> 0 and x2 _> 0. Multiplying both equations on the left by A -1, one 
obtains 

A - 1 N I M l l X 1  = A I A - l x l  _> 0 (3.51) 

A-IN2M21x2 = A2A-lx2 _> 0. (3.52) 

Let us suppose that  M2 is a symmetric matrix. According to Eq. (3.9) one can 
write 

A -a = M~ -1 + A-1N2M21 = M~ -1 + A-1N1M11 (3.53) 

whieh by the hypotheses M11 _> M21 _> 0 implies that  

and 

A-1N2M~ -1 _> A - 1 N I M ~  -1 _> 0 (3.54) 

and 
xŸ < A2xTA-lx2 

which implies also that  A1 _< A2 as x T A - l x 2  > 0. 
In the case when M{-1N1 > 0 and M21N2 > 0, one can write 

yYM~-IN1 = Aly Ÿ 

x T A - 1 N 1 M l l x 2  _-- )~lXlTA-lx2 

and 

xTA-IN2M21x1 _> )~IxTA-lxl  

x T A - 1 N 2 M ~ l x l  = A2xTA-lxl  (3.59) 

but this allows us to conclude that  Al _< A2, as x T A - l x 2  > 0. 
The assumption that  only M1 is a symmetric matrix provides us with similar 

considerations for the following equations 

(3.60) 

(3.58) 

(3.61) 

(3.62) 

A-1N2M21Xl  k (=) A - 1 N I M l l x l  = A1A-lxl  �9 (3.55) 

Now Eq. (3.52) can be written, as follows 

xT(A-1N2M21)  T = A2xT(A-I) T. (3.56) 

From Eq. (3.53) it follows that  A-1N2M21 = A -1 - M21 > 0 a n d a s  A -1 and 
M ~  1 are symmetric matrices by the hypotheses, one can conclude that  the matrix 
A-1N2M21 is also symmetric and hence Eq. (3.56) can be written, as follows 

xTA-~N2M21 = A2xTA -1. (3.57) 

Multiplying Eq. (3.55) on the left by x T and Eq. (3.57) on the right by xi ,  one 
obtains 
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and 
y T M 2 a N  2 = A2y T. 

Repeating the procedure of the proof described above, one obtains 

(3.63) 

y T M ~ - I N 2 A - l y  2 > AlYŸ (3.64) 

and 
y T M ~ I N 2 A - l y  2 = A2YlTA-ly 2 

when Mz is a symmetric matrix, or 

(3.65) 

y T M 1 1 N 1 A - 1 y  a ----A TA-1 aY2 Ya (3.66) 

and 
y T M l l N I A - l y  I ~ A2yTA-ay  I (3.67) 

when M1 is to be assumed a symmetric matrix, which consequently leads to proving 
that  A1 _< A2, as y T A - l y  a > 0. 

The cases when both weak nonnegative splittings of A are a contrary type, 
that  is, either M~-aNa > 0 and N2M~ -a ~ 0 or N 1 M 1  a _> 0 and M~-IN2 > 0, 
have been proven in Theorem 3.7, however without the assumption of symmetry. 

THEOREM 3.12. Let A = M1 - N 1  ---- M2 - N 2  be two weak nonnegative 
splittings of a symmetr ic  matrix A ,  where A -a > O. Ir M 1  a > M 2  a and at least 
one of M1 and M2 is a symmetric matrix, then 

p(M~-lNa) < p (M~IN2)  < 1. (3.68) 

Proof. Using the same arguments as in the proof of Theorem 3.11, it can be 
seen that  the inequality M11 > M 2  a leads to the strict inequality in (3.54), that  
is 

A - 1 N 2 M 2  a > A - a N I M i  -1 ~ 0 (3.69) 

which implies the change of the inequality sign to the strict one in the corresponding 
inequalities in the proof of Theorem 3.11 and provides that  A1 < A2, and with the 
notation that  Aa = p(M~-INa) and A2 = p(M~IN2)  proves the theorem. �9 

The special case of conditions important  in applications, discussed in the next 
sections, is considered in the following theorems. 

THEOREM 3.13. Let A = Ma - N 1  ---- M2 - N 2  be two weak nonnegative 
splittings of A of the same type, that is, either M~-INa > 0 and M~-IN2 > 0 of 
NaM11 > 0 and N2M~ -a > 0, where A -1 > 0. Ir N T > Na, then 

p(M~-aN1) _< p (M~IN2)  < 1. (3.70) 
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Pro@ 
implies that 

Assuming that  M l l N 1  _> 0 and M~IN2  _> 0, the inequality N2 T _> NI 

A - I N T ( A - ~ )  T _> A - 1 N I ( A - ~ )  T _ 0. (3.71) 

Let x > 0 and y > 0 be such vectors that  

xTA-1N1 = TlX T (3.72) 

and 
yTA-1N2 _-- T2y T 

o r  

NT(A-1)Ty  ---- T2y (3.73) 

where 7~ = p(A-1N1) and T2 = p(A-1N2). Multiplying Eq. (3.72) on the right by 
A - I ( A - 1 ) T y  and Eq. (3.73) on the left by x T A - I ( A - 1 )  T, one obtains 

x T A - 1 N I A - I ( A - I ) T y  = - r lxTA- t (A-1)Ty  (3.74) 

and 
xT A - I ( A - 1 ) T N T  (A-1 )Ty  = T2xT A - I ( A - 1 ) T y .  

Both above equations combined with the inequality (3.71) provide us with 

(3.75) 

2TlxT A - I ( A - 1 ) T y  <_ x T [ A - 1 N 1 A - I ( A - 1 )  T 

+ A-I(A-1)~N~(A-1)~]y 
(3.76a) 

x T [ A - 1 N 1 A - I ( A - 1 )  T + A - I ( A - 1 ) T N T ( A - 1 ) T ] y  
(3.76b) 

< 2Ÿ  

hence as x T A - I ( A - 1 ) T y  > 0, it follows that  TI _< T2 which consequently by Theo- 
rem 3.2 proves the inequality (3.70). The case when iN1M~ -1 _> 0 and N2M~ -1 >_ 0 
can be proven similar]y by considering 

(A-1)TNTA -1 _> (A-1)TN1A -1 _> 0 

N I A - l v  = 71v and N 2 A - l w  -- ~'2w which completes the theorem proof. �9 

It is evident that  by Corollary 3.2 the case of nonnegative splittings of A is 
included in the above theorem. In particularity, however the following corollaries 
hold. 

COROLLARY 3.3. Let A = M1 - N1 = M2 - N2 be two weak nonnegative 
splittings of A of the same type, that is either M l l N 1  > 0 and M~-IN2 > 0 of 
N1M~ -1 > 0 and N2M~ -1 > 0, where A -1 >_ O. 

(a) If  
A-1NT(A-1 )  T _> A - 1 N I ( A - 1 )  T _> 0 (3.77) 
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p(MI-IN1) _< P(M2-1N2) LŸ 1. 

Moreover, ir 

A - 1 N T ( A - 1 )  T > A - 1 N i ( A - 1 )  T ~ 0 

(3.78) 

(3.77a) 

P(M11NI)  < p(M21N2)  < 1. (3.78a) 

Proof. Ir is evident that the proof of this corollary follows immediately from 
the proof of Theorem 3.13, where the inequality (3.77a) implies the change of the 
nonstrict inequality sign in (3.76a) and (3.76b) to the strict one providing the result 
(3.78a). �9 

COROLLARY 3.4. Let A --- M1 - N1 = M2 - N2 be two regular splittings of 
A,  where A -1 > 0. I f  N T > Ni,  then 

p(M~-IN1) < p(M21N2)  < 1. (3.79) 

Proof. The assumptions of this corollary imply that  

A - 1 N T ( A - 1 )  T > A - 1 N I ( A - 1 )  T > 0 

but this leafls to the strict inequality sign in (3.76a) and (3.76b) providing the result 
(3.79). �9 

It is interesting to notice that  in contradiction to the Lemma 3.1, N T ~ N1 
need not imply that  (M~-l) T > M21 when A -1 > 0. Really from 

N T > N 1 (3.80) 

it follows that  

but this gives us 

hence 

M T - A T ~ M 1 - A 

M~-l[I - AT(M~I )  TI > [I - M ~ I A ] ( M ~ I )  T 

M~ -1 _ (M21) T ~ M~-i[A T _ A](M~I)  T. 

The equivalent condition 
N2 >_ N T 

provides 

(M~q) T - M~ -1 > ( M l l ) T [ A  - AT]M21. 

(3.81) 

(3.82) 

(3.83) 

(3.80a) 

(3.83a) 
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It is not difficult to find examples of nonnegative splittings of a monotone matrix 
A such that M~-I[A T - A](M~-I) T may have positive and negative entries. 

However the fol]owing theorems hold. 

THEOREM 3.14. Let A = M1 - N 1  = M 2  - N i  be two weak nonnegative 
splittings of A of the same type, that is, either M~-IN1 >_ 0 and M21N2 > 0 of 
NIM11 > 0 and N2M~ -1 > 0, where A -1 >_ O. Ir 

M11 k (M21) T _> 0 

then 

(3.84) 

p(M{1N1) _< p(M~IN2) < 1. (3.85) 

As can be seen for the hypothesis (3.84) the following inequality 

(A-l) T - (M21) T > A -I - M11 _> 0 (3.86) 

Proof . 

and 
x T A - I ( A - I ) T N T ( M ~ I ) T y  ---- A2xTA-I(A-t)Ty.  (3.91) 

Both above equations combined with the inequality (3.87) provide us with 

2AlxTA-I(A-1)Ty _< xT[M~-IN1A-I(A-1) T 
+ A_l  (A_I)TNT(M~I)T]y (3.92a) 

xT[M~-IN1A-I(A-1)T + A-I(A-1)TNT(M21)T]y 
(3.92b) 

2A2xTA-I (A-1)Ty 

hence it follows that Al _< A2 with xTA-I(A-I)Ty > 0. 

x T M l l N 1 A - I ( A - 1 ) T y  = /~lxTA-I(A-1)Ty (3.90) 

xTM11N1 ---- ~ 1  x T  (3.88) 

and 
yTM21N 2 = )~2y T 

o r  

NT(M21)Ty = A2y (3.89) 

where A1 = p(M-1N1) and A2 = p(M21N2). Multiplying Eq. (3.88) on the right 
by A- I (A-1 )Ty  and Eq. (3.89) on the left by xTA-I (A-1)  T, one obtains 

holds, which by the relation (3.9) gives us 

(A-1)TNT(M~I) T = (M~I)TNT(A-1) T > A-1N1M~ -1 = M11N1A-1. (3.87) 

Assuming that M11N1 > 0 and M~-IN2 > 0, and let x > 0 and y > 0 be such 
vectors that 
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The case when N1M~ -1 > 0 and N2M21 > 0 can be proven similarly. �9 

The tenth and eleventh splittings in Table illustrate the above theorem. A 
somewhat stronger version of this theorem is given below. 

THEOREM 3.15. Let A = MI - N 1  = M 2  - N 2  be two weak nonnegative 
splittings of A of the same type, that is, either M~-IN1 _> 0 and M21N2 > 0 or 
NIM11 > 0 and N2M~ 1 _> 0, where A -1 > O. Ir 

M~ -1 > ( M 2 1 )  T _> 0 (3.93) 

then 

p(M~-IN1) < p(M~-IN2) < 1. (3.94) 

Proof. It is evident that  the condition (3.93) implies the change of the non- 
strict inequality sign in (3.87), (3.92a) and (3.92b) to the strict one providing the 
result (3.94). �9 

By an analogy to Theorem 3.3 the following result holds. 

THEOREM 3.16. Let A = M1 - N1 --- M2 - N2 be two weak nonnegative 
splittings of A where A -1 > O. Ir one of the following inequalities 

(a) A-1N2 > (A-1N1) T > 0 

(b) A-1N2 > (NIA-1)  T > 0 

(c) N2A -1 > (NIA-1)  T > 0 

(d) N2A -1 _> (A-1N1) T > 0 

is satisfied, then 

(or M21N2 > ( M l l N 1 )  T > 0) 

(or M~IN2 > (NIM~-I) T > 0) 

(or N2M21 > (N1M11) T > 0) 

(or N2M~ 1 ~ (M~-IN1) T > 0) 

p(MI-IN1) _< p(M21N2) < 1. (3.95) 

Proof. Since matrices A - 1 N  and (A-1N)  T have the same eigenvalue spec- 
trum, then by Lemmas 2.1 and 2.2 and Theorem 3.2 where p ( M - I N )  is monotone 
with respect to p (A-1N)  the result (3.95) follows immediately. In the case of in- 
equalities given in parentheses the proof is obvious by Lemma 2.2. �9 

It should be noticed that  in the case of a monotone matrix A, theorems based 
on the hypotheses of Lemma 3.1 allow us to compare weak nonnegative splittings 
of A which are different in type, whereas theorems based on the hypotheses (3.80), 
(3.84), and (3.93) allow us to compare weak nonnegative splittings of A which are 
same in type. 

The following result generalizes the comparison theorems presented in this 
section. 

THEOREM 3.17. Let A = M1 - N1 = M2 - N2  be two weak nonnegative 
splittings of A where A -1 > 0. Let x > O, y >_ 0 and z >_ 0 be vectors such that 



Nonnegative Splitting Theory 309 

xTM11N1 = )~1 XT and M~-]N2y = A2Y or N2M~-lz = A2z when M{-1N1 > 0 
and M21N~ _> 0 or N2M~ -1 _> 0, respectivcly; and let u >_ O, v >_ 0 and w > 0 be 
vectors such that NIM{-lu = Alu and vTM~-IN2 = Aav T or wTN2M21 = >,2w T 
when N1M11 _> 0 and M21N2 _> 0 or N2M~ -1 > 0, respectively; where )~1 = 

p(M11N1) and ~2 = p(M21N2) �9 Ir  one o f  the foUowing incqualities 

xTM21N2 >_ xTM{1N] > 0 o f  M21N2y >_ M{-1Nly >_ 0 (3.96a) 

xTN2M2 -1 _ xTM~-IN1 _> 0 or N2M21z _> M{-1N1 z >_ 0 (3.96b) 

M21N2u >_ N1Ml lU  >_ 0 or vTM21N2 >_ vTN1M] 1 >_ 0 (3.96c) 

N2M~-lu > NIM~-lu > 0 or wTN2M~ -1 _> wTN1M11 _> 0 (3.96d) 

o f  

xTA-1N 2 > xTA-]N1 _> 0 o f  A-1N2y >_ A - 1 N l y  _> 0 (3.97a) 

xTN2A -1 _> xTA-1N1 _> 0 or N2A- lz  >_ A-1Nlz  > 0 (3.97b) 

A-1N2u _> N 1 A - l u  > 0 or vTA-1N2 > vTN1A -1 >_ 0 (3.97c) 

N 2 A - l u  >_ N 1 A - l u  > 0 or wTN2A -1 _> wTN1A -1 >_ 0 (3.97d) 

is fulfilled, then 

p(M~IN1) < p(M2-1N2) < 1. (3.98) 

In  particular, ir the f i rs t  non-s tr ic t  inequality sign in the above inequalit ies is re- 

placed by the s tr ict  one, then 

p(M~-IN1) < p(M21N2) < 1. (3.99) 

Proof. Assuming the case when M~-IN1 > 0 and M21N2 > 0 for which the 
first inequality is fulfilled, then it is evident that the following inequality 

/~2xTy _-- xTM~IN2Y _> xTM11Nly  -- AlxTy (3.100) 

is satisfied, but this with xTy > 0 implies the result (3.99). Other cases can be 
proven in an analogous way. The case of the strict inequality sign in (3.96) implies 
the result (3.100) with the strict inequality. Since the matrices M - 1 N  and A-1N 
commute by Theorem 3.1 they have the same eigenvectors hence, e.g. in the case 
of (3.97a) one obtains 

T2xTy _-- xTA-1N2y >_ x T A - 1 N l y  -- Ÿ (3.101) 

where 7-1 = p(A-1N1) and ~-2 = P(A-1N2), which provides ~-2 >- T1 with xTy > 0 
and ~-2 > ~-1 when there is the strict inequality in (3.97a). Hence by Theorem 3.2 
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the results (3.98) and (3.99) follow immediately. The remaining cases of (3.97) can 
be proved similarly, which is completing the proof. �9 

COROLLARY 3.5. Let A = M1 - N 1  = M2 - N 2  be two weak nonnegative 
splittings of A of the same type, where A -1 >__ 0. Let x >_ 0 and y > 0 be vec- 
tots such that xTM~-IN1 = A1 xT and M21N2y  = A2y when M11N1 ~ 0 and 
M21N~ ~ 0; and let u >_ 0 and v > 0 be vectors such that N1M11u =/~1 u and 
vTN2M21 = A2 vT when N1M~ -1 _> 0 and N2M21 _> 0; where /~1 = P ( M l l N 1 )  
and A2 = p(M21N2). Ir one of the following inequalities 

xTN2 _> xTN1 or N2y >_ N l y  (3.102a) 

holds, then 

N2u > N l u  of vTN2 _> vTN1 (3.102b) 

p(MI-IN1) ~ P(M21N2) < 1. (3.103) 

Proof. Multiplying the first inequality of (3.102a) on the right by A - l y ,  one 
obtains 

T2xTy _-- x T N 2 A - l y  _> x T N 1 A - l y  - T l x T y  

where T1 ---- p (NIA -1) and T2 = p(N2A-1).  As xTy  > 0, T2 _> T1 which by Theorem 
3.2 proves the result (3.103). For the remaining hypothesis inequalities, the result 
(3.103) can be proven in a similar way. �9 

However in the case of applying this theorem or its corollary, it is necessary to 
know at least one eigenvector. 

REMARK. Finally, it should be mentioned that  some comparison theorems 
such as Theorems 3.5, 3.7, 3.9 and others with A -1 > 0 as the hypothesis, have been 
proven with the assumption that  x T A - l x l  > 0 (or y T A - l y  2 > 0, as in Theorem 
3.7) which however, may be not satisfied with A -1 > 0. For instance, in the case of 
monotone triangular matrices A, it is easy to find examples of not necessary (weak) 
nonnegative but also regular splittings of A for which x2TA-lxl ---- 0 with A -1 > 0, 
X I ___~ 0 and x2 _> 0 (in the case when A - I  > 0, x2TA-Ixl is always positive). 

Therefore, it seems to be natural to ask if the mentioned theorems are true 
when xTA-iXl = 0 is induced or when for A l -- P(MIINI) -- 0 the corresponding 
eigenvector xi = 0, as in the case of the ¡ splitting given in Table. As can be 
shown in the example of the proof of Theorem 3.5, a simple modi¡ allows us 
to avoid this apparent dif¡ when xTA-Ixl = 0. 

Assuming a matrix B > 0, then instead of Eqs. (3.20) and (3.21) in the proof 
of Theorem 3.5 the fol]owing equations may be considered 

( eBA-I + NIMI-1)Xl -- AlXl 
~2T(eA-1B + M21N2) = ~2~ T. 

(3.20a) 

(3.21a) 
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Since for ~ > 0 both matrices e B A  -1 + N I M ~  1 and ~A-1B + M~-IN2 are ir- 
reducible, its eigenvalues ~1 and ~2 corresponding to spectral radii are strictly 
increasing functions of ~ > 0 (by Theorem 2.3), and A1 = hi and A2 = A2 with 

= 0. Multiplying Eq. (3.20a) on the left and Eq. (3.21a) on the right A -1, one 
obtains 

( r  -1 + A - I N 1 M I - I ) x l  ---- ~iA-1xi (3.22a) 

~ T ( ~ A - 1 B A - 1  + M21N2 A-~)  = ~2~2TA -1 (3.23a) 

and by using the inequality (3.25) 

( e A - I B A  -1 + M 2 1 N 2 A - 1 ) ~  1 

> ( c A - 1 B A - 1  + A_IN1M{_I).~ 1 = ~1A_1~1. (3.27a) 

Multiplying again Eq. (3.27a) on the teft by ~T and Eq. (3.23a) on the right by ~~, 
one obtains 

~ T ( r  + M21N2A-1).~1 > ~ I ~ T A - I ~  1 (3.28a) 

and 

hence 

~ T ( e A - 1 B A  -1 + M21N2A-1)-~I = ~ 2 ~ T A- I~  1 (3.29a) 

~IxTA-1x1 _~ ~2xTA-1x 1. (3.30a) 

Since for r > 0 both vectors xi  and x2 are positive, it can be concluded that  
~ T A - I ~  I > 0, which implies A1 -< A2 (in this case A1 < ~2 for each ~ > 0). Taking 
the limit for E --* 0, it follows that  A1 --* A1 and ~2 -~ A2 which allows us to 
conclude that  A1 _< A2 proving Theorem 3.5. 

The same or similar modification can be used in the proofs of other theorems 
in which x T A - l x l  = 0 may be induced. 

4. P r e f a c t o r i z a t i o n  I t e r a t i v e  M e t h o d s  

In this section the application of some results of the nonnegative splitting the- 
ory will be demonstrated in the convergence analysis of prefactorizationing iterative 
methods used for solving the following linear equation system 

AC ---- c. (4.1) 

Assuming that  A = M - N represents the splitting of A, where A and M are 
nonsingular matrices, the iterative method for solving Eq. (4.1) can be expressed 
in the general form 

M e  (t+l) = Nr  (t) + c, t >_ 0 

or equivalentiy 

r = Gr + M - l c ,  t > 0. (4.2) 

As is well known the above iterative process is convergent to the unique solution 

q5 ---- A - l c  (4.3) 
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if and only ir the spectral radius of the iteration matrix G = M - 1 N ,  p(G) < 1. 
In some sense the matrix M can be imagined as being an approximation to 

A. Usually M i s  represented as a product of nonsingular matrices chosen in such a 
way that they are easy to obtain and relatively easy to invert, so that  the matrix 
M can be considered as prefactorizationing A (so it is called the prefactorizationer 
of A), and M -1 can be regarded as the preinvertioning matrix of A (so it is called 
the preinvertioner of A approximating A - i ) .  Consequently, N = M - A can be 
regarded as the residual matrix obtained with the assumed prefactorizationing A; 
and when N exists a s a  nonzero matrix, there is the partial (incomplete) factoriza- 
tion of A, and the solution has the iterative nature. In the case when N becomes 
the null matrix, there is the strict factorization of A and the solution of Eq. (4.1) 
is obtained by means of the direct method equivalent to the Gaussian elimination. 

Defining a given n • n nonsingular matrix A by the following decomposition 

A = K -  L -  U (4.4) 

where K, L and U are nonsingular diagonal, strictly lower triangular and strictly 
upper triangular matrices respectively, and introducing additional strictly lower 
triangular and strictly upper triangular matrices H and Q respectively, then the 
following factorization can be used 

M = II - (L + H ) D - I ] D [ I  - D - I ( u  + Q)] (4.5) 

where D is assumed to be a nonsingular diagonal matrix defined by the following 
implicit relation 

D = K - diag {(L + H ) D - I ( u  + Q)} (4.6) 

a n d a s  can be easily verified 

N ---- offdiag {(L + H ) D - I ( u  + Q)} - H - Q (4.7) 

where the notation diag {B} denotes the diagonal matrix with diagonal entries 
identical with those of B and offdiag {B} = B - diag {B}. 

The iterative method can be written, as follows 

r = ~r + M - l c ,  t _> 0 (4.8) 

and 

$- ---- [I - D - I ( U  + Q ) ] - I D - I [ I  - (L + H ) D - 1 ] - I N .  (4.9) 

Since I - (L + H ) D  -1 and I - D - I ( U  + Q) are nonsingular lower and upper 
triangular matrices respectively, this method can be easily implemented by using 
the so-called two-sweep (forward-backward) procedure. 

Let us multiply Eq. (4.8) on the left by I -  D - I ( U  + Q) and shift the term 
D - I ( u  + Q)r to the right side of the equation 

r  mE D - I { ( u  + Q)r + [I - (L + H ) D - 1 ] - I [ N r  (t) + c]}. 
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Denoting by 

ti(t+1) = [I - (L + H ) D - t ] - i [ N r  (t) + c] 

and multiplying again this expression on the left by I -  (L + H ) D  -1, one finally 
obtains 

t i ( t + 1 )  = (L + H ) D - l t  (t+l) + N r  (t) + c / 
(4.10) 

r ---~ D - I [ ( U  q_ Q)q~(t+l) + t(t+l)],  t ~ 0 

Since (L + H ) D  -1 and D - I ( U  + Q) are strictly lower triangular and strictly up- 
per triangular matrices respectively, the components of q can be calculated 
recursively for increasing indices in the forward elimination sweep, and compo- 
nents of r can be calculated recursively for decreasing indices in the backward 
substitution sweep. Equations (4.10) represent the general forro of a broad class 
of prefactorizationing methods called the two-sweep iterative methods, and each of 
them is uniquely defined by the choice of the matrices H and Q. The matrix ~" is 
called the two-sweep iteration matrix. The classification of the two-sweep iterative 
methods from the viewpoint of the choice of H and Q is given in [4]. 

Let us restrict our attention to the iterative schemes defined by the following 
choice of the matrices H and Q including also such classical schemes as the Jacobi 
and Gauss-Seidel methods. 

1. The Jacobi method 

H = - L ,  Q = - U ,  D a = K  
M j  = K, N j  = L + U 
B1 = M j l N j  = K - I ( L  + U). 

2. The Gauss-Seidel method 

backward order: H = - L ,  Q = 0, 

M a = K ( I - K - 1 U ) ,  N a = L  
s  = M ~ I N a  = (I - K - 1 U ) - I K - 1 L .  

forward order: H = 0, Q = - U ,  

M a = K ( I - K - 1 L ) ,  � 9  
s  = M 5 ~ � 9  = (I  - K - 1 L ) - m K - 1 U .  

3. The EWA method 

4. 

D a = K  

D c = K  

(4.11) 

(4.12a) 

(4.12b) 

H = Q = 0, D E = K - d iag{LD~: lu}  
M E = (I  - L D Z : ~ ) D E ( I  -- D ~ : I u ) ,  N E  = o f f - d i a g { L D } ~ U }  

E 1 = M ~ t N E  = (I - D ~ t U ) - I D E I ( I  - LDE1)NE.  (4.13) 

The AGA method 

H = H A ,  Q = Q A ,  D A = K - - d i a g { ( L + H A ) D A I ( U + Q A ) }  
MA = [I -- (L + HA)DA1]DA[I -- DAI(U + QA)] 
NA = off-diag {(L + HA)DAI(U + QA)} - HA -- QA 
.41 = MA1NA = I I -  DAI(U + QA)]-IDAI [I -- DAI(L + H n ) ] - I N A .  (4.14) 
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The AGA method represents a broad class of algorithms and each of them is 
defined by the choice of the matrices HA and QA such that HA +QA # 0 (excluding 
the tases HA = - L  and QA = - U )  and with the assumption that the nonzero 
entries of NA do not coincide in location with the nonzero entries of the matrix 
L + HA + U + QA. The assumption that HA and QA are strictly lower triangular 
and strictly upper triangular matrices respectively, allows us always to determine 
explicitly the values of nonzero entries in HA and QA directly from the implicit 
forro of (L + HA)DAI(U + QA), for an arbitrary assumed pattern of the location 
of nonzero entries in these matrices. In other words, with a postulated nonzero 
entry pattern in both HA and QA, all nonzero entries of HA, QA and consequently 
DA, and NA can be computed immediately by equating them to the corresponding 
entries of the implicit matrix product (L + HA)DA I(U + QA)" 

Indeed, let SH be the set of indices (i,j) for HA such that hi,j r 0 and SQ, 
SL, and Su similar sets for matrices Q, L and U respectively. Since HA and QA 
are assumed to be strictly lower and strictly upper matrices respectively, then for 
a given matrix A = K - L - U and de¡ sets SH and SQ, the entries of DA, 
HA, QA and NA can be calculated in the simple algorithm by means of recursive 
formulae, simultaneously for each pair of increasing indices (i, j) .  

dl ,1 : ]r 

i-1 (li,~ + h<J(%,i + q~,i) 
di,i : k i , i  - -  E d~ ~ ' 

8 : 1  

i=2n} (4.15a) 

hi,1 =0, i =  l , . . . , n ;  

m--1 (li,~ + hi,J(us,j + q~,j) 
hi,J : E ds,s 

s = l  

, i > j > l ,  

(i,j) E SH; 

m = min(i,j) ] (4.15b) 

ql,j = 0, j = 1 , . . . ,n ;  

m-1 (li,s + hi,s)(%,j + qs,j) 
qi,j = E ds , l < i < j ,  

(i , j)  E SQ; 

m = min(i, j )  / (4.15c) 

ni,i =O,  ni, l  = n l , j  = O  , i , j =  l , . . . , n ;  ) 

I 
m-~ (li,~+hi,~)(u~,i+q~,j) i >  1, j > l ,  i # j ,  
1 

ni,j = ds s 
8 = 1  

m ---- min(i, j)  

(i,j) ~ SL+H, (i,j) ~ SU+Q. 

(4.15d) 
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Thus, the set SN of indices ( i , j )  of the entries, ni,j 7 s 0 in the matr ix N A is 
complementatory to the set SH U SO. U SL U Su for the nonzero entries, except 
i = 1, j = 1 and i = j ,  where nonzero entries of HA + QA may coincide in positions 
with those of L + U. It is worth noticing that ,  as can be concluded from the above 
formulae, the entries of DA, HA, QA and NA for a given pair of indices ( i , j )  are 
computed only by means of the entries determined previously in the computation 
process. When SN is the empty set, the above formulae define the direct AGA 
algorithm equivalent to the Gaussian elimination. 

Now we will analyze the case when the matrix A defined in Eq. (4.4) is irre- 
ducibly diagonally dominant [1] where K,  L and U are nonnegative matrices. As 
is well known such matrices, representing a broad class of physical and engineering 
problems, are monotone matrices, A -1 k 0. For such matrices A, the matrices DE 
and NE, and DA, HA, QA and NA are nonnegative and the irreducibly diagonal 
dominance of A implies that  DE and DA are nonsingular matrices [3]. 

The comparison of spectral radii of iteration matrices arising in the methods 
defined above can be made by means of the following theorems. 

THEOREM 4.1 (Theorem 15 in [2]). Let the Jacobi matrix BI = K - I ( L  + U) 
be an n • n nonnegative matrix with n > 2 and zero diagonal entries such that 
p(B~) < 1. Further, let ~1 = M ~ ~ N c  be the Gauss-Seidel matrix defined by (4.12), 
gl  = M E I N E  be the E W A  matrix defined by (4.13) and ,41 = NA1NA be the AGA 
matrix defined by (4.14). Then all above matrices ate convergent and 

0 ~ p(,A1) ~ P(~I) ~ P(•I) ~ P(~Ÿ < 1. (4.16) 

D-1 Proof. It is evident that  when K,  L, U, E , DA 1 and HA, QA are nonneg- 
ative matrices, all iterative methods defined above are based on the nonnegative 
splittings of A (exactly on the regular splittings of A). Since p(B1) < 1 implies by 
Theorem 3.2 and A -1 > 0 (where A -- K - L - U),  then by Corollary 3.2 they 
are convergent splittings of A. Moreover, as can be verified by Theorem 2.1 the 
following inequalities are fulfilled: 

MA 1 > ME 1 > M ~  1 _> M j  1 >_ O. (4.17) 

Hence by Theorem 3.5 the inequality (4.16) is satisfied. �9 

As can be noticed, the last four splittings given in Table for the matr ix A de- 
fined by (3.47) are regular. The twelfth splitting corresponds to the Jacobi method 
where B1 -- M{-21N12 �9 The eleventh splitting corresponds to the Gauss-Seidel 
method with the forward order where s = M 1 ) N l l  and M{ -1 > M{-~ _> 0. The 
tenth splitting corresponds also to the Gauss-Seidel method but with the backward 
order, where ~1 = Mi-iN10 and M11 > M~ -1 > 0 and from Table, it follows that  

p(M~-01Nlo) < p(M~-q < p(M1~N12). 

Both variants of the Gauss-Seidel method illustrate using Theorem 3.14 in the 
case of comparing splittings derived from nonsymmetric matrices A. Since M~ -1 _> 
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(Mil i )  T ~ 0 then by Theorem 3.14, it follows that  the tenth splitting representing 
the Gauss-Seidel method with the backward order is more efficient than that with 
the forward order and corresponding to the eleventh splitting. As can be easily 
verified by the formulae (4.15) the ninth splitting represents the algorithm of the 
EWA method where $1 = M91N9, however with DE ---- K because the product 
LDE1U has only the form of N9. Since M91 > M~-01 and M91 _> M l l  1, then 
according to Theorem 3.5 and results given in Table 

P(M91iN9) = p(M1-01N10) and P(M91Ng) < p(M51N11). 

In the case of the above example of the matrix A defined by (3.47), there is only 
one algorithm of the AGA method which is simply the direct one. According to the 
formulae (4.15b) and (4.15c) defining nonzero entries of HA and QA respectively, 
the nonzero entry location available for HA is with i = 3 and j = 2 which coincides 
in position with only one nonzero entry of N9 and defines the matr ix NE in the 
EWA method; the nonzero entry location available for QA is with i ---- 2 and j -- 3. 
Assuming the above pat tern of nonzero entries of HA and QA, from computations 
by means of the formulae (4.15), one obtains that  h3,2 ---- 1 and d3,3 z 1 (in the 
case of EWA d3,3 : k3,3 --- 2), and QA and N A a r e  the null matrices. The product 
of the factors in (4.5) gives us that  MA ---- A. 

A stronger result which generalizes the Stein-Rosenberg theorem (Theorem 
3.3 in [1]) for the two-sweep iterative methods in an irreducible case is given in the 
following theorem. 

THEOREM 4.2 (Theorem 14 in [2]). Let the Jacobi matrix B1 -- K - I ( L  + U) 
be an n x n nonnegative irreducible matrix with n > 2 and zero diagonal entries 
such that L has at least one positive entry in each column except the last one, U 
has at least one positive entry in each row except the last one and L U  has some 
positive off-diagonal r Further let •1 : MG1NG be the Gauss-Seidel matrix, 
C1 = ME1NE be the EWA matrix and A1 = NAINA be the AGA matrix defined 
by (4.12), (4.13) and (4.14), respectively. Ir p(I31) < 1, then 

0 ~ p(.A1) < P ( ~ I )  < P ( ~ I )  < p(~Ÿ < 1. (4.18) 

Proof. The irreducibility of E1 with P ( ~ I )  < 1 implies that  A -1 > 0 [1]. 
Since all above splittings of A are nonnegative (exactly regular), they are convergent 
splittings. As is well known, in this case p(s < p(B1) [1]. The assumption imposed 
on the matrices L, U and L U  ensures that  at least $1 is a nonnegative matrix (.41 
may be also the null matrix) and this by Theorem 2.1 implies tha t  with A -1 :> 0 
[2, 3] 

MA 1 > ME 1 > M ~  1 _> 0 (4.19) 

which gives us by Theorem 3.6 that  0 < p(,41) < P(s < p(F,1) completing the 
proof. �9 
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Before giving an example illustrating the above theorem, it seems to be useful 
to give some comments  on the construction of AGA and EWA algorithms in actual 
practice. 

Increasing the number  of nonzero entries of HA and QA affects the matr ix  MA, 
which suffers some fill-in and becomes closer to A. This effect of fill-in is accompa- 
nied by decreasing the spectral  radius of iteration matrix, but on the other hand 
increases storage requirements. In the majori ty  of linear equation systems arising 
from the discretization of ordinary and partial  differential equations, the matrices 
A have a sp a r s e  structure.  The matrices A obtained with the s tandard finite dif- 
ference (or element) discretization of multi-dimensional elliptic partial  differential 
equations have a regular sparsity pattern.  In the case of two-dimensionai elliptic 
problems and with natural  ordering, the matrices A obtained by means of the 
s tandard five-point differencing have the forro of 5 nonzero diagonMs and are sym- 
metrically located with respect to the main diagonal. Assuming zero as the index 
for the main diagonal; - n  + 1 , - n  + 2 , . . . , - 2 , - 1  for the indices of the successive 
diagonals in the strictly lower par t  of A and 1, 2 , . . . ,  n - 2, n - 1 for the indices of 
the successive diagonals in the strictly upper  part  of A, where n is the order of A, 
then A can be described by the following nonzero diagonal Ÿ - s , - 1 ,  0, t, s 
where 1 < s < n. Such matrices are also called band matrices with the band width 
equal to 2s + 1. For smaller values of s the direct AGA algorithm becomes efficient 
from the viewpoint of ar i thmetic effort. In this case the matrices HA and QA fi]l-in 
the whole band region except for the positions on the main diagonal and both the 
upper  most and the lower most nonzero diagonals, so that  the band width of the 
matr ix  (L + HA)D~41(U + QA) is equa] to 2s - 1. 

When s �87 1, the band has a sparse structure which provides a motivation 
for using an iterative solution. In such problems the choice of sparsity pat terns  for 
HA and QA containing a few nonzero diagonals and closely related to the sparsity 
pat tern  of A, allows us very often to reduce significantly the spectral  radius of it- 
eration matrix. The implementat ion of iterative algorithms of the AGA method is 
especially convenient in the mesh structure of discrete problems as is demonstrated 
in the works [12, 13]. The subsequent algorithms of the AGA method are created 
by involving the successive neighbouring mesh points to the recurrence formulas 
of both  forward and backward sweep equations (4.10), where the eoefficients of 
unknowns at these mesh points are interpreted as the e¡ of HA, QA and NA. 
The special graphic representation of the AGA method,  useful with the construction 
of particular AGA iterative algorithms in different mesh structures, is given in [17]. 
There is a signi¡ efficiency of AGA algorithms with solving linear equation sys- 
tems with nonsymmetric  matrices A which appear  in discrete convection-diffusion 
problems. 

For illustrating the result of Theorem 4.2, let us consider the example of the 
following 2-cyclic, consistently ordered matr ix  A representing the class of two- 
dimensional elliptic discrete problem [1]. 
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A = 
[ i  -1 -1 0 3 0 -1 

0 3 -1 
1 -1 3 

[~33~ 1 and A_  1 = __1 3 7 2 (4.20) 
15 2 7 

3 3 

The Jacobi method 

M j = K =  [~oo~ 1 [~11~ 1 3 0 N j  = L + U =  1 0 0 
0 3 ' 0 0 ' 
0 0 1 1 

ii o o~] [i i 111 1 1 0 D1 = 1 0 0 and 
M J1 = 3 0 1 ' 3 0 0 

0 0 1 1 

The Gauss-Seidel method 

M e  = K ( I -  K - 1 U )  = 0 3 0 
0 3 ' 
0 0 

N a = L =  

i933~ 1 [~22~ 1 1 0 9 0 , s  = 1 3 3 
M G I = ~  0 0 9 ~ 3 3 

0 0 0 9 9 

The EWA method 

i~o o ~] 8 D E =  5 0 
8 0 

0 0 

ME = [I - LDE1]DE[I  - DE 1] = 

N E 

i~ o o ~] [~ 11~] 6 6 9 

0 �89 7 i _1 
1 , M E 1 =  16 16 

0 1 7 ' 
16 16 
1 1 

0 0 6 

1 and P(s = ~. 

2 
p ( ~ l )  = - 

3 

[~oo~] 
0 0 0 
0 0 ' 
1 1 

4 
and p ( / ~ l )  = - 

9 

I 
3 -1 -1 0 ]  

1 -1 3 ~ - I  
1 -1 ~ 3 -1 

0 -1 -1 3 

18 18 
1 7 

48 48 
7 1 

48 48 
1 1 

18 18 
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The AGA method 

D A :  0 8 0 , HA ---- 

0 0 - -  

i~ o o ~]o o 
0 0 ' 

1 0 

QA= 

MA ---- [I-- (L + HA)DAI]DA[I-- DAI(U + QA)] ---- 

0 0 ' 
0 0 

( 3 -1 1 - i ]  
-1 3 0 

1 3 -1 5 
0 -1 -1 

I~ 0 0~l I64 24 2717, NA O 0 1 27 63 18 27 
= 1 0 ' MAl--141 24 9 63 2 4 '  

0 17 24 27 64 

I~ 3 0 0 1 2 0 0 2 
.41 = ~  7 0 0 and p(A1)= ~.  

3 0 0 

The comparison of spectral radii obtained for particular methods is an illus- 
tration of the result (4.18). 

Finally it shou]d be mentioned that the nonnegative sp]itting theory is usefu] 
with the analysis of the successive overrelaxation processes applied to accelerat- 
ing the convergence in the AGA(EWA) two-sweep iterative methods. Appearing 
iteration matrices ~~  (dependent on the relaxation factor w) representa weak non- 
negative splitting o Ÿ  for the underrelaxation (0 < w < 1) [2, 3, 5]. In [18] is given a 
numerical analysis of the conjugate gradient method with different preconditionings 
(AGA prefactorizationings equivalent to the incomplete Cholesky decomposition) 
and in [19] is described an efficient subroutine f o r a  priori estimate of the best 
relaxation factor ~d B in SOR methods. 

5. R e f e r r i n g  t o  R e g u l a r  S p l i t t i n g  R e s u l t s  

The basic purpose of this section is to discuss some aspects related with earlier 
author's regular splitting results from 1973 and 1978 [2, 3] which find an interest in 
the current literature, as well as to show their interrelation with the developments 
presented in this paper and those given in works [7, 15]. The secondary objective 
of this section is to derive new comparison theorems generalizing some nonnegative 
splitting theory results. 

Although these earlier results were not published by the author (author's at- 
tempts for publishing them in the known European mathematical journal did not 
succeed), none the less they are known in the literature as "little known results of 
Wo•nicki" [7, 11]. 
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These results as comparison theorems were obtained with the development 
of the AGA two-sweep iterative methods defined in Section 4 and implemented in 
producing programmes [12, 13] solving two- and three-dimensional neutron diffusion 
equations in nuclear engineering problems. The excellent convergence properties of 
AGA iterative algorithms observed in numerical experiments [14] encouraged us to 
seek its theoretical justification. The convenient matrix notation introduced with 
the description of the AGA methods allowed us only to verify the condition M~ -1 > 
M21 with comparing spectral radii. The regular splitting theory originated by 
Varga [1], restricted at this time to comparison theorems proven with the condition 
N2 _> N1 > 0 (verifiable only with the comparison of the Jacobi and Gauss-Seidel 
methods), was useless in the case of the convergence analysis for the AGA iterative 
methods. Further investigations allowed us to extend the regular splitting theory by 
ineluding new comparison theorems proven with the hypotheses M11 >_ M~ -1 _> 0 
and M11 > M~ -1 _> 0; and its original proofs are given in the works [2 and 3], 
whieh are unfortunately not easily available. 

From the time of the statement of these new eomparison theorems, a renewed 
interest with the regular splitting theory is observed in the literature. Ir seems 
that  just these theorems as well as their proofs were inspiratory for the work [7] 
in which the authors included both comparison theorems (colleeted in Theorem 
C) as the subsequent unpublished results of Woinicki without, however, giving its 
original proofs. In other papers [8, 9, 10, 11] both theorems are quoted as the 
results of Wor with a close connection to Csordas and Varga's results [7]. 
For instanee in the wrok [10] the author's results are used but without indieating 
the author's referente. The inaceessibility of the proofs of these theorems as well 
as other results of the work [2] in the literature existing up to now may make 
difficulties in distinguishing the authorship. For example the authors of the work 
[11], extending the elass of comparison theorems, report [11, p.388] that  the items 
i) and ii) in Proposition 1.3 have been proven by Csordas and Varga. Whereas 
Csordas and Varga mentioned [7, p.25] that  both assertions i) and ii) can be found 
in the author's work [2], and only for completeness did they include the proofs of 
these items. 

Therefore by due respect to the reader, both earlier author's comparison the- 
orems and its original proofs as they are given in the work [2] are presented below. 
In this way the methodology used in the proofs of these theorems can be eompared 
with a methodology used elsewhere and moreover, it may be possible to verify how 
the nonnegative splitting theory results presented in this paper are related with the 
former author's theorems generalizing the results obtained by Varga [1] for regular 
splittings. 

THEOREM 5.1 (Theorem 12 in [2]). Let A = M1 - N i  = M2 - N2 be two 
regular splittings of A where A -1 _> 0. I f M ~  1 >_ M21, then 

p(M11N1) < p(M21N2)  < 1. (5.1) 

Pro@ As can be concluded from Theorem 3.2, p ( M - I N )  < 1 and is mono- 
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tone with respect to p(A-~N),  and therefore Ÿ suffices to prove that p(A-~Nz) > 
p(A-IN1).  The assumption M1-1 _> M~ 1 can be written, as follows 

(A + N1) -1 > (A + N2) -1 

OF 

(I + A - t N 1 ) - I A  -1 _> A - I ( I  + N~_A-1) -1. 

Since the nonsingular matrices I + A-1N1 and I + N2A -1 are nonnegative, then 

A-~(I  + N~A -1) >_ (I + A - t N I ) A  -1 

which is equivalent to 

A-1N2A -1 2 A-1N1A -1 > 0. (5.2) 

Since the nonnegative matrices N1 and N2 may be singular, then with the assumed 
definitions of nonnegative matrices (Section 2), one obtains 

A-1N2A-1N2 = (A-1N2) 2 > (=) A-1N1A-1N2 (5.3) 

and 
A-1N2A-~N~ >_ (=) A - ~ N l A - I r g l  = (A-~NI)  2, (5.4) 

As all matrices in the above expressions are nonnegative, then from Lemma 2.2, 
one obtains that 

p((A-1N2) 2) = p2(A-1N2) > p(A-1NIA-1N2)  (5.5) 

and 
p(A-~N2A-1N1) >_ p((A-1N1) 2) = p~(A-1N1). 

From Lemma 2,1 ir [oHows that 

p (A-~NIA-1Nz)  = p ( A - 1 N ~ A - t N I )  

(5.6) 

(5.7) 

so one can conclude that 

p(A-1N2) _> p(A-1N1) (5.8) 

which by Theorem 3.2 implies 

p(M~-IN1) < p(M~IN2) < 1 

completing the proof of the theorem. �9 

TeEoasM 5.2 (Thearem 13 in �89 Let  A = M i - N i  = M~. - N s  be two 

regular spIit t ings o f  A where  A -1 > O. I f M ~  1 > M ~  ~ , then 

0 < p(M~-lN1) < P(M21N~) < 1. (5.9) 
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Proof. A -1 > 0 implies that  when N > 0, the matrix A - 1 N  has at least one 
positive column, so that  p(A-1N) > 0. Hence by Theorems 3.2 and 5.1, one can 
conclude that 

0 < p(M~-IN0 < p(M~-IN2) < 1. 

Now it will be shown that  A-1N2A -1 - A - 1 N I A  -1 = A - I ( N 2  - N1)A -1 is 
a positive matrix when M~ -1 > M~ -1. The matrix A- I (N2  - N1)A -1 can be 
expressed, as follows 

A- I (N2  -- N1)A -1 = A - I ( M 2  -- M1)A -1 

= A - 1 M I ( M {  1 - M21)M2A -1 

= A - I ( A  + N 1 ) ( M 1 1 -  M ~ I ) ( A  + N2)A -1 

= (I + A-1N1)(M11 - M21)(I  + N 2 A - : )  

o r  

A-I(N2 - N 1 ) A  - 1  _- ( M ~  -1 _ M~ ~) + A - 1 N I ( M 1 1  _ M 2 1 )  

+ (MI -1 - M~-I)N2A -1 

+ A-1NI(M~ -1 - M~-I)N2A -1. (5.10) 

Since by the hypothesis Mi  -1 - M~ 1 > 0 one obtains A- I (N2  - N1)A -1 > 0 or 

A - I N 2 A  - I  > A - 1 N 1 A  -1 > O. (5.11) 

But the above inequality implies that  in the inequality 

A-1N2A-1N2 >_ A-1N1A-1N2  >_ 0 (5.12) 

all positive entries of A-1N2A-1N2 are greater than the corresponding entries of 
A - 1 N I A - 1 N 2  and in the inequality 

A-1N2A-1N1 _> A - i N 1 A - 1 N 1  (5.13) 

all positive entries of A-1N2A-1N1 are greater than the corresponding entries of 
A-1N1A-1N1,  which leads to the conclusion that  

p((A-1N2) 2) = p2(A-1N2) > p (A-1 N: A-1 N2 )  (5.14) 

and 
p(A-1N2A-1N1)  > p((A-1N1) 2) -- p2(A-1N1). (5.15) 

Since p (A-1NIA-1N2)  -- p(A-1N2A-1N1)  by Lemma 2.1, hence one obtains 

p(A-1N2) > p(A-1N1) (5.16) 

implying by Theorem 3.2 that  

0 < p(MI-IN1) < p(M2-iN2) < 1 
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which completes the proof of the theorem. �9 

As was already stated in Section 3 (Lemma 3.1) in the case of weak nonnegative 
splittings of a monotone matrix A 

N2 _> N1 

equivalent to 

implies that 

but this inequality gives us 

o f  

M 2 - A > _ M 1  - A  

M I  1 > M21 > 0 

(I + A-1N1)- IA -1 > A - I ( I  + N2A-1) -1 

A - I ( I + N 1 A - 1 )  -1 _> ( I + A - ~ N 2 ) - I A  -1. 

When both splittings are nonnegative or weak nonnegative but of different type, 
either M l l N 1  > 0 and N2M21 > 0 or N1M~ -1 _> 0 and M~-IN2 _> 0 which 
by Theorem 3.2 implies either A-1N1 _> 0 and N2A -1 >_ 0 or N1A -1 >_ 0 and 
A-IN2 _> 0 respectively, one obtains 

and 

A-1N2A -1 ~ A-1N1A -1 _> 0 

A-1N2A -1 > A - 1 N I A  -1 _> 0 

when M11 > M~ -1 ~ 0, as shown in the proof of Theorem 5.2. 
The above results are summarized in the following lemma. 

LEMMA 5.1. Let A -- M1 - N 1  = M2 - N 2  be two splittings of A where 
A-~ > 0. 

a) Ir both splittings are weak nonnegative, then the inequality 

N2 _> N1 (5.17) 

implies that 

M~ -1 > M~ 1 > 0 (5.18) 

b) ir both splittings ate nonnegative of  weak nonnegative but of a different 
type (either M11N1 > 0 and N2M21 _> 0 of N1M[ -1 > 0 and M~-IN2 > 0), then 
the inequality (5.18) implies that 

A-1N2A -1 > A-1NIA -1 > 0 (5.19) 

c) ir M1 - N1 is a regular splitting, then 

A-1N2A-1N1 > (=) A-1N1A-1N1 > 0 (5.20a) 
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and 

N ~ A - 1 N e A  -1 >_ (=) N a A - 1 N 1 A  -1 > 0 

if Me - N2 is a regular splitting 

A - 1 N 2 A - 1 N ~  > (=) A ~ I N t A - 1 N 2  > 0 

and 

Moreover, when 

N 2 A - 1 N 2 A  -~ k (=) N 2 A - 1 N 1 A  -1 k 0. 

(5.2ob) 

(5.21a) 

(5.21b) 

M11 > M~ -1 > 0, (5.18a) 

d) ir both splittings are nonnegative or weak nonnegative but  of a different 
type (either M~-aN1 > 0 and N2M)  -1 > 0 or N tM~ -1 _> 0 and M~-IN2 > O), then 
the inequality (5.18a) implies that  

A-1N2  A-1 > A - 1 N 1 A  -1 > 0 (5.19a) 

e) if M t  - N~ is a regular splitting, then 

A - 1 N 2 A - 1 N t  > A - 1 N t A - 1 N ~  > 0 (5.20c) 

and 

(5.20d) 

(5.21c) 

N 1 A - 1 N 2 A  -1 > N 1 A - 1 N t A  -1 > 0 

if M2 - N~ is a regular splitting 

and 

A - I N c A - I N 2  > A - 1 N 1 A - 1 N 2  > 0 

N2A-1N•A -1 > N 2 A - 1 N 1 A  -1 > 0. (5.21d) 

The conditions (5.17), (5.18), (.5.19), (5.20) and (5.21) are progressively weaker 
but  the converse may not be true as can be easily verified in the examples of split- 
tings given in the Table. Each of these eonditions can be assumed a s a  hypothesis in 
comparison theorems which may be proven by an analogy to the proofs of Theorems 
5.1 and 5.2 or those given in Section 3. 

In using the conditions (5.19) or (5.19a) as weaker hypotheses in the case of 
regular splittings of a monotone matrix A, the proof of a comparison theorem 
follows immediately from the Theorem 5.1 or Theorem 5.2. Ir is natural  to ask ir 
for (weak) nonnegative splittings A = Ma - N1 -~ M2 - N2 of a monotone matrix 
A, p ( M / I N 1 )  _< r  < 1 is satisfied, when 

A - 1 N a A  -1 > A - 1 N 1 A  -~ _> 0. 

The answer to the above question is provided by the two following theorems gen- 
erMizing the results of Theorem 5.1 and Theorem 5.2. 
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THEOREM 5.3. Let A = M1 - N 1  - -  M2 - N2 be two nonnegative splittings 
of A, or two weak nonnegative splittings of A but of different type, that is, either 
M11N1 _> 0 and N2M~ -1 _> 0 of N1M~ -1 >_ 0 and M~-IN2 >_ 0, where A -1 > O. 
Ir A -1N 2A -1 > A - 1 N 1 A  -1 ~ 0, then 

p(MI~N1) _< p(M~-IN2) < 1. (5.22) 

Pro@ 
that  

and 

Assuming the case when M l l N 1  >_ 0 and N2M~ 1 >_ O, one can write 

YlTA-1N1 ---- "rly T (5.23) 

N 2 A - l y 2  = T2Y2 (5.24) 

where, by Theorems 3.2, 2.2, and Lemma 2.1, A-1N1 _> M~-IN1 >_ 0 and N2A -1 >_ 
N2M~ -1 _> 0, T1 = p(A-1N1) and ~-2 = P(A-1N2) = P(N2A-1), and the corre- 
sponding eigenvectors Yl and Y2 are nonnegative. Multiplying Eq. (5.23) on the 
right by A -1 and Eq. (5.24) on the left by A -1 gives us 

yYA-1N1A-1  = ~hyYA -1 (5.25) 

and 

A - 1 N 2 A - l y  2 = 72A-ly2.  (5.26) 

By the hypothesis it follows that  

y T A - 1 N 2 A - 1  _ (=) Y Ÿ  = Tly~A -1. (5.27) 

Again multiplying Eq. (5.27) on the right by Y2 and Eq. (5.26) on the left by yT 
one obtains 

T --1 y T A - 1 N 2 A - l y 2  >- ~-1Yl A Y2 (5.28) 

and 

ylTA- 1N2A-Iy2 = T2ylT A-1 Y2 (5.29) 

and hence, as y T A - l y  2 > 0, it follows that  T1 ~_ T2 Which, by Theorem 3.2 proves 
the inequality (5.22) for the case when M~-IN1 >_ 0 and N~-IM1 > 0. The case 
when N1M11 _> 0 and M~-IN2 > 0 can be proven in a similar way. �9 

THEOREM 5.4. Let A = M1 - N1 = M2 - N2 be two nonnegative splittings 
of A,  of two weak nonnegative spIittings of A b u t  of different type, that is, either 
M~-IN1 >_ 0 and N2M21 > 0 or N1M~ -1 >_ 0 and M~-IN~ _> 0, where A -1 > 0. 
If  A -1N 2A -1 > A - 1 N 1 A  -1 >_ 0, then 

p(M11nl) < p(M;ln2)  < 1. (5.30) 
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Proof. Similarly as in the proof of Theorem 5.3 it is evident that the assump- 
tion A-1N2A -1 > A-1N1A-1 > 0 excludes equality in (5.27), which implies the 
strict inequality in (5.28) providing 7-1 < T2 and consequently by Theorem 3.2 the 
inequality (5.30). �9 

To show that the above theorems may not be true in the case when both 
splittings are weak nonnegative of the same type, it is sufficient to consider the 
second, third and fourth splittings of the monotone matrix A given in Table for 
which A-1N4A -1 > A-1N3A -1 _> 0 and A-1N4A -1 > A-1N2 A-1 > 0 satisfy 
the assumptions of both theorems. In the ¡ case P(M41N4) < P(M31N3) but 
in the second case p(M~-IN4) > p(M21N2). This shows that both theorems rail 
when both splittings are weak nonnegative of the same type. 

In the case of the conditions (5.20a) and (5.21a) or (5.20b) and (5.21b) as still 
weaker hypotheses, the following theorem generalizing the former results holds. 

THEOREM 5.5. Let A = M1 - N 1  = M2 - N 2  be two weak nonnegative 
splittings o f  A ,  where A -  1 > O. Ir either 

A-1N2A-1N2 > { 
A - 1 N I A - 1 N 2  } 

or > 0 
A-1N2A-1N1 

and 

{ A-1N1A-1N2 
or 

A-1N2A-1N1 
} _> A-1N1A-1N1 _> 0 

(5.31a) 

Of 

N2A-1N2 A-1 > { 
N1A-1N2A-1 } 

or > 0 
N2A-1N1A -1 

and 

{ N1A-1N2A-1 } 
of  > N1A-1N1A -1 _> 0 

N2A-1N1A -1 

(5.31b) 

then 

p(M~-IN1) < p(M21N2) < 1. (5.32) 

Proof. It is evident that the proof follows from relations (5.5) to (5.7) given 
in the proof of Theorem 5.1. �9 

This theorem allows us to compare weak nonnegative splittings of the same 
type. The second and third weak splittings given in Table for the monotone ma- 
trix A defined by (3.47), which can not be related by other comparison theorems, 
illustrate the application of Theorem 5.5. In this case one obtains: 
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(A-1N2) 2 -- A-1N3A-aN2 

�89 I i ii o ii ~o[iOil 1 0 0 0 - ~  0 = 0 ~ 0  
= 5 0 0 1  0 0 

and 
A-1N:A-aN3  _ (A-1N3) 2 

lE!~ ~1[i ~176 ] ~3 Ii ~ !1 = ~  o o o = ~  o > o  
1 1 1 1 

1 1 so that the assumptions (5.31a) are satisfied and p(M31N3) = g < ~ = p(M21N2). 

THEOREM 5.6. Let A = M1 - N1 = M2 - N2 be two nonnegative splittings 
of A ,  or two weak nonnegative splittings of A but of different type, that is, either 
M11N1 >_ 0 and N2M~ -1 > 0 of NaM] -1 > 0 and M2aN2 _> 0, where A -1 > O. 
Let x >_ 0 and y >_ 0 be vectors such that xTMl lN1  ---- ,~1 xT and N2M21Y = A2y 
when M11N1 _> 0 and N2M~ -1 _> 0; and let v > 0 and w > 0 be vectors such that 
N1M11v ---= ~ 1 V  and wTM~IN2 = ~ 2  w T  when N1M11 _~ 0 and M~-IN2 _~ 0, 
where *~1 : P(M11N1) and A2 -- P(M2-1N2). Ir either 

xTA-1N2A -1 > (=) xTA-XN1A -1 _~ 0 
(5.33a) 

(o~ A-1N~A-~y  > (=) A-~N~A-~y  > 0) 

o f  

A - 1 N 2 A - l v  ~ (--) A - 1 N I A - l v  ~ 0 

(of wTA-1N2A -1 _~ (--) wTA-1N1A-1 > 0) 
(5.33b) 

then 

Moreover, if either 

p(M11N1) < p(M21N2) < 1. (5.34) 

O f  

then 

xTA-1N2A -1 > xTA-1N1A -1 ~ 0 

(of A - 1 N 2 A - l y  > A - 1 N 1 A - l y  _> 0) 

A - 1 N 2 A - l v  > A - 1 N I A - a v  _> 0 

(or wTA-1N2A -1 > wTA-1N1A-1 ~ 0) 

p(MI-IN1) < p(M2-1N2) < 1. 

(5.35a) 

(5.35b) 

(5.36) 

Proof. The matrices M - 1 N  and A - 1 N  have the same eigenvectors because 
they commute by Theorem 3.1 and their eigenvalues are related by Eq. (3.16). 
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Thus assuming the case when M l l N  _> 0 and N2M21 > 0 for which A-1N1 _> 
M l l N 1  _> 0 and N2 A-1  _> N2M21 > 0 by Theorem 3.2, one can write 

xTA-1N1  = ~-lx T (5.37) 

and 

N 2 A - l Y  = ~-2Y (5.38) 

where TI = p (A-1N1)  and T 2 = p(A-1N2)  = p(N2A-1) .  Multiplying (5.37) on 
the right by A -1 and (5.38) on the left by A -1 gives us 

x T A - 1 N 1 A  -1 = TlxTA -1 (5.39) 

and 

A - 1 N 2 A - l y  = T2A- ly .  (5.40) 

By the hypothesis it follows that  

xWA-1N2A -1 > (=) x T A - 1 N 1 A  -1 = TlxTA -1. (5.41) 

Again multiplying (5.41) on the right by y and (5.40) on the left by x T one obtains 

x T A - 1 N 2 A - l y  > ~- lxTA-ly  (5.42) 

and 

x T A - 1 N 2 A - l y  = ~ '2xTA-ly  (5.43) 

and hence, as x T A - l y  > 0, it follows that  vi _< w2 which, by Theorem 3.2, proves 
the inequality (5.34). It is evident that  imposing the condition (5.35) implies strict 
inequality in (5.41) which leads to proving the inequality (5.36) for the case when 
M~-IN1 _> 0 and N ~ I M 1  > 0. The case when N1M11 k 0 and M21N2 > 0 can 
be proven in a similar way. �9 

The importance of the above theorem relies on its generalization of comparison 
theorems presented in this paper in the case of nonnegative splittings and weak 
nonnegative splittings but of different types. 

The application of this theorem can be illustrated by eonsidering the fourth 
and fifth splittings given in Table for which none of the conditions of Lemma 5.1 is 
fulfilled. The left eigenvector of N s M ~  1, x T = [1, 0, 0] and 

x~~ ~~~~ 1~[~ ~ ~ ]>x~ .~~~  ~ [~ ~ ~] 
' 2 3 '  > 0  

1 = p(M~-INs) accord- satisfies the assumption (5.35a), and p(M~-IN4) = @ < 
ingly to the result (5.36). 

REMARK. Theorems 5.3 and 5.6 have been proven with the assumption that  
y T A - l y  2 > 0 and x T A - l y  > 0 which, as was already mentioned in Remark 
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given in Section 3, may not be satisfied when A -1 > 0 is used a s a  hypothesis. 
However the use of the simple modification of the proof and described in Remark 
from Section 3 in the proofs of Theorems 5.3 and 5.6 allows us to easily avoid the 
case when x T A - l y  or y T A - l y  2 may be equal to zero. 

Referring to Lemma 5.1, it is necessary to notice that the progressive weak- 
ening of the conditions of this lemma is accompanied by increasing the complexity 
of the suceessive conditions, which in eonsequence may be a burden to their verifi- 
cation. As was already demonstrated in the previous section the conditions (5.17) 
and (5.18), used in the eomparison theorems of Section 3, ate easily verifiable in 
immediate applications and therefore they may be considered in some sense as nat- 
ural conditions. The next conditions of Lemma 5.1, when used as more compound 
hypotheses in comparison theorems, extend the class of applications; however, its 
verification may be more cumbersome in actual practice. In the case of Theorems 
3.17 and 5.6 generalizing comparison theorems given in this paper, it is necessary 
to know additionally at least one eigenvector. 

Thus imposing the successive conditions of Lemma 5.1 as hypotheses in com- 
parison theorems leads to the successive generalizations whieh, however, may have 
more theoretical than praetical significance. 

The conditions (5.19) and (5.20), being the essence of the mat ter  in the proofs 
of Theorems 5.1 and 5.2, beeame a basis for further developments by Beauwens 
[15] and Csordas and Varga [7] who consider their results as generalizations of the 
author 's  earlier results (Theorems 5.1 and 5.2). However, a close inspection of both 
works leads to some comments, in the case of work [15] to quite different conclusions. 
Since both works find an interest in the current literature (the work [7] in [8, 9, 10, 
11] ana the work [15] in [9] as well as in many of later Beauwens' papers), it seems 
that  it is worth eommenting both works. 

(1) Beauwens results [15] 
In Section 2.2 of [15] there is Theorem 2.3 which according to Beauwens' opinion 

generalizes Theorem 12 of Woinicki [2] (Theorem 5.1 given here) and Corollary 1. 
Both Beauwens' results will be verified below. 

THEOREM 2.3 (Beauwens [15, p.342]). Let A = M~ - Nt  = M~ - Nt  be two 
splittings of A sueh that Ms  and Mt  ate nonsingular, M~-INs and M t l N t  are 
nonnegative and convergent. Then, any one of the four assumptions 

a) (A-1Nt  - A-1N~)A-~N~ >_ 0 

b) (A-1Nt  - A - 1 N s ) A - 1 N t  >__ 0 

c) A - 1 N ~ ( A - 1 N t  - A-1N~)  _> 0 

d) A - 1 N t ( A - 1 N t  - A - 1 N s )  > 0 

irnpties p(M~-tN~) < p(M~- 'Nt) .  

I t i s  evident that  some splittings given in the Table for the matix A defined by 
(3.47) satisfy the assumptions on the matrices M and M - 1 N  in the above theorem. 
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Taking in consideration splittings s = 9 and t = 2, one obtains 

( A - 1 N t -  A - 1 N s ) A - 1 N t = ( A - 1 N 2 -  A - ] N 9 ) A - 1 N 2  

1[i 2~176 ~l[i~ = ~  -2 o o = ~  o _>o 
-2 1 0 0 

but from the results given in Table, it follows tha t  

1 1 
P(M~-INs) = P(M91N9) = 2 > 5 = P(M21N2) = P ( M t l N t )  

which shows that  the above theorem fails. 
The correct theorem of this kind which generalizes Theorem 5.1 is only Theo- 

rem 5.5. 

COROLLARY 1 (Beauwens [15, p.342]). Let A = M~ - N t  --- M~ - N t  be two 
splittings of A such that M~ and M t  are nonsingular, M s l N s  and M t l N t  ate 
nonnegative and convergent. Then, any one of the two assumptions 

a )  ( M s  I - M~-I)Ns ~ 0 

b) (M~ -1 - Mt-1)Nt  _> 0 

implies p(M~-~Ns) _4 p(M~-~Nt). 

and 

Taking in consideration now splittings s -- 2 and t = 4 from Table, one obtains 

(M~ -1 - M~-I)Ns = (M~ -1 - M41)N 2  

1[!33]1[io o ] 1[!o3] 
= - -  3 3 ~ 0 1 =3-~ 0 3 _> 

15 7 4 0 2 0 1 

(M~ -1 _ M t l ) N s  = (M~ -1 - M41)N4 

0 

In this case both assumptions a) and b) of Corollary 1 are satisfied, whereas 

p(M~-lNs)  = p ( M ~ I N 2 )  = ~ > y P(M41N4) = p ( M t l N t )  

shows that  the corollary fails. 

(2) C s o r d a s  a n d  V a r g a  r e s u l t s  [7] 
Csordas and Varga consider regular sptittings of A = M1 - N i  = M2 - N2 

with A -  1 > 0, for which 

( A - 1 N 2 ) i A  -1 _> ( A - 1 N , ) J A  -1 _> 0 (5.44) 

1[q 3 i]~[i 0 3 7  94 ii =~1['~ 1~ 17~] ~o 
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for some positive integer j > 1, but for which A-1N2 A-1 > A - 1 N 1 A  -1 is not 
satisfied. Under this condition, they provea theorem (Theorem 2 in [7]) generalizing 
the author's Theorem 5.1 by using the proof technique similar to that  given in the 
second part of the proof of Theorem 5.1. That is, when the inequality (5.44) is 
satisfied for j > 1, with A -1 > 0 

p(M11N1) _< p(M~-IN2) < 1. (5.45) 

In the second theorem (Theorem 4 in [7]) they consider the case when 

(A-1N2)JA -1 > ( A - i N 1 ) J A  -1 > 0. (5.44a) 

Corollary 5 and its proof [7, p.27 and p.34] seem to be a part of the proof of Theorem 
5.2. 

It is evident that  

(A-1N2)JA -1 = A - I ( N 2 A - I )  j > (A-1N1)JA -1 >_ 0 (5.46) 

and assuming that to the eigenvectors x > 0 and yT > 0 correspond the eigenvalues 
7-1 = p(A-1N1) and 7-2 = p(A-1N2) = p(N2 A - l )  respectively, then 

xTA-1N1 = 7"1 xT 

and 

o r  

and 

N2A- lY = ~'2Y 

xT(A-1N1)J _-- (T1)JX T (5.47) 

From the assumption (5.46) it follows that  

xT(A-1N2)JA -1 = xTA -1 (N2A-1)J 

_> (=) xT(A-1N1)YA -1 -- (~-I)JxTA -1. (5.51) 

Again multiplying Eq. (5.51) on the right by y and Eq. (5.50) on the left by x T, 
one obtains 

x T ( A - I N 2 ) J A - I y  _> (T1)JxTA-ly (5.52) 

A - I ( N 2 A - 1 ) j y  = (~-2)JA-ly. (5.50) 

(N2A-1) jy  = (T2)Jy. (5.48) 

Multiplying Eq. (5.47) on the right by A -1 and Eq. (5.48) on the left by A -1 gives 
l i s  

xT(A-1N1)JA -1 = (~-l)JxTA -1 (5.49) 

and 
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and 
xT(A-1N2)JA-ly  = (72)JxTA-ly (5.53) 

and hence, as x T A - l y  > 0, it follows that ~h -< T2 which by Theorem 3.2 generalizes 
Csordas and Varga's results for the case when both splittings A -- M1 - N1 -- 
M2 - N2 are nonnegative or weak nonnegative but of different type, that is, when 
either M l l N 1  _> 0 and N21M1 >__ 0 or N1M~ -1 _> 0 and M2-1N2 ~ 0. 

In conclusion, the inequalities (5.44) and (5.44a) may be satis¡ for any j >_ 1, 
if and only if p(A-1N1) _< p(A-1N2) and p(A-1N1) < p(A-1N2) respeetively. 

Csordas and Varga give two examples of regular splittings of A with A -1 > 0. 
One ofthem shows that (5.44) fails for each j > i with p(A-1N1) -- p(A-1N2) = �89 
[7, pp.27 and 28]. In the second example [7, p.23] regular splittings with fixed and 
variable matrices are derived from the following matrix. 

2 ' so that A - 1  ---- - . (5.54) 
3 

The regular splitting with fixed matrices 

1 [  4 -41 ] 1 [ 00 ~] 1 [ :  :1 (5.55) M1 = ~ _ , N i =  ~ and M I  1-- 

where 

1 [0 21] = 1 [10 20] NIA_I  = 1 [10 20] M l l N I =  ~ ' N1M~ -1 ~ ' ~ ' 

= 1  1 A_IN 1 6 [~ ~ ] ,  A _ I N 1 A _ I =  ~ (1 ) [21  ~] and 

( A - I N 1 ) k A - I =  ~ ( 6 )  k [ 2 1 : 1  

and with variable matrices 

[ ~ 1] [o 01 M 2 ( a ) = - l + c ~  4 '  N2(c~)= 0 

1[~~1 [ M 2 ( ~ ) ] - '  - 3 ~ ~ 1 - ~  

where 

[M2(c~)]-lN2(c~) - 

N2((~)A -1 = 

1 ( 3 ) [ 2 4  A-1N2(~)A -1 = 

and 
(5.56) 

3+o~ ~ ~] N~,o,,M2~o,, 1 ~ [~3+o ~ 
, A-1N2(o0 = "g 

and (A-1N2(a))kA -1 = g 4 2 " 
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It is evident that  A --- M2 (a) - N~ is the regular splitting of A ir and only if 
0 < a < 1 and 

P ( M l l N 1 )  _< p([M2(c~)]-lN2(oL)) (5.57) 

1 is satisfied if and only if c~ > i .  
The hypothesis 

(A-1N2(c~))kA -1 _> (A-1N1)kA -1 > 0 (5.58) 

is satisfied with k > 1 and if and only if 

(2a) k-1 < 4 and (2c~) k > 4. (5.59) 

Considering the case of equality in the second part of (5.59), it is evident that  
setting 

(~(k) > 41/k/2 (5.60) 

implies satisfying (5.58) for each positive integer k > 2, where 0.5 _< c~(k) _< 1. 
However, when c, decreases to 0.5 the inequality (5.58) will be satisfied with 

increasing integers k. For instance, k = 71 for a = 0.51, k = 694 for a = 0.501 
and, of course, in the extreme case k approaches in¡ when c~ = 0.5. Thus for 
the class of matrix problems represented by the above example determining the 
¡ positive integer for which (5.44) is satisfied may be too laborious. Csordas 
and Varga conclude similarly [7, p.28]. However ir should be mentioned that  the 
verification of (5.44) may not be only cumbersome but also impossible to apply in 
actual practice because the authors did not give any preliminary argument that  the 
condition (5.44) holds at all. 

As can be easily verified the vector x T -- [0, 1] is the left eigenvector of M l l N 1  
1 and p(A-1N1)  -- 1, and the follow- and A - I N 1  corresponding to P ( M l l N 1 )  -- V 

ing inequalities 

[2,1] > 1 xTN2(c~)[M2(a)]-I  - 3 +c~ _ ~[0, 1] = x T M l l N 1  > 0 (5.61) 

= a  4 1 A-1  x r A - * N = ( a ) A  -1 ~[  , 2] > ~ [ 1 ,  2] = x T A-1 N1  >_ 0 (5.62) 

1 Hence, by Theorems 3.17 and 5.6 the result (5.57) follows are satisfied for c~ _> 5, 
irmnediately. Thus, in the application of Theorems 3.17 and 5.6 the hypothesis veri- 
fication is always possible but  it is necessary to compute an eigenvector additionally. 

On the other hand both above examples of regular splittings of A defined by 
(5.54) can be compared by means of results given in Section 3. It can be seen that  

[N2(o~)] T ~ N 1 (5.63) 

for 1 > a > 1, hence the result (5.57) follows immediately by Theorem 3.13 and 
with the strict inequality by Corollary 3.3 because in this case A -1 > 0. Moreover, 

1 it can be observed that  with 1 > a > 

[M2(a ) ] - lN2(a )  > (N1M11) T and N2(a)[M2(c~)] -1 _> (M{-1N1) T (5.64) 



334  Z.I. WOŸ 

and 
A-1N2(c~) > (N1A-1)  T ana  N 2 ( ~ ) A  -1 >__ (A-1N1)  r (5.65) 

but the above inequalities correspond to the hypotheses of Theorem 3.16, which 
provides the result (5.57) as well. 

Unfortunately, Csordas and Varga show only these two examples of regular 
splittings of A, (5.55) and (5.56), satisfying the condition (5.44) as well as the 
inequalities (5.63), (5.64) and (5.65) corresponding to the hypotheses used in the 
theorems mentioned above. Thereforc, it seems natural  to ask ir there is an equiva- 
lence between the condition (5.44) burdensome in practice and those natural  ones 
used in Theorems 3.13, 3.14, 3.15 and 3.16 which on the other hand, as was already 
demonstrated in Section 4, are useful tools with the choice of forward or backward 
order in the Gauss-Seidel method a s a  more efficient splitting of a nonsymmetric  
monotone matr ix  A. Perhaps, the answer to this mat ter  remains an open question. 

6. Further Extensions of the Nonnegative Splitting Theory 

In this section further extensions of the nonnegative splitting theory are studied 
for the class of iterative methods represented by a weak splitting of a matr ix  A and 
defined, as follows. 

DEFINITION 6.1. For matrices A, M and N the following decomposition 

A = M - N  

is called a weak splitting of A, if either M - t N  = G >__ 0 (the first type) or N M  -1 = 
G" _> 0 (the second type). In particular a given weak splitting can be both types. 

The definition of the weak splitting of A for the first type case have been 
introduced by Marek and Szyld [11]. It is obvious that  the following corollary holds. 

COROLLARV 6.1. Any (weak) nonnegative splitting of a matrix A is a weak 
splitting of A ,  but the converse is not true. 

Since weak splittings used as hypotheses are weaker than in the case of (weak) 
nonnegative splittings, it seems interesting to s tudy how and which results of the 
previous sections can be generalized. 

As was already s tated (Theorem 3.2), the assumption tha t  A is a monotone 
matrix,  that  is A -1 > 0, implies that  each weak nonnegative splitting of A is 
convergent. However, in the case of weak splittings the assumption A -1 > 0 is 
n o t a  sufficient condition. As can be easily verified in examples, f o r a  given weak 
splitting of A = M - N,  p ( M - 1 N )  may be greater than unity with A -1 _> 0 (see 
e.g. [11]). 

All results given in this section are presented for convergent weak splittings 
(Definition 3.1) with A -1 _> 0, and their properties are collected in the following 
theorem. 

THEOREM 6.1. Let A = M -  N be a conver9ent weak splittin 9 of A .  I f  
A -1 > O, then 
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A -1 _> M -1 

p ( M - 1 N )  = p ( N M  -1) 

ir M - 1 N  _> 0, then A - 1 N  > M - i N  and ir N M  -1 > 0, then N A  -1 

1. 

2. 
3. 

N M  -1 

4. p ( M - i N )  - 

Pro@ 
(1) From Theorem 3.1 it follows 

p ( A - 1 N )  

1 + p ( A - 1 N )  

A -1 = M - 1  + M - 1 N A  -1 = M -1 + A - 1 N M  -1 

and since M - 1 N  > 0 or N M  -1 > 0 by hypotheses then 

M - 1 N A  -1 = A - 1 N M  -1 > 0 

which gives us immediately that  A -1 _> M -1. 

(2) 

(3i 

A -1 = M -1 + M - 1 N A  -1 = M -1 + M - 1 N ( M  -1 + M - 1 N A  -1) 

(6.1) 

(6.2) 

(6.3) 

By using the result of Lemma 2.1, one obtains p ( M - 1 N )  = p ( N M - Z ) .  

Let us assume tha t  M - 1 N  >_ 0. Then one can write 

= [I + M - 1 N ] M  -1 + ( M - Z N ) 2 A  -1 

= [I + M - 1 N  + ( M - 1 N ) 2 ] M  -1 + ( M - 1 N ) 3 A  -1 

= I I +  M - 1 N  + ( M - I N )  2 + - . .  + ( M - 1 N ) k - Z ] M  -1 

+ ( M - t N ) k A  -1. (6.4) 

Since p ( M - t N )  < 1 by the hypothesis, then for k --* oc ( M - 1 N )  k --* 0 the series 

I +  M - 1 N  + ( M - 1 N )  2 + - - -  

is convergent, and by Theorem 2.1 one obtains 

I +  M - 1 N  + ( M - 1 N )  2 + . . . .  ( I -  M - 1 N )  -1 > I > 0. 

Hence 

o r  

A -1 = ( I -  M - 1 N ) - I M  -1 >_ 0 

A - 1 N  = ( I -  M - 1 N ) - I M - Z N  _> M - 1 N  > 0. 

In the case when N M  -1 > 0 can be similarly shown tha t  

N A  -1 > N M  -1 _> 0. 

(4) 

(6.5) 

(6.6) 

is identical with the item (4) given in the proof of Theorem 3.2. 

(6.7) 

(6.7a) 

Assuming the case M - 1 N  _> 0 which implies that  A - 1 N  >_ 0, the proof 
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Now the following theorems which can be proven by a close analogy to the 
proofs of the corresponding theorems given in Section 3 are presented. 

THEOREM 6.2. Let A 
tings of A ,  where A -1 2 0 .  

(a) A-1N2  _> A-1N1  

(b) A - 1 N 2  _> N I A  -1 

(c) N2A -1 _> N1A -1 

(d) N2A -1 _> A-1N1  

is satisfied, then 

Pro@ The proof is 

THEOREM 6.3. Let 

= M1 - N1 = M2 - N2 be two convergent weak split- 
If one of the foUowing inequalities 

>_0 (or M~-IN2_>M~-INI_>0)  

k O  (or M~-IN2 k N I M 1 1  k 0 )  

k O  (or N 2 M )  - l k N I M {  -1_>0) 

:> 0 (or N2M~ -1 _> Mi- iN1 >_ 0) 

p(M71N1) < p(M21N2)  < 1. 

the same as in the case of Theorem 3.3. �9 

A -- M1 - N1 -- M2 - N2 be two eonvergent weak split- 
tings of A of the same type, that is, either M~-IN1 > 0 and M~-IN2 _> 0 of 
N1M11 _> 0 and NuM~ -1 _> 0, where A -1 ~ 0. Ir N2 _> N1, then 

p(M~-IN1) _< p(M~-IN2) < 1. 

Pro@ The proof is the same as in the case of Theorem 3.4. �9 

THEOREM 6.4. Let A = M1 - N1  ---- M2 - N2 be two convergent weak split- 
tings of A of different type, that is, either M~-IN1 _> 0 and N2M~ -1 >_ 0 or 
NIM11  _> 0 and M21N2 >_ 0, or one of them be a weak splitting of A but of both 
types, where A -1 _> 0. Ir M~ -1 > M21, then 

p(M~-IN1) _< P(M21N2) < 1. (6.8) 

Pro@ 
that  

and 

Assuming the case when M11N1 k 0 and N2M2 -1 k 0, one can write 

yTM{-1N 1 = Aly T (6.9) 

N 2 M ~ l y 2  = A2y 2 

where by Theorems 2.2 and 6.1, and Lemma 2.1 "~1 

(6.10) 

= p(M{-1N1) < 1 and A2 = 
p(M~-IN2) = p(N2M~ -1) < 1 and the corresponding eigenvectors Yl and Y2 are 
nonnegative. Multiplying Eq. (6.9) on the right by A -1 and Eq. (6.10) on the left 
by A -1 gives us 

and 

y1TM11N1A-1 _- AlyTA -1 (6.11) 

A - 1 N 2 M 2 1 y 2  = )~2A-1y2 . (6.12) 



Nonnegative Splitting Theory 33-/" 

From the assumption M~ -1 > M21 by relation (6.2), it follows that  

A -1 _ M~-IN1A-1 _> A -1 _ A-1N2M21.  

Since both matrices A-1N2M21 and M~-IN1A -1 ate nonnegative by the relation 
(6.3), hence 

A-1N2M21 _> M~-IN1A -1 _> 0 (6.13) 

o r  

y T A - 1 N 2 M 2  ~ _> (=) yTM~-IN1A-1 : AlyTA -1. (6.14) 

Again multiplying Eq. (6.14) on the right by Y2 and Eq. (6.12) on the left by y l  T, 
one obtains 

ylTA-1N2M21y2 > A l y T A - l y  2 (6.15) 

and 
YŸ _-- A2yTA-lY2 (6.16) 

a n d a s  yTA-Xy 2 > 0, it follows that  A~ _< A2, which proves the inequality (6.8) for 
the case when M~-IN1 _> 0 and N21M1 _> 0. When N1M11 _> 0 and M21N2 >_ 0 
the proof is similar as in the proof of Theorem 3.5. The case when y T A - l y  2 ---- 0 
can be considered according to the modi¡ described in Remark given at the 
end of Section 3. �9 

THEOREM 6.5. Let A = M1 - N 1  ---- M 2  - N2 be two convergent weak split- 
tings of A of different type, that is, either M11N1 > 0 and N2M~ -1 ~ 0 of 
N1M~ -1 _> 0 and M21N2 > 0, of one of them be a weak splitting of A but of both 
types, where A -1 > 0. Ir MI -1 > M21, then 

P(MIIN1)  < P(M21N2) < 1. (6.17) 

Proof. Similarly as in the proof of Theorem 6.4 it is evident that  the assump- 
tion M~ -1 > M~ -1 implies the strict inequatity in (6.13), that  is 

A-1N2M21 > M~-IN1A -1 > 0. (6.18) 

The above inequality implies replacing the non-strict inequality sign to the strict 
one in the corresponding inequalities in the remaining part of the proof of Theorem 
6.4, which proves the validity of the inequality (6.17). �9 

THEOREM 6.6. Let A = M1 - N1 -- M2 - N 2  be two convergent weak split- 
tings of a symmetric matrix A ,  where A -1 ~ 0. Ir M1-1 _~ M21 and at least one 
of M1 and M2 is a symmetric matrix, then 

p(M{1N1) ~ p(M21N2) < 1. 

Proof. The same proof as in the case of Theorem 3.11. 
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THEOREM 6.7. Let A -- M1 - N1 ---- M2 - N 2  be two convergent weak split- 
tings of a symmetric  matrix A, where A -1 > O. Ir M~ -1 > M ~  1 and at least one 
of  M1 and M2 is a symmetric  matrix, then 

P(M11N1) < P(M21N2) < 1. 

Proof. The same proof as in the case of Theorem 3.12. 

THEOREM 6.8. Let A = M i  - N 1  = M~ - N 2  be two convergent weak split- 
tings of A of the same type, that is, either M~-IN1 > 0 and M21N2 > 0 or 
N i M 1 1  _> 0 and N 2 M 2  i >_ 0, or one of them be a weak splitting of A but of both 
types, where A -1 >_ O. I f  N T >_ Ni ,  then 

p(M~-lN1) _~ p(M21N2)  < 1. 

Proof. The same proof as in the case of Theorem 3.13. 

It is evident that  by analogy to Corollary 3.2 and its proof the following corol- 
lary holds. 

COROLLARY 6.2. Let A = M1 - N 1  = M2 - N 2  be two convergent weak 
splittings of A of the same type, that is, either M~-IN1 > 0 and M21N2 > 0 or 
N 1 M {  1 > 0 and N2M21 > 0, where A -1 _> 0. 

(a) Ir 
A - 1 N ~ ( A - 1 )  ~ >_ A - 1 N I ( h - ~ )  ~ > 0 (6.19) 

then 

(b) 

then 

p(M~-IN1) _< p(M21N2)  _< 1. 

Moreover, i f  

A - 1 N ~ ( A - 1 )  T > A - 1 N I ( A - 1 )  T >_ 0 

p(M~-IN1) < p(M21N2)  < 1. 

(6.20) 

(6.19a) 

(6.20a) 

As can be easily verified Theorems 3.14, 3.15, 3.16, 3.17 and Corollary 3.5 as 
well as its proofs hold in the case of convergent weak splittings, and for completeness 
reasons they are reformulated below. 

THEOREM 6.9. Let A = M1 - N1 = M 2  - N 2  be two convergent weak split- 
tings of A of the same type, that is, either M{1N1 _> 0 and M~-IN2 ~ 0 or 
N1M~ -1 >_ 0 and N2M21 > 0, where A -1 > O. I f  

M~ -1 _> (M2-1) T (6.21) 

then 

p(M~-IN1) < p(M~-IN2) < 1. (6.22) 
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THEOREM 6.10. Let  A --- M1 - N 1  -- M2 - N 2  be two convergent weak 
splittings of  A of  the same type, that is, either M l l N 1  >_ 0 and M21N2 >_ 0 of  
N1M~ -1 _> 0 and N2M21 >_ 0, where A -1 > O. I f  

M~ -1 > (M21) T (6.23) 

then 
p(M{-1N1) < p(M~-IN2) < 1. (6.24) 

THEOREM 6.11. 
splittings of  A ,  where A -1 > 0. Ir one of  the following inequalities 

(a) A-1N2 _> (A-1N1) T > 0 (o f  M21N2 > (Ml lN1)  T _> 0) 

(b) A - t N 2  >_ (NIA-1)  T >_ 0 (or M~IN2 _ (NIMI-1) T > 0) 

(c) N2 A-~ _> (N1A-1) T > 0 (or N2M~ -1 k (NIM~-~) T k 0) 

(d) N2 A-1 _> (A-1N1) T > 0 (or N2M21 k (M{-1N1) T _> 0) 

is satisfied, then 

Let  A = MI - N I  = M2 - N 2  be two convergent weak 

p(M~-IN1) <_ p(M21N2) < 1. (6.25) 

THEOREM 6.12. Let A ---- M1 - N 1  = M2 - N 2  be two convergent weak 
splittings of  A where A -1 >_ O. Let x >_ O, y >_ 0 and z > 0 be vectors such that 
xTM~-INI = A1 xT and M21N2Y = A2y or N2M21z = A2z when M11N1 >_ 0 
and M21N2 _> 0 or N2M~ -1 >_ 0, respectively; and let u >_ 0, v > 0 and w >_ 0 be 
vectors such that NIM~-lu = Alu and vTM2-1N2 = A2v T or wTN2M21 = A2w T 
when N1M11 _> 0 and M~-IN2 _> 0 or NuM21 _> 0, respectively; where A 1 = 

P(Ml lN1)  and A2 = P(M21N2). Ir one of  the following inequalities 

xTM~-IN2 >_ x T M l l N 1  _> 0 or M~-IN2Y >_ M{INlY _> 0 (6.26a) 

xTN2M~ 1 _> xTM11N1 _> 0 or N2M~lz  _> Mi- lNlz  _ 0 (6.26b) 

M~-IN:u _> N;M~-lu _> 0 of  vTM21N2 _> vTN1M11 >_ 0 (6.26c) 

o f  

N2M~-lu _> N 1 M l l u  _> 0 of  wTN2M21 >_ wTN1M11 k 0 (6.26d) 

xTA-1N2 _> xTA-1N1 > 0 of  A-1N2y > A - 1 N l y  k 0 (6.27a) 

xTN2A -1 > xTA-1N1 > 0 of  N 2 A - l z  _> A-1NlZ _> 0 (6.27b) 

A-1N2u  >_ N I A - l u  _> 0 or vTA-1N2 >_ vTN1A-1 > 0 (6.27c) 

N 2 A - l u _ > N I A - l u _ > 0  or wTN2A -1 _>wTNjA -1 _> 0 (6.27d) 

is fulfilled, then 

p(M~IN1) < p(M2-J-N2) < 1. (6.28) 
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In  particular,  ir the f irst  non-strict  inequality sign in the above inequalities is re- 
placed by the strict  one, then 

p(M{1N1) < p(M~-IN2) < 1. (6.29) 

COROLLARY 6.3. Let A = M1 - 
spli t t ings of  A of  the same type, where 
tors such that xTM11N1 = Alx T and 
M~-IN2 >_ 0; and let u >_ 0 and v > 0 
vTN2M21 = A2v T when N1M{ -1 > 0 and N2M21 :> 0; where A 1 
and A2 = p(M2-1N2). Ir one of  the following inequalities 

holds, then 

N1 = M2 - N 2  be two convergent weak 
A -1 > O. Let x >_ 0 and y >_ 0 be vec- 

M2-1N2Y = A2y when M~-IN1 _> 0 and 
be vectors such that N1M~-lu = AlU and 

= P(M11N1) 

xTN2 > xTN1 or N2y _> N l y  (6.30a) 

N2u > NlU of  vTN2 > vTN1 (6.30b) 

p(MI-IN1) _< p(M~-IN2) < 1. (6.31) 

Referring back to the results given in Section 5, it is easy to notice that The- 
orems 5.3 to 5.6 and their proofs can be generalized to the class of weak splittings 
and they are reformulated in the following four theorems. 

THEOREM 6.13. Let  A = M1 - N1 = M2 - N2 be two convergent weak 
spli t t ings of  A of  different type, that is, ei ther M~-IN1 _> 0 and N2M~ -1 _> 0 or 
N1M11 >__ 0 and M~-IN2 >__ 0, or one of them be a weak splitting of  A but of  both 
types, where A -1 _> 0. I fA-1N2A -1 _> A-1N1A-1 _> 0, then 

P(M11N1) < P(M21N2) < 1. (6.32) 

THEOREM 6.14. Let  A = M1 - N1 = M2 - N2 be two convergent weak 
spli t t ings of  A of different type, that is, ei ther M~-IN1 _> 0 and N2M~ 1 _> 0 or 
NIM11 ~ 0 and M21N2 _> 0, or one of  them be a weak splitting of  A but of  both 
types, where A -1 > 0. I f  A-1N2A -1 > A - 1 N I A  -1 ~ 0, then 

P(M11N1) < p(M~-lN2) < 1. (6.33) 

THEOREM 6.15. 
split t ings of  A, where A -1 >_ O. I f  either 

{ A-1NIA-1N2 
A-1N2A-1N2 _> or 

A-1N2A-1NI 

Let  A = M1 - N 1  = M 2 - N 2  be two convergent weak 

} >_ 0 and 

{ A-1NIA-1N2 } 
or > A-1N1A-1N1 > 0 

A-1N2A-1N1 

(6.34~) 
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O f  

then 

f NiA- iN2A-1  } 
o r  N2A-iN2A -1 _> ~ N2A-1N1A - i  >_ 0 and 

{ N1A-1N2A-1 } 
or k N i A - i N i A  -i  k 0 

N2A- iNiA -1 

p(MTiN1) _< p(M~-J-N2) < 1. 

(6.34b) 

(6.35) 

THEOREM 6.16. Let A = Mi - N 1  : M 2  - N 2  be two convergent weak 
splittings of A of different type, that is, either M~iNi  _> 0 and NzM~ i > 0 of 
NIM~ 1 _> 0 and M~iN2 _> 0, or one of them be a weak splitting of A but of both 
types, where A -1 :> 0. Let x > 0 andy  >_ 0 be vectors such t h a t x T M ~ i N i  = A1 xT 
a n d N 2 M ~ l y  = A2y when M l l N 1  >_ 0 a n d N 2 M ~  i > 0; and l e t v  >_ 0 a n d w  >_ 0 
be vectors such that N1M~iv = Aiv and wTM~iN2 = A2 wT when NiM~ i >_ 0 
and M2iN2 > 0, where A~ = p(M~-iN1) and A2 = p(Mz-lN2). If  either 

Of 

xTA-1N2A -1 _> (----) xTA-1NIA -1 > 0 

(or A-1N2A-ly  _> (=) A - i N I A - q  _> 0) 

A-1N2A-lv  > (=) A-1N1A-lv  _> 0 

(or wTA-iN2A -1 _> (--) wTA-1NIA -1 ~ 0) 

(6.36a) 

(6.36b) 

then 
p(M?iNi)  < p(M~iN2) < 1. (6.37) 

Moreover, ir either 

o f  

xTA-1N2A -1 > xTA-1NiA -1 _> 0 

(or A-1N2A-ly  > A - 1 N i A - l y  >_ 0) 

A-1N2A-iv  > A - 1 N i A , l v  _> 0 

(or wTA-1N2A -1 > wTA-iN1A-1 _> 0) 

(6.38a) 

(6.38b) 

then 
p(M~-iNi) < p(M~-lN2) < 1. (6.39) 
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