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In our previous paper, we proposed a dynamical model, whose equation of motion is 
expressed a s a  second order differentiat equation. This model generates traffic congestio~ 
spontaneously. In this paper we study the characteristic properties of the traffic congestion 
in our model, especially the organization process and the stability of the structure of 
congestion. It turns out that these phenomena are well described by plotting motions of 
vehicles in the phase space of velocity and headway. The most rernarkable feature is the 
universality of "the hysterisis loop" in this phase space, which is observed in the final stage 
of the congestion organization. This loop is understood a s a  limit cycle of the dynamical 
system. This universality guarantees the stability of total cluster size. 
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1. I n t r o d u c t i o n  

One of  the  mos t  in te res t ing  p rob lems  of  traffic d y n a m i c s  is the  gene ra t ion  of  

traffic congest ion.  We t r e a t  traffic p rob l ems  as d y n a m i c s  of a m u l t i - b o d y  sys tem 

of vehicles. Then  conges t ioa  in the  traffic flow is r ega rded  a s a  sor t  of  collect ive 

mo t ion  of vehicles. T h e  genera t ion  of traffic conges t ion  can be  u n d e r s t o o d  a s a  phase  

t r ans i t i on  induced  by  the  nonl inear  effect of  d y n a m i c a l  equa t ions  of  mot ion .  Our  
in teres t  exis ts  in th is  k ind  of spon taneous  t r a n s i t i on  from flow wi thou t  conges t ion  

to  t h a t  wi th  congest ion.  In  o rder  to  s t u d y  th is  phase  t r ans i t i on  we mus t  discuss the  
s t ruc tu re  of all the  vehicles '  mot ion .  

In  ear l ier  works  on  traffic dynamics  [1] [2] [3], the  d y n a m i c a l  equa t ions  of mos t  

models  have been essent ia l ly  first order  dif ferent ia l  equa t ions  wi th  r e spec t  to  t ime.  

However,  the  so lu t ion  of  th is  different ia l  equa t ion  shows s l ight ly  different  charac te r  

from the  real is t ic  behav io r  of  vehic[es. Th is  is why  the  mode l  never show ins tab i l i t i es  
unless the  au tho r s  t ake  into  account  the  t ime  lag of the  dr iver ' s  response.  

In  our  previous  p a p e r  [4] we p resen ted  a very  s imple  bu t  rea l i s t ic  mode l  of 
traffic dynamics  which  induees  spon taneous  traffic congest ion.  Our  mode l  accounts  

for the  effect of t i m e  lag t h rough  second o rde r  different ial  equa t ions  based  on the  

equa t ion  of mo t ion  in physics.  Because  of th is  feature ,  we can make  a p e r t u r b a t i v e  

analys is  and  discuss t he  s t ab i l i t y  easily. Also,  the  numer ica l  s imu la t ion  shows t h a t  

t ra t ¡  conges t ion  evolves spon taneous ly  w i th  t ime  in our  s imple  model .  

In  th is  p a p e r  we s t u d y  fur ther  the  cha rac te r i s t i c  p rope r t i e s  of traffic congest ion 

in our  model .  We concen t r a t e  on two p rob lems .  One is the  s t ab i l i t y  of  the  s t ruc tu r e  
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of congestion, and the other is the organization process of congestion. 
For the purpose of investigating these problems, we analyze the movement of 

each vehicle by plotting in the plane of headway Ax~ and velocity &n. We shall 
hereafter call this plane (Axn, ion) "phase space". The combination of these two 
variables present the detailed s tructure of the movement of the flow of traffic sen- 
sitively. 

After making a quick review of our model of traffic dynamics in Section 2, we 
introduce the hysterisis loop in the phase space in Section 3. In Sections 4 and 5, 
we discuss the structure stability of congestion and the hysterisis loops a s a  limit 
cycle, respectively. Section 6 is devoted to the dynamical  behavior of clusters of 
congestion. Summary  and discussions are made in Section 7. 

2. M o d e l  

Let us make a brief review of our dynamical model of traffic proposed in our 
previous paper.  

We investigate the situation where vehicles move on a single lane circuit with 
no passing. Here, we ignore the length of vehicle and consider the case in which all 
the drivers react to a stimulus in the same way. Throughout  this paper,  we take 
the periodic boundary  conditions for the vehicles: N vehicles move on the circuit 
with length L, and the (N  + 1)th vehicle is identical to the first vehiele. 

So far as we consider the case where a sufficiently large number  of vehicles, N,  
have a sufficient length, L, we can ignore the effect of the boundary  condition, as 
will be discussed in Sections 4 and 7. So, the system under consideration can be 
represented by the system in which the vehicles move on a circuit. 

Each driver controls the velocity in order to maintain safety and responds to 
a given stimulus, which is expressed in terms of the acceleration. In practice, a 
driver actually has direct control of this quantity [2]. Stimuli may be functions of 
velocity, headway or the relative velocity of two successive vehicles. We assume a 
driver responds to a stimulus only from the vehicle ahead of him. So generally the 
equation of motion is expressed as 

where 

~~ = F ( ~ n ,  ~ x n ,  ~ ~ n ) ,  (1) 

A x ~  = x n + l  - xn,  (2) 

for each vehicle ~n (n -- 1, 2 , . . . ,  N) .  N is the total  number  of vehicles, and xn is 
the coordinate of the n th  vehicle. The dots denote differentiation with respect to 
t ime t. 

There are two major  types of theories for regulations. The first type is based 
on the idea tha t  each vehicle must  maintain the legal sale distance behind the 
vehicle in front, which depends on the relative velocity of these two vehicles [2]. 
The other is tha t  each vehicle moves at the legal velocity, which depends on the 
distance between the vehicles. Our model uses the latter idea. We define the legal 
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velocity V: each driver must control acceleration in such a way that  the velocity is 
maintained at the postulated value according to the head way. So, this legal velocity 
is assumed to be the function of the distance Ax between the vehicles, having the 
following properties: 

1) a monotonically increasing function, 
2) [V(Ax) ]  has an upper bound. V max ~ V ( A X  ~ CO). 

Then, the driver must maintain this legal velocity according to the motion of pre- 
ceding vehicle. The dynamical equation of the system is thus expressed as 

X n  = a { V (  A x n )  - &~} , (3) 

where a is a constant representing the driver's sensitivity, which has been assumed 
to be independent of n. 

The stability is investigated by analyzing the deviations from the steady state 
flow of the following solutions of equation (3). 

x (~ = bn § c t, (4) 

with 
b =  L / N ,  c =  V(b ) ,  (5) 

in which vehicles are uniformly distributed with identical car spacing b and move 
with the same constant velocity c. 

Let Yn be a small deviation from the steady state flow x (~ , i.e., 

X n  ---- X(n O) + Y n .  (6 )  

Then, the linearized equation is obtained as 

Yn = a { f  . A y  n - -  ~/n}, (7) 

where f is the derivative of V at b, 

f = V'(b).  (8) 

The stability criteria for this steady state have been obtained in the previous 
paper, and are summarized as follows. 

i) f < 2; the state is stable, 

ii) f = 2; the state is marginal, 

iii) f > 2; the state is unstable. 

A s a  realistic model we take the following function for the legal velocity 

V ( A x )  = tanh(Ax -- 2) + tanh2,  (9) 
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in which a driver controls the vehicle gradually accelerating or breaking in such 
a way that  it never passes the preceding vehicle. This model gives the expected 
behavior of traffic flow, and generates spontaneous congestion instead of accidents. 

We will take a = 1 in the numerical analysis. This assumption, however, does 
not mean the restriction of our model because a can be absorbed by the redefinition 
of V(Ax) and the rescale of time t. Therefore our model is speci¡ by the choice 
of legal velocity function V(Ax). The simulation was made by setting the inŸ 
small disturbance in such a way that  vehic]es move according to solution (4) except 
the one which shifts with 0.1 unit length ahead from this solution: 

xi(0) = ~~o) + o.1, 

x~(o) = o. 

( l o )  

Here we took the parameters N = 100 and L --- 200. A typical result of traffic 
congestion induced by this model is demoustrated in Figure 1, where the positions 
of all vehicles on the circuit are indicated with time development; (x~, t). 
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Typical resu]t of traffic congestion induced in our model. Plots of the 
positions of all vehicles on the circuit with time development (xn, t). 
The parameters are taken as N = 100 and L = 200. 
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3 .  H y s t e r i s i s  L o o p  

From Figure 1, we can observe the global feature of the growth of congestion. 
However, the mechanism and the process of the movement  of each vehicle during the 
organization of congestion is not yet clearly understood. In order to see this, we plot 
the vehicle's movement  in the phase space of the headway and velocity, (Axn, 5cn) 
with t ime development. Figures 2 show the pat terns  of all the vehicle points in 
this phase space at every 100 steps of the t ime interval during the organization of 
congestion. 

At t = 0, points of all the vehicles except one (initial t iny disturbance) are 
concentrated at the point (Ax~, ~~) = (b, c), which is taken as (200/100 --- 2.00, 
tanh 2 = 0.964), in the present case. As t ime goes on, the points of the vehicles begin 
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The patterns of M1 the vehicle points in the phase space correspond- 
ing to Figure 1, during the organization of congestions. 
Fig. 2a: All the vehicle points of first 100 steps, 
Fig. 2b: those of 100th to 200th steps, 
Fig. 2c: those of 200th to 300th steps, 
Fig. 2d: those after 700th step. 
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to move away from this point. All the vehicle points of first 100 steps are plotted in 
Figure 2a, those of 100th to 200th steps in Figure 2b, 200th to 300th steps in Figure 
2c, and finally (after the 700th step) they are located in a closed curve as shown 
in Figure 2d. The reader can recognize the process of the organization by referring 
to the corresponding pat tern in Figure 1. Several closed curves are observed in the 
evolution of congestion. Each closed curve has two end points; one has large headway 
with large velocity (the upper point), and the other has small headway with small 
velocity (the lower point). The upper one corresponds to the region where vehicles 
are moving smoothly, and the lower one, to congestion. Closed curves recognized in 
Figures 2b, 2c represent several kinds of congestion with different e~r densities. For 
example, in the intermediate stage, t = 200 = 400, Ax,~ takes values 0.3, 0.5 and 1.2 
for the lower end points of quasi closed eurves. These closed curves exist temporally. 
Figure 2d shows the final stage of the organizatŸ of congestion. After sufficient 
time, temporal  loops disappear and the vehiele points approach the speci¡ elosed 
curve and at last all vehieles move along this closed curve. 

We eall this closed curve the "hysterisis loop" of congestion. The gate time tha t  
vehicles begin to move along this loop coincides with the time around 700 steps when 
the congestion formation is completed. Two cusp points of this hysterisis loop repre- 
sent two areas in the cireuit. The upper point (Ax,~, i n )  = (3.677, 1.896) represents 
the region of low concentration in the eircuit, where vehicles move smoothly. The 
]ower one (Dan, xn) = (0.323, 0.032) corresponds to the eongested region. A]most 
all vehicles exist at one of these points. Since these two points satisfy the legal 
velocity function (9), they exist right on the legal velocity curve (dashed line). Two 
eurves between two cusp points represent the movement of vehieles in the tran- 
sitional region between high and low eoneentrations. The upper curve shows the 
motion of vehieles entering into congestion from the smoothly moving area, tha t  
is, vehieles moving at the largest velocity ate made to slow down to the smallest 
one along this eurve. On the other hand, the lower curve corresponds to the motion 
of vehicles leaving a congested region and going into the smoothly moving arca. 
Vehicles with the smallest veloeity are gradually accelerated to cateh up to the 
largest one aIoug this curve. We note tha t  vehicles are changing their velocity along 
these two curves, not along the legal veloeity funetion (9). The decelerating vehiele 
has larger veloeity than the corresponding legal veloeity V(,Ÿ On the eontrary, 
the accelerating vehicle has smaller veloeity than the legal one. This diserepancy 
indicates that  the acceleration and deeeleration are delayed. Even ir a driver wants 
to change the veloeity to the legal veloeity for a given headway, the aeeelerating or 
breaking force cannot affeet the veloeity so quiekly. This is the most eharaeteristic 
feature of our model, whieh is easily understood from the faet that  our model is 
formulated us a differential equation of the second order derivative with respect to 
time. This kind of equatŸ is most familiar in the standard equation of motion 
in physies, which guarantees that  vehicles must obey the lave of inertia. This is 
the main reason that  our model generates congestion spontaneously. In short, the 
relation of inertia and the sensitivity of drivers in the baekground of the postulated 
legal velocity curve, induees the congestion and makes it stable. 
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In Figure 1, we have observed 4 clusters of congestion in the final stage. The 
figure of this hysterisis loop (Figure 2) indicates each cluster of congestion has the 
same specific loop, independently of cluster size of congestion. It  is interesting that  
a kind of universal proper ty  of congestion is observed in our model. 

Most vehicles on the circuit in Figure 1 are located at the two cusp points of 
the hysterisis loop in Figure 2d, leaving the other few on the curves between the two 
cusp points. In other words, if one observes the movement of a specific vehic]e, it is 
almost always around one of the two cusp points, and it moves very quickly between 
the congestion and free points along the hysterisis curve. After enough time, the 
congestion and smoothly  moving regions have their specific uniform densities of 
vehicles, and the traffic flow always preserves these densities. This is a reflection 
of the balance between the number of vehicles moving into a congestion cluster 
from a smoothly moving flow and the number  of vehicles moving into a smoothly 
moving area from a congestion cluster. The  equation of motion guarantees to keep 
this balance, by forcing the drivers to control velocity in such manner  as described 
by the hysterisis loop. 

4. Structure  Stabi l i ty  of  Conges t ion  

Let us study the characteristics of congestion. In this section, we discuss the 
stability of the "total  cluster size" of congestion: the total  number  of vehicles located 
in the congested region. For the purpose of this study, we examine the organization 
of congestion with various initial conditions with the total  number  of vehicles N = 
100 and the circuit length L = 200 unchanged. The results will imply that  the total  
cluster size of congestion in the final stage is independent of the initial distribution 
of vehicles. 

Here, we denote the total  cluster size by Nc .  Nc has been 50 with the headway 
having universal value 0.334 in the congested region, which can be seen in Figures 
1 and 2. This is the typical case in the previous section. 

First, we simulate the organization of congestion by taking various initial clus- 
tering pat terns with the same total  size of clusters Nc = 50. The results are shown 
in Figures 3 and 13. 

In Figure 3, the congestion is initially set to be gathered to a single cluster 
with the total  size, Nc = 50. In this case one cluster of congestion is stab]e, tha t  
is, preserving its total  cluster size constant.  The cluster never splits. On the other 
hand, Figure 13 corresponds to the condition in which congestions ate initially 
scattered into several c]usters. With time, we see the absorption and disappearance 
of clusters, but the total  cluster size Nc in the final stage is still the same and 
stable as in the previous cases. Thus we may conclude that  the total  cluster size is 
stable, and does not depend upon initial conditions as long as the total  number of 
vehicles N and the circuit length L are fixed. 

Next, we examine the case for different values of the cluster size. We show the 
results in Figures 4 and 5. 

In the case (Figure 4) where the initial cluster size is larger than  50 (say 
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Plot of the positions of all vehicles on the circuit with time develop- 
ment (Xn,  t )  for the case of N = 100 and L -- 200. The organization 
of congestion by taking an initial clustering pattern gathered to a 
single cluster with the total size, N C - -  50. The simulation indicates 
that the total cluster size is stable and in the final stage becomes 
N C --  65. 

N c  = 70), the cluster first becomes thin, then grows fat and finally it reduces to 50, 
which is the same as the previous cases. The process is well described by the plots 
of all vehicles on the phase space (Axn, ~n) in Figure 6a (first 100 steps), Figure 6b 
(100th-200th steps) and Figure 6c (after 300th step: final stage). In the beginning, 
vehicles in congestion exist at the bot tom end point (Axn, ~n) ---- (0.323, 0.032). On 
the other hand, the other vehicles are located at the top end point (Axn,~n)  ---- 
(5.000, 1.959), in which the headway is larger than that  of the smooth moving region 
of the final state. 

For the first stage (Figure 6a), the vehicles with velocity xn -- 1.959 enter the 
congested region with larger velocity, tending to reach the legal velocity (the dashed 
line) which temporarily creates congestion with a higher density than the initial 
one. Then, this high density congestion gradually evaporates, creating a smooth 
moving region a n d a  region of congestion with normal density grows (Figure 6b), 
approaching to the final stage (Figure 6c). This is easily understood from the fact 
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Plot of the positions of all vehicles on the circuit with time devel- 
opment (Xn, t) for the case of N = 100 and L ---- 200. We take the 
initial clustering pattern gathered to a single cluster with the total 
size, NC ---- 70. The simulation indicates that the total cluster in the 
final stage becomes NC -- 50. 

that  the curves in the initial stage, are outside of the final shape of the hysterisis 
loop (Figure 6d). 

Let us consider the smaller Nc case (say Nc = 30, Figure 5). This time, 
the cluster size first becomes larger with lower density, and then becomes smaller. 
Finally, it approaches to the final cluster size Nc = 50, which is also the same size 
as the previous cases. We can observe this process in more detail in the distributions 
of all the vehicles plotted on the phase space in Figure 7. Initially, the vehicles in 
the cluster of congestion exist at the bo t t om end point (Axn, ~n) ---- (0.323, 0.032), 
with the other vehicles being at the middle point (Axn, ~n) = (2.600, 1.501), where 
the headway is smaller than that  in the smooth moving region of the final state. 
During the t ime interval of 50 ~ 300 steps, the headway in the congestion becomes 
larger (Figure 5). This t emporary  congestion is presented by the inner hysterisis 
curve of Figure 7b. After 300 steps, the headway of the congestion region is reduced 
to 0.032 and vehicles approach the final hysterisis loop (Figure 7c), forming exactly 
the same hysterisis loop as in the previous cases. 
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The patterns of all the vehicle points in the phase space correspond- 
ing to Figure 4 during the organization of congestions. 
Fig. 6a: A]l the vehicle points of first 100 steps, 
Fig. 6b: those of 100th to 200th steps, 
Fig. 6c: those after 400th step. 
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ing to Figure 5, during the organization of congestions. 
Fig. 7a: All the vehicle points of first 100 steps, 
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Fig. 8. Simulation with setting N ---- 100, L ---- 150. The simulation indicates 
that the total cluster size (initially set Nc = 70) in the final stage 
becomes Nc --- 65. 
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We can thus con¡ the stabili ty of the total  cluster size of congestion; the 
total cluster size Nc of the final stage is 50 independently of initial clustering. The 
above two typical ceses have shown tha t  all the vehicle points approach the unique 
hysterisis loop with the top and bo t tom cusp points (Axn, ~n) = (3.677, 1.896) and 
(0.323, 0.032), respectively. This result is independent of whether the start ing points 
are inside or outside of the hysterisis loop. Later we will see tha t  the t rajectory of 
one vehicle in this space (Axn, icn) looks like that  of a limit cycle in phese space. 

We have seen in the several ceses with fixed N = 100 and L = 200 that  the 
total  cluster size of congestion goes to 50 in any initial clustering conditions. This 
result indicates that  the total  cluster size is constant for fixed N and L independent 
of the initial conditions. Tha t  is, this size is determined merely by the number of 
vehicles N and the length of circuit L. Then, to investigate how the total  cluster 
size is determined, we make simulations by setting various N and L, in the following 
two ceses; N = 100, L = 150 and N = 100, L = 250. The  numerical simulation 
indicates Nc = 65 in the first case (Figure 8) and No = 35 in the second cese 
(Figure 9). 
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Simulation with setting N = 100, L = 250. The sknulation indicates 

that the total cluster size (initial]y set N C ---- 50) in the fina] stage 

becomes N c = 35. 
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We have found a remarlmble result for the hysterisis loop of congestion, the 
shape of which is universal whatever values of N and L are taken and, of course, 
does not depend on initial conditions of clustering, which can be read off clearly 
from plots of the vehicles flow in the phase space corresponding to Figures 8 and 
9. The vehicle points approach the same hysterisis loop as in previous typical cases 
and move along this loop. 

This specific loop is determined only by the freedom of the dynamical equation; 
sensitivity a and legal velocity function V(Ax).  In practice this loop expresses 
the local balance of the intermediate region between high and low concentrations. 
This universality of hysterisis is independent of any other conditions. Consequently, 
ZXXmin = 0.323 (headway of the lower cusp point of the hysterisis loop) and Axma• = 
3.677 (that of the upper eusp point) is determined universally. 

With the help of this result, the total  eluster size of congestion Nc is easily 
estimated from the following rough relation: 

{ AXminN C +/%XmaxN F ~ L, 

Nc + NF ~-- N, 
(11) 

where AXmax and NF ate the headway and the sum of vehicles in the free flow 
region. Axmi, and Nc are those in the congestion region. We note tha t  AXm~x and 
Axmin are universal. A]most M1 the vehicles on the circuR are positioned at the top 
and the bot tom cusp points of the hysterisis loop. In the above rough estimation, 
most of the contributions come from these two points. Exact relation of above 
variables are determined by taking into account the contribution of the residual 
vehicles on this loop. The equation (11) implies that  the ratio of Nc and NF is 
determined only by AXmin , AXm~• and b = L /N ,  the inverse of average density of 
vehicles. 

b - AXm~x 
N c / N F  ~- b - AXmin " (12) 

The above structure of congestion does not depend on the length of the circuit. 
Thus, we can confirm the justification for adopting the periodic boundary conditions 
of the circuit of traf¡ and the shape of the hysterisis loop of the final traffic flow is 
invariant, even ir we take the infinity limit of the circuir length with the ratio L / N  
preserved constant. The universality of hysterisis loop guarantees the stability of 
total cluster size of congestion. 

Let us see whether these equations (11) or (12) are available in the two cases 
in Figures 8 and 9. The calculated values are compared with those using Nc  and 
NF from simulations (Table 1). 

On the other hand, the number of clusters is highly dependent on initial con- 
ditions. This has already been understood from the results shown in Figures 1, 3 
and 13. In each case the congestion is stable, but  there ate different numbers of 
clusters. In the previous paper, where all vehicles move with the same constant 
initial velocity and identical spacing, 4 clusters of congestion have been induced as 
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already seen in Figure 1. But ir is not yet clear whether or not there exists any 
relation between the number of elusters and this initial eondition. 

Table 1. 

i )  N - - - - 1 0 0 ,  L =  1 5 0  

ii) N ---- 100, L = 250 

Nc /NF (simulation) 

65 
-- 1.857 

35 

35 
-- 0.538 

65 

b - A x m a  x . 
(estimation) ~ -  

1.5 - 3.677 
- -  1.850 

15 - 0.323 

25  - 3.677 
- 0.541 

2.5 - 0.323 

5. T h e  H y s t e r i s i s  L o o p  as a L Ÿ  C y c l e  

The hysterisis loop in phase space (Ax~, ~~) indicates the existence of ah in- 
teresting phenomena in dynamical  systems. After sufficient time, we observe tha t  
trajectories of vehicles converge to a unique closed loop. In some cases, values of 
(Axn, ion) are initially set outside the hysterisis loop, while in other cases, initial 
points ate set inside this loop. The  results in the figures show us tha t  whenever 
Ÿ positions ate set inside or outside the hysterisis loop, all vehicles are at- 
t racted to this hysterisis loop, forming a spiral loop around it. So, the trajectories 
of vehicles are sepaxated by this closed loop into two domains. This behavior seems 
to be similar to that  of the limit cycle commonly observed in nonlinear dynamical  
systems. In order to study the properties of this kind, it is necessary to investigate 
the orbit of one vehicle in this space. Obviously, the orbit  of one vehicle coincides 
with the hysterisis loop finally after the congestion has formed completely. For the 
purpose of investigating the motion in the whole stage during the organization of 
congestion, we pick up da ta  about  the movement of one vehicle. 

Since the organization process is most  prominently seen in the case of Figure 1, 
this is the case we use here. Figures 100 ~ 10d show the process of organization of 
congestion for the orbit of one vehicle at four stages. Roughly speaking, one loop of 
the t ra jectory indicates tha t  this vehicle passes through one cluster of congestion. In 
the first 200 steps (Figure t0a) and the second 20�91 steps (Figure 10b) the t ra jectory 
has about  10 and 5 loops, with the elliptical curves. These loops correspond to 
rather  obscure clusters of congestion, whose densities of vehicles do not show a 
sharp contrast  to those of non-congestion regions. On the contrary, a loop with 
upper and lower eusp points Ÿ the existence of a clear congestion region. 
Drawing several loops as the vehicle passes clusters of congestion, the orbit gradually 
becomes larger and larger (Figure 10b) to reach the hysterisis loop finally (Figures 
10c and d). 

In the case of Figures 10, we have set the initial eondition in the inner domain 
of the hysterisis loop. This initial point is unstable and the flow of the vehicle 
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point moves repulsively from this point becoming larger and larger to reach the 
attractive hysterisis loop. It is easy to check that if we set the initial point outside 
the hysterisis loop, the ¡ of a vehicle moves attractively to the hysterisis loop 
from the outer domain of this loop. Anyway, the flow of vehicles moves attractively 
to this hysterisis loop, whether starting positions are Ÿ or outside this loop. 
Finally, a flow begins to move along the hysterisis loop and maintain this behavior. 
Prom the above analysis, we can regard this hysterisis loop a s a  kind of a "limit 
cycle" observed in the usual dynamical systems. 

Before closing this section, we show the distributions of vehicles of one clus- 
ter, concentrating on to a specific one among 4 clusters. We choose here the most 
noticeable congestion cluster of Figure 1. Picking up the vehicles located in this 

Fig. 10a Fig. 10b 
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Fig. 10. The orbit of one vehic!e is shown dividing into four stages. The sam- 
ple vehiele is picked up from the vehicles in Figure 1. 
Fig. 10a: The trajeetory of the first 200 steps, 
Fig. 10b: that of 200th to 400th steps, 
Fig. 10c: that of 400th to 600th steps, 
Fig. 10d: that after 800th step. 
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congestion region (Figure 11), we plot all the vehicle points in the phase space, 
dividing the organization into 6 stages. Each stage of Figure 12 is indicated by ah 
arrow in Figure 11. This demonstrates  clearly how all the points expand uniformly 
to the finM attractive hysterisis loop. 

(D 

4 0 0  . . . . .  
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Fig. 11. 

" e 

~ a  

0 40 80 120 155 

traffic po in t  
A speei¡ congestion cluster is chosen a s a  sample among 4 stable 
clusters in Figure 1. 

6. The Dynamica] Behavior of  Clusters of Congest ion 

In this section, we want to investigate the instability of a cluster of vehicles 
aad discuss some properties of dynamical  behavior of clusters, such as combination, 
absorption of disappearance of clusters observed in the intermediate stage of form- 
ing the final stable structure of congestion. For this purpose we initially set several 
sizes of clusters with several distances on the circuir. Figure 13 is the result of a 
demonstrat ive simulation. Clusters are designed to have 2, 3, 4 and other numbers 
of vehicles with distances of 3 of 7 successive vehicles. The headway in each clus- 
ter of congestion and in the smoothly moving area are set on the maximum and 
mŸ values of the hysterisis loop. We can observe several typical behaviors of 
clusters from the result of simulation. 
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Plots of all the vehicle points in the phase space, dividing the or- 
ganization into 6 stages. Each stage of Figure 12 is indicated by an 
arrow in Figure 11. 

First, we can recognize the instability of a cluster. The isolated cluster with the 
number of vehicles less than 3 (the first and second ones in Figure 13) is unstable, 
and that with more than 4 vehicles is stable. A cluster of less than 3 vehicles is 
not big enough for a vehicle moving into this cluster to reach the headway Axmin 
of stable congestion before the preceding vehicle accelerates and exits the cluster. 
Therefore such small clusters cannot maintain the headway of stable congestion 
which is determined from the hysterisis loop. As a result, the congestion becomes 
broad and disappears into the smoothly moving area. 

Next, in Figure 13, we can observe be observed the phenomena where two 
neighbor clusters (4th and 5th ones) are combined as if there exists an attractive 
interaction. The length of the effective range of this interaction is the distance of 
3 successive vehicles with the headway of Axma• This effective range does not de- 
pend on the size of the eluster. It is found that two elusters are stable and move 
independently outside this range. This 'attractive force' aets on the preceding clus- 
ter and pulls it baekward. Therefore a cluster is always absorbed by the following 
cluster, independently of whether the cluster is larger or smaller than the follow- 
ing one. Actually, the 5th cluster having 23 vehicles is absorbed by the 4th cluster 
of 7 vehicles. This phenomena is explained as follows. In the case where the distance 
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Fig. 13. The organization of congestion by taking an initial c]ustering pattern 
scattered into severa| clusters. Clusters are designed to have 3, 2, 6, 
7, 23, 5 and 4 numbers of vehicles with distances of 7, 7, 7, 9, 3, i0 
and 7 successive vehicles. 

between two clusters is too small, a vehicle moving out of the second cluster can not 
accelerate up to the velocity V(~Xm~x) before reaching the first cluster. Therefore 
the hysterisis loop drawn by the motion of this vehicle becomes smaller than that 
of stable congestion, that is, the vehicle makes a congestion with a larger head- 

way. Then, the density of the first cluster reduces and as the result, the cluster 
is stretched backwards. The distance becomes shorter and shorter, and finally, the 
first cluster is absorbed into the second cluster. 

On the contrary, an unstable cluster disappears and is absorbed into a cluster 
ahead of it. We can distinguish the disappearance of cluster from the absorption of 
a cluster by the at tract ive interaction. These are two processes of the combination 
of two clusters in the intermediate stage of forming the stable clusters of congestion. 

7. S u m m a r y  a n d  D i s c u s s i o n s  

We have presented an extremely simple but realistic model of traffic flow which 
induces traffic congestion naturally. We are now convinced that  the dynamics of 
traffic flow is a collective motion problem. The evolution of traffŸ congestion is 
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an appearance of this substantial  property.  This phenomena is a kind of phase 
transition induced by the nonlinear effect of dynamical  equations of motion. We 
have investigated the characteristic properties of the traffic congestion in our model, 
especially the organization process and the stability of the structure of congestion. I t  
turns out that  these phenomena are well described by plotting motions of vehicles 
in the phase space of velocity and headway. The most remarkable feature is the 
universality of "the hysterisis loop" in this phase space, which is observed in the 
final stage of the congestion organization. This loop is understood as a limit cycle 
of the dynamical  system. This universality guarantees the stability of total  cluster 
size. 

In earlier works on traffic dynamics, the at tention of many  investigators was 
focused on the t ime lag of a driver's response to the stimulus from other vehicles. 
Their models of traffic flow are essentially the first order differential equations with 
respect to time. On the contrary, our model introduces the effect of t ime lag through 
the second order differential equations based on the equation of motion in physics. 

We discuss the effect of boundary conditions in our simulation results. As 
mentioned in Section 4, the structure of congestion does not depend on the length 
of the circuit. The ratio of the total  number  of vehicles in congestion and that  of 
others are determined by the inverse average density of vehicles b = L/N and AXmi n 
and Axmax from hysterisis loop, which is highly universal and never depends on 
the initial and boundary  conditions. Thus, we can insist that  the periodic boundary 
condition of the circuit of traffic is not essential. 

Here, we must  comment  on the t ranspor ta t ion  of vehicles in our model. A1- 
though the quanti ty should be checked against observational data,  we only discuss 
here a comparison of the t ransport  of the flow including congestion with that  of 
the steady state flow with constant velocity. The capacity of t ranspor ta t ion may be 
defined as the number  of vehicles passing through a point per time. In our model, 
the capacity of t ranspor ta t ion  can be defined as follows. 

After the congestion formation has been completed, the flow is steady with 
high and low density regions on the circuit, and all vehicles behave in the same 
way; a vehicle moves with the constant velocity V(AXmin) in a high density region, 
and V(Axmax) in a low density region. Every vehicle moves along the circuit with 
period T. The capacity of t ranspor ta t ion is roughly estimated as N/T, where N is 
the total  number of vehicles on the circuit. T is derived as follows. We must remark 
tha t  there are two different periods: the period T where a vehicle moves around the 
circuit and the period To where a vehicle passes all clusters of congestion. We have 
seen that  the clusters move backward with the velocity Vback *). Using this velocity, 
To is expressed as 

AXmax " NF AXmin �9 NC 
T O ~'~ V(zŸ -]- Vbac k "-~ V(zŸ -~- Vbac k . ( 13 )  

The relation between T and To is given as 

�9 ) Vback is estimated as follows, Vb~ck --~ ~:min V(Axmax) -- V(Axmin). max 
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~:(1~ ~b~'~) ~o ~1,~ 

where the difference between T and To is obtained by estimating the ratio of the 
circuit length to the path which clusters move in the period T with the velocity 
Vb~ck. Then, we obtain the capacity of transportation N/T.  In the typical case of 
L = 200 

-0 .263N + 200.99 
N / T  ~- N 389.2N - 1478.8 ' (15) 

with Axm~x and ,Ÿ237 n a r e  read off from the data of hysterisis loop. Notice that the 
above equation is applicable for 59 < N < 606 in case of circuit length L = 200. The 
minimum value bound mean~, the critical value for at least one cluster of congestion 
to exist, which consists of more than 4 vehicles. N = 606 corresponds to the case 
where the whole circuit is occupied by clusters of congestion. 

0.6 

Fig. 14. 

t,,) 

0.5 

0.4 

0.3 
\ 

0.2 

0.1 

0.7 

I I I 

0 100 200 300 400 500 600 700 
N 

The comparison of the capacity of transportation as variable N for 
the traffic flow with and without congestion. The solid and dashed 
lines denote the transport of flow with and without congestion and 
correspond to equations (15) and (16), respectively. The range be- 
tween vertical dotted lines is unstable for the flow without conges- 
tion. 
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On the o ther  hand,  in the  fiow wi th  no congestion, which denotes  the s teady  
flow of uni form dis t r ibut ion  of vehicles on circuit moving with the  cons tan t  veloci ty 
V(b), where b is the  identical  headway  b = L/N, the capac i ty  of  t r anspo r t a t i on  is 
N/T', where T '  = L/V(b). In the case of  L = 200, 

N/T~~-200N { t a n h  ( 2 N 0 _ 2 )  + t a n h 2 }  ' (16) 

The  compar ison  of the capaci ty  of t r a n s p o r t a t i o n  as variable N for two si tuations,  
equat ions (15) and  (16) are shown in F igure  14. T h e  solid and dashed  lines denote  
the  t r anspor t  of fiow with  and wi thou t  congestion,  respectively. T h e  uniform solu- 
t ion is uns table  in the  range between vert ical  do t ted  lines, in which the  t rans i t ion 
f rom free to congested flow occurs. In this  case, the  existence of congest ion reduces 
the capacity of transportation in the region N <_ 103, and increases the capacity 
in the region N > 104. We would like to analyze the details of this behavior in a 
future paper. It must be remarked that these two eurves are derived as solutions of 

two different phases from our model. 
This feature is in sharp contrast to the other models studied before. We shall 

make further analysis of this point and check against observational data. 
Several modifieations of our simple realistic model may be interesting for fur- 

ther studies. We have assumed that sensitivity is independent of such variables as 
veloeity, headway or the relative veloeity of the vehicle ahead. 

In earlier works, these kinds of improvements have been made extensively to 
make the model more realistic, which can also be done a]so for our model. Sensitivity 
may also depend on each drivers' character. This variation might be more interesting 
and may provide us with as yet unknown pattern formations of eongestion. 

Acknowledgment. The  authors  t h a n k  to Masaya  Yamagu t i  and  his colleagues 
for helpful discussions and  eucouragement .  

R e f e r e n c e s  

[1] D.C. Gazis, R. Herman and R.W. Rothery, Nonlinear follow-the~leader models of traffic 
flow. Oper. Res., 9 (1961), 545-567. 

[2] G. F. Newell, Nonlinear effects in the dynamics of car following. Oper. Res., 9 (1961), 
209-229. 

[3] L.A. Pipes, An operational analysis of traffic dynamics. J. Appl. Phys., 24 (1953), 274-281. 
[4] M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical Model of 

Traffic Congestion and Numerical Simulation. Preprint Aichi 93/1 Jan. 1993 submitted to 
Oper. Res. 




