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We study the structure of solutions of a semilinear elliptic equation called Matukuma's 
equation. This equation is a mathematical model for describing the dynamics of a globular 
cluster of stars. It is known that, under some conditions, there exists a solution called a 
positive entire solution with finite total mass. Ir is conjectured that the ¡ total mass 
solution is unique. In this paper the structure of positive radial solutions is made clear 
and ah affirmative answer is given to the conjecture. 
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1. I n t r o d u c t i o n  

We consider  a semi l inear  e l l ipt ic  equa t ion  

1 
(1) A u ( x )  + 1 + ixl---------~u(x)P = 0, x E R '~. 

T h r o u g h o u t  this  pape r ,  we assume n ~ 3 and  i < p < ~ .  E q u a t i o n  (1) wi th  n = 3 
was p roposed  by  M a t u k u m a  [3] a s a  m a t h e m a t i c a l  mode l  of a g lobu la r  c lus ter  of 
s tars ,  in which u > 0 r ep resen t s  the  g r av i t a t i ona l  po t en t i a l  and  

1 
fE' 47r(i + }wlz) u(x)pdx 

represents  the  t o t a l  mass .  T h e  m a i n  pu rp os e  of th is  p a p e r  is to  prove the  uniqueness  
of a pos i t ive  r ad ia l  ent i re  so lu t ion  w i th  f inite t o t a l  mass.  

Any  rad ia l ly  s y m m e t r i c  so lu t ion  u = u(r), r = Ir{, of Eq. (1) satisfies the  
o rd ina ry  different ia l  equa t ion  

n - 1  1 
u , ( r )  + u~(r)  + 1 - - T ~ u ( r ) ~  = 0, r > 0, 

(2) 
~(0) = ~ > o, ~~(0) = o. 

I t  was shown by  Li and  Ni (see T h e o r e m  2.41 of [1]) t ha t  so lu t ions  of this  equa t ion  
are  classiŸ into  the  foUowing th ree  types :  

T y p e  I: u ( r )  has  a f inite zero; 
T y p e  II:  u(r) is pos i t ive  on [0 ,+oo)  and  u(r) "- ( logr)  1/(1-p) a t  +oo;  
T y p e  III :  u(r) is pos i t ive  on [0, + c o )  and  u(r) ~ r 2-'~ at  +co .  

Here the  n o t a t i o n  "v( r )  "~ w ( r )  a t  + c o "  means  t h a t  there  exist  pos i t ive  cons tan ts  
C1 and  C2 such t ha t  ClW(r) < v(r) < C2w(r) at  +c~ .  
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Any solution u(r) of Type II satisfies 

~oo +r u(r )prn- ldr  = +co, 
1 

l + r  2 

so u(r) of Type II is a positive entire solution with in¡ total mass, whi]e any 
solution u(r) of Type fil satisfies 

~0 +~176 u(r )prn- ldr  < ~-oo, 
1 

l +r 2 

so u(r) of Type III is a positive entire solution with finite total mass. Hereafter we 
simply denote a solution of Type II by ala inŸ total mass solution and denote a 
solution of Type III by a finite total mass solution. 

It was proved by Ni and Yotsutani [4] that  u(r) has a ¡ zero for every suf¡ 
ciently larga a and that  u(r) is ah in¡ total mass solution for every sufficiently 
small a. Recently it was proved independently by Li and Ni [2] and Noussalr and 
Swanson [5] that there exists at least one a such that u(r) is a finite total mass solu- 
tion. It is conjectured by these authors that  the finite total mass solution is unique. 
The purpose of this papar is to give an affirmative answer to this conjecture. 

Our main result is the following theorem: 

TItEOREM. Let u(r) be a solution of Eq.(2). There exists a unique a* > 0 
such that 
(i) ir a > a*, then u(r) has a finite zero, 
(ii) ff a = a*, then u(r) is a finita total mass solution, and 
(iii) ir a < a*, then u(r) is an infinita total mass solution. 

Recently it was proved by Li and Ni that  any bounded'positive entre  solution 
with finite total mass is necessaxily radially symmetric about the origin if p > 
( n -  1 ) / ( n -  2) (see Theorem 2.2 of [2]). A s a  direct consequence of their result and 
the above theorem, we have the following coroUary: 

COROLLARY. /Je (n -- 1)/(n - 2) < p < (n + 2)/(n - 2), Eq.(1) has exactly one 
positiva entire solution with finita total mass. 

2. P r o p e r t i e s  of  So lu t ions  of  M a t u k u m a ' s  E q u a t i o n  

Since we are only concerned with positive solutions, we may consider, instead 
of (2), 

(3) 
u~~(r) + n -r luz(r) + l ~--~u+(r) p -= O, 

u(O)  = ~ > O, ~~(0)  = O, 

r > 0 ,  

where u+(r) =_ max{u(r),  0}. 
Solutions of this equation have the following properties: 
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LEMMA 2.1. 
(i) u~(r) < 0 / o r  all r > O. 
(ii) I] u(r) > 0 … all r ~ O, then lim~__.+oo ru,(r)  = O. 
(in) For all r > O, the following Pohozaev identity holds: 

where 

~'. ,(r)'  + (~ - 2)~'-1.(r)~~(~) + 
2r ,~ 

(p + 1)(1 + r2) 
u+(r)p+' 

L 
P 

= C(s)u+(s)P+'ds, 

G(r) - (p + ~ - ~ ~ - ~ i ) ,  2 - p - (p - 1)r2 " 

Proof of (i). This is proved in Proposit ion 4.1 (b) of [4]. 

Proof of (ii). Equat ion (3) can be wri t ten as 

rn-1 
(4) { r " - l u r ( r ) } ~  - -  1 -I- r 2 u(r)P" 

Hence we have 
~0 r 8 n -1  ru r ( r )  = - 1--~~s2U(s)Pds/r'-2. 

By the l 'HSspital 's rule and Theorem 2.41 of [1], we obtain 

rn- - I  
lim r u r ( r ) = -  lim u(r) p 2)r n-3 0. ,---.+oo ~--.+oo ~ / ( n  - : 
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Proof of (iª This is a special case of Proposit ion 4.3 of [4]. Using (3), we 
have 

r n 

= a(,.)~+(r),+i. 

Integrating this over [0, r),  we obtain the desired identity. 

Note that  if we put  

R -  ; > 0 ,  p-1 
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G(r)  satis¡ 

E. YANAGIDA 

(G( r) > 0 i f O < r < R ,  
(5) G ( r ) < O  i f R < r < + c o .  

LEMMA 2.2. Let u = r  be a f ini te  total mass solution of  Eq.(2). Then 
(i) lim~_.+~ rn -2 r  and lim~--.+o~ r '~-lr  exist and are finite, 
(ii) rr + (n - 2)r > 0 for  all r ~_ O, 
(i¡ f £  G ( s ) r  > 0 for  all r > O. 

Proof of(i) .  This is clear from Lemma 7.1 of [4]. 

Proof of  (¡ From (3), we have 

r 
{r r  + (n -- 2) r  -- 1 + r2 r  p < 0. 

Integrating this over [r, +co) and using r r  + (n - 2)r  ~ 0 as r --* +co, we 
obtain 

f+o~ r > O. 
$ 

rr  + (n - 2 ) r  = 1 + s2 

Proof of (¡ If 0 < r ~  R, this is clear from (5). By (i), the left-hand side of 
the Pohozaev indentity for r  tends to 0 as r ~ +co. This means 

o +~176 G(s)r  ds -- O. 

Hence, if R < r < +co,  it follows from (5) that 

G(s)r  = - G ( s ) r  > O. 

3. M a i n  L e m m a s  

Let r  be a finite total mass solution of Eq.(2) and let u(r)  be any solution 
of (3). In this section we shall prove that  u(r)  - r  has one and only one zero ir 
~(0) # r 

LEMMA 3.1. / f u (0 )  # r then u(r)  - r  has at least one zero. 

Pro@ From (3), we have 

7 ,n- I  
{ < - ' u ~ ( r ) } ~  + --:-=z~~ ~+(/ ' )  , = 0, 

I -I-/" 

rn-1 
{ < - 1 r  + __r~~~ r  = 0. l - t - r  
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Mult iplying these equalities by r  and u(r) ,  respectively, and integrat ing by parts, 
we obtain  

/0~{ ~~-~ - u + (s) p ~ �91 0 = { <  ~~~}~(s) + ~ j 

r 8n--1 
--lO {{rrt--l~)r}r(8)-t- 1-"-@~82~)(3)P~ u(s)d8 

= [ s o - l u r ( s > ~ ( s ~ - s ~ - l ~ r ( s l u ( s l ] ~  

+ for { ~ { u + ( s ) ' r  - r  d8 

= <-lu~(r)r - <- lr  

/o~{ ~~-~ } + - - ~ , , + r s ~  p-1 - r p-l}  r l ~ s 2 t -  ~ J 

Hence we obtain  an ident i ty  

r '~-1 { r  - u~(r) r  

(6) lo. r s.-~l + ~~ } = _ _  ?.�91 p- -1  { (s) - r  r 

First suppose u(r )  > r  for all r > 0. Then  u( r )  must  be a positive entire 
solution so tha t  u( r )  "~ (log r)  1/(1-p) or u(r )  ~-~ r 2 -~  at  +co .  In  either case, by 
Lemmas  2.1 (ii) and 2.2 (i), the left-hand side of (6) tends to 0 as r --+ +c~.  
However, since it is supposed that  u(r )  > r  for all r_~ 0, the r ight-hand side of 
(6) is positive as r ~ +oo .  This is a contradict ion.  

Next suppose u(r )  < r  for all r >  0. Then,  either u(r )  ~ r 2 -~  at +oc  of 
u ( r )  has a finite zero. If  u ( r )  ~ r 2-'~ at +~o, then the left-hand side of (6) tends 
to 0 as r ---} + c o  while the r ight-hand side is negative as r --* +co ,  which is a 
contradict ion.  If  u( r )  has a finite zero, say r0, then 

r ' ~ - l { r  - u~( ro ) r  

= - r ~ - l u ~ ( r o ) r  > O, 

which contradicts  

( S r ~ - I  

/o~~ ~ ~ , ~ ~ / ~ / ~  -1 - ~r -1, } o/s/~/~/~~ < o. 

Thus  it is sho'wn tha t  u ( r )  - r  has at least one zero. 

LEMMA 3.2. I f u ( 0 )  # r  then u(r)  - r  has at mos t  one zero. 

P r o @  Suppose tha t  u(0) > r and u ( r ) - ~ b ( r )  has two or more zeros and let 
t i  and r2 denote the first zero and second zero, respectively. By the uniqueness of a 
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solution of the initial value problem, we have u~(rl) < r and u~(r2) > r 
Hence 

{ u(r) > r  ifO < r < r l ,  
u(r )<r  i f r l  < r < r 2 .  

Then, by (6), 
r  - ~ . ( ~ ) 4 ( ~ )  > 0 ir 0 < ~ z  ~~. 

On the other hand, since u(r2) = r and u,(r2) > q~~(r~.), 

Hence, by the intermediate value theorem, there exists a n a  e ( t i ,  rz ) such that 

{ ~(r)u(r)-  u~(r)r > 0 if O < r < a, 
�91 u~(r)r = 0 if r = a, 

or equivalently, 
{ d ~ r ~ { u ~  } > 0  i f 0 < r < a ,  

Put c =_- r > I. Since r is a strictly increasing function for 
r E (0, a), we obtain 

{ cu(r)>r i r0  < r < a ,  

Moreover, since r - u~(a)r = 0 and cu(a) = r we have cuz(a) = 
r From the Pohozaev identities for q~(r) and u(r), ir folIows that: 

{ 2a" u(a),+~t ~+~ ~~~'(~)~ + (~ - 2)a~-~~(~)~~(~) + (p + t)(1 + ~~) 

- ~~r  + ("  - 2 ) a " - ~ r 1 6 2  + (p + 1)(1 + ~~) 

= a(~){e ,+ '~(~) ,+  ~ _ r247 

Using cu(a) = r  and cuz(a) = r we obtain 

(~ -~  _ 1){~,~r + (n - 2 ) ~ ~ - ~ £  

(z) 
-- lo  ~ c(~){~'+ '~(~) "+~ - r }a~. 

If R~a,  sirtce cu(r) > ~b(r) and G(r) > 0 for r e (0,a),  the right-hand side 
of (7) is positive. If R < a, put d - r > 0. Since fb(r)/u(r) is a strictly 
increasing functiort of r in (0, a), it follows that d < c and 

{ d,~( , ' )>r  i f O _ ~ , ' < R ,  
du(r)<r  i f R < r <  a. 
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Hence,  by L e m m a  2.2 (iii), 

~ a G ( s ) { c P + l u ( 8 )  p+I _ r  ds 

/o ~ > G(s){cV+lu(s)  p+I - (c /d)V+lr 

lo = ( c / e ) , §  G(8) {e '+~u(s )  ~§ - r 2 4 7  

Since G(r )  and dP+lu(r )  p+t - r  p+I are posi t ive if 0 < r < R and are negat ive 
if R < r < a, the r igh t -hand  side of this inequal i ty  must  be posit ive,  t i en te  the 
r igh t -hand  side of (7) is posit ive.  Since c > 1 and  r  < 0, ii follows from (7) tha t  
aC• + (n - 2)r  ) < 0, which contradic ts  L e m m a  2.2 (ii). Thus  it is shown tha t  
u(r)  - r  has at  most  one zero in case u(0) > r  

The  proof  in case u(0) < r can be ob ta ined  in the  same manner .  So we omit  
it. 

4. P r o o f  o f  T h e o r e m  

Let us comple te  the proof  of Theorem.  Firs t  we prove the uniqueness  of the 
finite to ta l  mass  sotution. Suppose t ha t  Eq. (2) has two dist inct  finite to ta l  mass  
solutions r  and  r  We assume �90 > r  wi thout  losing generality. 

By vir tue of L e m m a s  3.1 and 3.2, r  - r  has one and only one zero, i.e. 
there  exists an r l  > 0 such tha t  

{ r  > r  i f 0 _ ~ r  < r , ,  

r  < r  i f r l  < r  < +oo.  

I f  0 ~- r < r l ,  it follows f rom (6) tha t  

r n - l { r 1 6 2  - r 1 6 2  

~0 r ( $ n-I } = ~ ~ { r  p - '  - r  p - ' }  r162  > O. 

I f r l  < r < +oo,  it follows f rom (6) and the  fact t ha t  r n - l { r 1 6 2 1 6 2 1 9 1  
0 as r ---+ + o o ,  

~ ~ - l { r 1 6 2  - r162  

( 8 n - 1  

These  mean  tha t  r 1 6 2  - r 1 6 2  > 0 for all r > 0, or equivalently,  r 1 6 2  
is a s t r ict ly increasing funct ion of r > 0. Hence,  if  we put  d - r 1 6 2  we have 

{ d r 1 6 2  i r0  < r < R ,  

d # / ( r ) < r  i f R < r < + o o .  
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From the Pohozaev identities for r  and r  it follows that:  

{ 2r ,~  r  1 d "+l r '~r 2 + (n - 2)r'~-ir162 -F (p + 1)(1 + r2) " ' - '  J 

{ 2r" )r } - r " r  2 + (n - 2)r'~-ir162 + (p + 1)(1 + r 2 

/o = G ( s ) { d p + l r  4+1 - r  

The left-hand side tends to 0 as r + co. However, since G(r) and dp+lr  p+I - 
r  p+I are positive if 0 < r < R and are negative if R < r < +co,  the right-hand 
side is positive as r ~ +co. This is a contradiction. Thus the uniqueness of the 
finite total mass solution is proved. 

Next let r  be the unique finite total  mass solution and let u(r)  be any 
solution of (3) satisfying u(0) > r Ir u(r) > 0 for aH r_~ 0, from the uniqueness 
of the finite total  mass solution, u(r) satisfies u(r)  - ( l o g r )  i/(1-p) at Eco. Hence 
u(r)  > r  for all sufficiently large r, which contradicts Lemmas 3.1 and 3.2. Hence 
u(r)  must have a finite zero. 

Finally let u(r) be a solution of (3) satisfying u(0) < r Since u(r) - r  
has one and only one zero, u(r)  does not have a finite zero. From the uniqueness 
of the finite total  mass solution, u(r) must  be an infinite total  mass solution. Thus 
the proof of Theorem is completed. 

5. C o n c l u d i n g  R e m a r k s  

In this paper  we have established the uniqueness of the finite total  mass solution 
of Matukuma 's  equation. We note that  the method used in this paper  is applicable 
to a more general equation 

n - 1  
~~~(r) + ~~(r) + g(r)u(r)" = 0, 

r 

if the following conditions are satisfied: 
(C1) g(r) ~_ 0 for all r > 0 and g(r) ~-~ r -2 at +co.  
(C2) There exists ah R > 0 such that  

2 n G(r) - -~--~(r  g(r)}r  - (n - 2)r'~-ig(r) 

satisfies G(r) > 0 for r E [0, R] and G(r) ~_ 0 for r E IR, +co).  
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