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Structure of Positive Radial Solutions of Matukuma’s Equation
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We study the structure of solutions of a semilinear elliptic equation called Matukuma’s
equation. This equation is a mathematical model for describing the dynamics of a globular
cluster of stars. It is known that, under some conditions, there exists a solution called a
positive entire solution with finite total mass. It is conjectured that the finite total mass
solution is unique. In this paper the structure of positive radial solutions is made clear
and an affirmative answer is given to the conjecture.
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1. Introduction

We consider a semilinear elliptic equation

1
(1) Au(z) + m;l—zu(z)p =0, zeR"
Throughout this paper, we assume n 2 3 and 1 < p < 22, Equation (1) withn = 3
was proposed by Matukuma [3] as a mathematical model of a globular cluster of
stars, in which u > 0 represents the gravitational potential and

1 P
/Ra 4r(1 + Izlz)u(z) de

represents the total mass. The main purpose of this paper is to prove the uniqueness
of a positive radial entire solution with finite total mass.
Any radially symmetric solution u = u(r), r = |z|, of Eq. (1) satisfies the
ordinary differential equation
u (r)+?—_—1u (r)+ ——=u(r)?=0, r>0
(2) T r T 1 + 1"2 ) )

u(0)=a>0, u.(0)=0.

It was shown by Li and Ni (see Theorem 2.41 of [1]) that solutions of this equation
are classified into the following three types:

Type I u(r) has a finite zero;
Type II: u(r) is positive on [0, +00) and u(r) ~ (logr)*/(=P) at +oo0;
Type LI u(r) is positive on [0,+00) and u(r) ~r2™™ at +oo.

Here the notation “v(r) ~ w(r) at +00” means that there exist positive constants
C1 and C; such that Ciw(r) < v(r) < Cyw(r) at +oo.
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Any solution u(r) of Type II satisfies

+oo 1
/(; 1472 u(r)prn—ldr = +00,

so u(r) of Type II is a positive entire solution with infinite total mass, while any
solution u(r) of Type III satisfies

+oo 1 .
Ppt~ldr < )
/0 153 u(r)Pr r < 400

so u(r) of Type III is a positive entire solution with finite total mass. Hereafter we
simply denote a solution of Type II by an infinite total mass solution and denote a
solution of Type III by a finite total mass solution.

It was proved by Ni and Yotsutani [4] that u(r) has a finite zero for every suffi-
ciently large a and that u(r) is an infinite total mass solution for every sufficiently
small a. Recently it was proved independently by Li and Ni [2] and Noussair and
Swanson [5] that there exists at least one a such that u(r) is a finite total mass solu-
tion. It is conjectured by these authors that the finite total mass solution is unique.
The purpose of this paper is to give an affirmative answer to this conjecture.

Our main result is the following theorem:

THeOREM. Let u(r) be a solution of Eq.(2). There ezists a unique a* > 0
such that
(i) i a>a*, then u(r) has a finite zero,
(ii) if a = a*, then u(r) is a finite total mass solution, and
(iii) if @ < &, then u(r) is an infinite total mass solution.

Recently it was proved by Li and Ni that any bounded ‘positive entire solution
with finite total mass is necessarily radially symmetric about the origin if p >
(n—1)/(n—2) (see Theorem 2.2 of [2]). As a direct consequence of their result and
the above theorem, we have the following corollary:

CoroLLARY. If(n—1)/(n—2) <p < (n+2)/(n-2), Eq.(1) has ezactly one
positive entire solution with finite total mass.

2. Properties of Solutions of Matukuma’s Equation

Since we are only concerned with positive solutions, we may consider, instead
of (2),

n—1 1 +
@) U (T) + ;. u(r) + Tyt (r)»=0, r>0,

u(0) =a >0, u.(0)=0,

where u*(r) = max{u(r),0}.
Solutions of this equation have the following properties:
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LEmMa 2.1.
(1)  wus(r) <0 forallr > 0.
(ii) Ifu(r) >0 for allr= 0, then lim,_, 4o ru (r) = 0.
(iii) For all v > 0, the following Pohozaev identity holds:

2r™

CES TSR

" u.(r)? + (n = 2)r" Tu(r)u(r) +

_ / " G(s)ut(s)Pds,

where

Gy = =D {n+2 B

(p+ 1)1 +72)? {n-2 P—(p—l)rz}.

Proof of (i). This is proved in Proposition 4.1 (b) of [4].

Proof of (ii). Equation (3) can be written as

(4) {r"tun(r)}e = - u(r)?.

Hence we have

T on—l1
rus(r) = —/(; 13+ v u(s)Pds/r* 2.
By the I'Héspital’s rule and Theorem 2.41 of [1], we obtain

n—1

u(r)?/(n—2)r"=3 = 0.

rBIEoo 'I"U.,-(T) = rlil+n°° 1+ r?

Proof of (iii). This is a special case of Proposition 4.3 of [4]. Using (3), we
have

2r™
(p+1)(1+72)

n n—1
_ 2 r _(n=2)r w(r)PH
p+1\1+r%/, 1472

= G(r)ut(r)P+.

a4 {T"ur(r)2 + (n = 2)r" Yu(r)u(r) + u+(r)P+l}

Integrating this over [0,7), we obtain the desired identity.

Note that if we put

R

{(n+2)1/’(1z1—2)—p}”2>0’
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G(r) satisfies

5) {G(r)>0 f0<r<R,

G(r)<0 fR<r<+oo.

LEMMA 2.2. Let u= ¢(r) be a finite total mass solution of Fq.(2). Then
(i) limy i P 2@(r) and lim,— 400 7™ 1@, (r) ezist and are finite,
(ii) rd.(r) +(n—2)p(r) >0 for allrz 0,
(i) f, G(s)¢(s)*t1ds > 0 for allr > 0.

Proof of (i). This is clear from Lemma 7.1 of [4].
Proof of (ii). From (3), we have

{r.(r) + (n — 2)$(r)} = ——— $(r)? < 0.

147

Integrating this over [r, +00) and using r¢.(r) + (n — 2)¢(r) — 0 as r — +00, we
obtain

d(s)Pds > 0.

+o0
)+ (=200 = [

Proof of (iii). If 0 < r= R, this is clear from (5). By (i), the left-hand side of
the Pohozaev indentity for ¢(r) tends to 0 as r — +oo. This means

+oo
/; G(s)p(s)Ptds = 0.

Hence, if R < r < 400, it follows from (5) that

r + o0
/; G(s)p(s)Pt1ds = —/ G(s)p(s)Pds > 0.

3. Main Lemmas

Let ¢(r) be a finite total mass solution of Eq.(2) and let u(r) be any solution
of (3). In this section we shall prove that u(r) — ¢(r) has one and only one zero if

u(0) # ¢(0).
LemMma 3.1.  If u(0) # ¢(0), then u(r) — ¢(r) has at least one zero.
Proof. From (3), we have

rn—l

1+72
rn—l

1+r2¢

{r"u(r)}r + ut(r)? =0,

{r"76.(r)}- + (r)? =o0.
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Multiplying these equalities by ¢(r) and u{r), respectively, and integrating by parts,
we obtain

0= [{ortubio+ 5

- [emto00+ Zsotr utos

w5 olelas

1+ s?
= [s" Yun(s)d(s) — 5" 8, (s)u(s)]

+ [ St (s)Pe(s) - o)Pu(s)} } s

1+ g2

="y (r)o(r) — 1 g (r)u(r)
[ { S ey - 35771} ole)ulo)ds.

1+ s?

Hence we obtain an identity
r"Hee(r)u(r) — un(r)é(r)}
(6) T gnl ot ot
= [t e - oty stoutsyas

14 82

First suppose u(r) > ¢(r) for all r= 0. Then u(r) must be a positive entire
solution so that u(r) ~ (logr)*/(*=?) or u(r) ~ r>=™ at +oo. In either case, by
Lemmas 2.1 (ii) and 2.2 (i), the left-hand side of (6) tends to 0 as r — +oo.
However, since it is supposed that u(r) > ¢(r) for all r = 0, the right-hand side of
(6) is positive as r — +oo. This is a contradiction.

Next suppose u(r) < ¢(r) for all »= 0. Then, either u(r) ~ r2™™ at +oo or
u(r) has a finite zero. If u(r) ~ r~™ at +oo, then the left-hand side of (6) tends
to 0 as r — +oo while the right-hand side is negative as r — 400, which is a
contradiction. If u(r) has a finite zero, say ro, then

e " @r(ro)u(ro) — un(ro)d(ro)}
= —r? Yu(rg)d(ro) > 0,

which contradicts

/Oro {18:;:2 {ut(s)P~! - ¢(s)p—1}} P(s)u(s)ds < 0.

Thus it is shown that u{r) — ¢(r) has at least one zero.
LemMma 3.2. If u(0) # ¢(0), then u(r) — ¢(r) has at most one zero.

Proof. Suppose that u(0) > ¢{(0) and u(r)— ¢(r) has two or more zeros and let
7, and 73 denote the first zero and second zero, respectively. By the uniqueness of a
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solution of the initial value problem, we have u,(r) < ¢,(r1) and u.(rz) > ¢-(r2).

Hence
{u(r) >o(r) f0=r<r,

ﬁ(’l") < QS(T) ifr; <r<rg.
Then, by (6),
o(r)u(r) —u (r)p(r) >0 fO<rS ry.

On the other hand, since u(ry) = ¢(rs) and u.(r2) > ¢.(r2),

Br(r2)u(rs) — urra)o(r:) = {@rr2) —ur(r2)}d(r2) < 0.
Hence, by the intermediate value theorem, there exists an a € (r;,rz) such that
{qﬁ,(r)u(r) —up(r)p(r) >0 HO0<r <a,
$r(r)u(r) = ur(r)d(r) =0 ifr =a,

or equivalently,
d {¢r)}>0 ifo<r<a,

dr

ur
%{%%}=0iw:¢

Put ¢ = ¢(a}/u{a) > 1. Since ¢(r)/u{r) is a strictly increasing function for

r € (0,a), we obtain
{cu(r) >¢(r) f0S7r<a,

cu(r) = @(r) ifr=a.
Maoreover, since ¢.(a)u(a) — u-{(a)¢(a) = 0 and cu{a) = ¢(a), we have cu.(a) =
$-(a). From the Pohozaev identities for ¢(r) and u(r}, it follows that:

Pt {a"u,(a)2 + (n - 2)a™ u(a)u.(a) + G—J{—_—gg—mu(a)”“}
n 2 n—1 2a” Pl
~{omontar + - 20 ba10 )+ P otar

- /0 " G} (P u(s)P — g(s)7H b,
Using cu{a) = ¢(a) and cu.(a) = ¢.(a), we obtain
(7! = 1){a"¢,(a)* + (n ~ 2)a" " ¢(a)¢.(a)}

= /Oa G(s{ P u(s)Pt! - B(s)P+ Y ds.

If Rza, since cu(r) > ¢{r) and G(r) > 0 for r € (0,a), the right-hand side
of (7) is positive. If R < a, put d = ¢(R)/u(R) > 0. Since ¢(r)/u(r) is a strictly
increasing function of = in (0, a), it follows that d < ¢ and

{du(r) >¢(r) f0Sr<R,
du(r)< ¢(r) fR<r=sa.

(7)
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Hence, by Lemma 2.2 (iii),
/0“ G(s){cPF u(s)P*! — ¢(s)7* ' }ds
N /a G(s){cp+1u(s)p+1 _ (c/d)p+1¢(8)p+l}ds
0

=l [ " G(s){dP u(s)?H — §(s)P Y.

Since G(r) and dP*lu(r)P*! — ¢(r)P*! are positive if 0 < r < R and are negative
if R < r < a, the right-hand side of this inequality must be positive. Hence the
right-hand side of (7) is positive. Since ¢ > 1 and ¢,(a) < 0, it follows from (7) that
a¢-(a) + (n ~ 2)¢(a) < 0, which contradicts Lemma 2.2 (ii). Thus it is shown that
u(r) — ¢(r) has at most one zero in case u{0) > ¢(0).

The proof in case #(0) < #(0) can be obtained in the same manner. So we omit
it.

4. Proof of Theorem

Let us complete the proof of Theorem. First we prove the uniqueness of the
finite total mass solution. Suppose that Eq. (2) has two distinct finite total mass
solutions @{r) and ¥(r). We assume 9(0) > ¢(0) without losing generality.

By virtue of Lemmas 3.1 and 3.2, ¢(r) — ¢(r) has one and only one zero, i.e.
there exists an r; > 0 such that

{zﬁ(r) > ¢(r) if0<Sr<r,
P(r) < ¢(r) ifry <r < +oo.

If 0 = r= rq, it follows from (6) that

" H g (r)(r) — Y (r)d(r)}
= /r{ ™ {’(/J(S)P—l _ ¢(S)P—l}} ¢(3)¢(5)ds 0.
0

1+ s2

Ifr; < r < 400, it follows from (6) and the fact that r* = {¢.(r)¥(r)—¥.(r)é(r)} —
0asr — 400,

r g (r)(r) = ¢r(r)é(r)}

= [T S - s sowtsids o

These mean that ¢.(r)¢(r) — ¢¥-(r)d(r) > 0 for all r > 0, or equivalently, ¢(r)/v(r)
is a strictly increasing function of » > 0. Hence, if we put d = ¢(R)/¢(R), we have

{dw(r) >@(r) if0=r<R,
dy(r) < ¢(r) if R <r < +oo.
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From the Pohozaev identities for ¢(r) and ¢(r), it follows that:

p+1 n 2 n—1 2re p+1
P+ {r Pr(r) + (n = 2" (r)e(r) + —(p 0T r2)¢(r) + }
n 2 n—1 2r™ p+1
. {r 8.0 + (0= 2016, (1) + ) }

- /o G(s){d"* p(s)?*! — ¢(s)7* }ds.

The left-hand side tends to 0 as r + oo. However, since G(r) and dPT1y(r)P*! —
#(r)P*! are positive if 0 < r < R and are negative if R < r < +00, the right-hand
side is positive as r — +o00. This is a contradiction. Thus the uniqueness of the
finite total mass solution is proved.

Next let ¢(r) be the unique finite total mass solution and let u(r) be any
solution of (3) satisfying u(0) > ¢(0). If u(r) > 0 for all r= 0, from the uniqueness
of the finite total mass solution, u(r) satisfies u(r) — (logr)!/(!=?) at +00. Hence
u{r) > ¢(r) for all sufficiently large r, which contradicts Lemmas 3.1 and 3.2. Hence
u(r) must have a finite zero.

Finally let u(r) be a solution of (3) satisfying u(0) < ¢(0). Since u(r) — ¢(r)
has one and only one zero, u(r) does not have a finite zero. From the uniqueness
of the finite total mass solution, u(r) must be an infinite total mass solution. Thus
the proof of Theorem is completed.

5. Concluding Remarks

In this paper we have established the uniqueness of the finite total mass solution
of Matukuma’s equation. We note that the method used in this paper is applicable
to a more general equation

ten(r) + 2R (r) + g(P)u(r)? = 0,

T

if the following conditions are satisfied:
(C1) g(r)=0forallrz0and g(r) ~r~% at +oo.
(C2) There exists an R > 0 such that

G(r) = = ("9} = (n = 2)r™"(r)

satisfies G(r) 2 0 for r € [0, R] and G(r) = 0 for r € [R, +0).
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